Abstract

We report on a cladding-like waveguide structure in Nd:YAG crystal fabricated by the multiple carbon ion beam irradiation. After the designed multiple irradiation process, the cladding-like waveguide with triple refractive-index layers were constructed in the region near the surface of the crystal. With such a structure, the waveguiding core was compressed and refractive index profile was modified, resulting in a higher light intensity than that of the single ion-beam-irradiated monolayer waveguide. The waveguide lasing at wavelength of 1064 nm was achieved with enhanced performance in the cladding-like structures with both planar and ridge configurations by the optical pump at 810 nm.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Cladding-like waveguide fabricated by cooperation of ultrafast laser writing and ion irradiation: characterization and laser generation

Jinman Lv, Zhen Shang, Yang Tan, Javier Rodríguez Vázquez de Aldana, and Feng Chen
Opt. Express 25(16) 19603-19608 (2017)

Low dose carbon implanted waveguides in Nd:YAG

G. V. Vázquez, J. Rickards, G. Lifante, M. Domenech, and E. Cantelar
Opt. Express 11(11) 1291-1296 (2003)

Optical waveguides in Nd:GGG crystals produced by H+ or C3+ ion implantation

Ying-Ying Ren, Feng Chen, Qing-Ming Lu, and Hong-Ji Ma
Appl. Opt. 49(11) 2085-2089 (2010)

References

  • View by:
  • |
  • |
  • |

  1. K. Furusawa, A. Malinowski, J. Price, T. Monro, J. Sahu, J. Nilsson, and D. Richardson, “Cladding pumped Ytterbium-doped fiber laser with holey inner and outer cladding,” Opt. Express 9(13), 714–720 (2001).
    [Crossref] [PubMed]
  2. S. Kawakami and S. Nishida, “Characteristics of a doubly clad optical fiber with a low-index inner cladding,” IEEE J. Quantum Electron. 10(12), 879–887 (1974).
    [Crossref]
  3. J. P. Koplow, L. Goldberg, and D. A. V. Kliner, “Compact 1-W Yb-doped double-cladding fiber amplifier using V-groove side-pumping,” IEEE Photon. Technol. Lett. 10(6), 793–795 (1998).
    [Crossref]
  4. F. G. Lou, P. W. Kuan, L. Zhang, S. K. Wang, Q. L. Zhou, M. Wang, S. Y. Feng, K. F. Li, C. L. Yu, and L. L. Hu, “2 mu m laser properties of Tm3+-doped large core sol-gel silica fiber,” Opt. Mater. Express 4(6), 1267–1275 (2014).
    [Crossref]
  5. Y. X. Song, Q. W. Zhang, X. L. Zeng, M. Wang, and T. Y. Wang, “Compact in-fiber mode adapter based on double-cladding fiber for multimode fiber access networks,” Optik (Stuttg.) 125(1), 4–7 (2014).
    [Crossref]
  6. Z. Yu, Y. Song, X. Dong, Y. Li, J. Tian, and Y. Wang, “Watt-level passively Q-switched double-cladding fiber laser based on graphene oxide saturable absorber,” Appl. Opt. 52(29), 7127–7131 (2013).
    [Crossref] [PubMed]
  7. F. Chen, “Micro-and submicrometric waveguiding structures in optical crystals produced by ion beams for photonic applications,” Laser Photonics Rev. 6(5), 622–640 (2012).
    [Crossref]
  8. C. Grivas, “Optically pumped planar waveguide lasers, Part I: Fundamentals and fabrication techniques,” Prog. Quantum Electron. 35(6), 159–239 (2011).
    [Crossref]
  9. D. Kip, “Photorefractive waveguides in oxide crystals: fabrication, properties, and applications,” Appl. Phys. B 67(2), 131–150 (1998).
    [Crossref]
  10. J. I. Mackenzie, “Dielectric solid-state planar waveguide lasers: a review,” IEEE J. Sel. Top. Quantum Electron. 13(3), 626–637 (2007).
    [Crossref]
  11. Y. Tan and F. Chen, “Proton-implanted optical channel waveguides in Nd:YAG laser ceramics,” J. Phys. D. 43(7), 075105 (2010).
    [Crossref]
  12. L. Wang, F. Chen, X. Wang, K. Wang, Y. Jiao, L. Wang, X. Li, Q. Lu, H.-J. Ma, and R. Nie, “Low-loss planar and stripe waveguides in Nd3+ doped silicate glass produced by oxygen-ion implantation,” J. Appl. Phys. 101(5), 053112 (2007).
    [Crossref]
  13. J. Olivares, G. Garcia, A. Garcia-Navarro, F. Agulló-López, O. Caballero, and A. García-Cabañes, “Generation of high-confinement step-like optical waveguides in LiNbO3 by swift heavy ion-beam irradiation,” Appl. Phys. Lett. 86(18), 183501 (2005).
    [Crossref]
  14. Y. Tan, S. Akhmadaliev, S. Zhou, S. Sun, and F. Chen, “Guided continuous-wave and graphene-based Q-switched lasers in carbon ion irradiated Nd:YAG ceramic channel waveguide,” Opt. Express 22(3), 3572–3577 (2014).
    [Crossref] [PubMed]
  15. F. Qiu and T. Narusawa, “Application of swift and heavy ion implantation to the formation of chalcogenide glass optical waveguides,” Opt. Mater. 33(3), 527–530 (2011).
    [Crossref]
  16. Y. Yao, Y. Tan, N. Dong, F. Chen, and A. A. Bettiol, “Continuous wave Nd:YAG channel waveguide laser produced by focused proton beam writing,” Opt. Express 18(24), 24516–24521 (2010).
    [Crossref] [PubMed]
  17. K. Liu, E. Y. B. Pun, T. C. Sum, A. A. Belliol, J. A. Kan, and F. Watt, “Erbium doped waveguide amplifiers fabricated using focused proton beam irradiation,” Appl. Phys. Lett. 84(5), 684–686 (2004).
    [Crossref]
  18. Y. Ren, Y. Jia, N. Dong, L. Pang, Z. Wang, Q. Lu, and F. Chen, “Guided-wave second harmonics in Nd:YCOB optical waveguides for integrated green lasers,” Opt. Lett. 37(2), 244–246 (2012).
    [Crossref] [PubMed]
  19. J. S. Williams and J. M. Poate, Ion Implantation and BeamProcessing (Academic Press Inc., Orlando, 1984).
  20. F. Chen, “Photonic guiding structures in lithium niobate crystals produced by energetic ion beams,” J. Appl. Phys. 106(8), 081101 (2009).
    [Crossref]
  21. P. D. Townsend, P. J. Chandler, and L. Zhang, Optical Effects of Ion Implantation (Cambridge Univ. Press, Cambridge, UK 1994)
  22. Y. Tan, C. Cheng, S. Akhmadaliev, S. Zhou, and F. Chen, “Nd:YAG waveguide laser Q-switched by evanescent-field interaction with graphene,” Opt. Express 22(8), 9101–9106 (2014).
    [Crossref] [PubMed]
  23. P. J. Chandler and F. L. Lama, “A new approach to the determination of planar waveguide profiles by means of a non-stationary mode index calculation,” Opt. Acta (Lond.) 33(2), 127–143 (1986).
    [Crossref]
  24. G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, “Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3: Planar optical waveguide formation and characterization,” J. Appl. Phys. 92(11), 6477–6483 (2002).
    [Crossref]
  25. R. Ramponi, R. Osellame, and M. Marangoni, “Two straightforward methods for the measurement of optical losses in planar waveguides,” Rev. Sci. Instrum. 73(3), 1117–1121 (2002).
    [Crossref]
  26. Y. Jia, C. E. Rüter, S. Akhmadaliev, S. Zhou, F. Chen, and D. Kip, “Ridge waveguide lasers in Nd:YAG crystals produced by combining swift heavy ion irradiation and precise diamond blade dicing,” Opt. Mater. Express 3(4), 433–438 (2013).
    [Crossref]

2014 (4)

2013 (2)

2012 (2)

Y. Ren, Y. Jia, N. Dong, L. Pang, Z. Wang, Q. Lu, and F. Chen, “Guided-wave second harmonics in Nd:YCOB optical waveguides for integrated green lasers,” Opt. Lett. 37(2), 244–246 (2012).
[Crossref] [PubMed]

F. Chen, “Micro-and submicrometric waveguiding structures in optical crystals produced by ion beams for photonic applications,” Laser Photonics Rev. 6(5), 622–640 (2012).
[Crossref]

2011 (2)

C. Grivas, “Optically pumped planar waveguide lasers, Part I: Fundamentals and fabrication techniques,” Prog. Quantum Electron. 35(6), 159–239 (2011).
[Crossref]

F. Qiu and T. Narusawa, “Application of swift and heavy ion implantation to the formation of chalcogenide glass optical waveguides,” Opt. Mater. 33(3), 527–530 (2011).
[Crossref]

2010 (2)

2009 (1)

F. Chen, “Photonic guiding structures in lithium niobate crystals produced by energetic ion beams,” J. Appl. Phys. 106(8), 081101 (2009).
[Crossref]

2007 (2)

L. Wang, F. Chen, X. Wang, K. Wang, Y. Jiao, L. Wang, X. Li, Q. Lu, H.-J. Ma, and R. Nie, “Low-loss planar and stripe waveguides in Nd3+ doped silicate glass produced by oxygen-ion implantation,” J. Appl. Phys. 101(5), 053112 (2007).
[Crossref]

J. I. Mackenzie, “Dielectric solid-state planar waveguide lasers: a review,” IEEE J. Sel. Top. Quantum Electron. 13(3), 626–637 (2007).
[Crossref]

2005 (1)

J. Olivares, G. Garcia, A. Garcia-Navarro, F. Agulló-López, O. Caballero, and A. García-Cabañes, “Generation of high-confinement step-like optical waveguides in LiNbO3 by swift heavy ion-beam irradiation,” Appl. Phys. Lett. 86(18), 183501 (2005).
[Crossref]

2004 (1)

K. Liu, E. Y. B. Pun, T. C. Sum, A. A. Belliol, J. A. Kan, and F. Watt, “Erbium doped waveguide amplifiers fabricated using focused proton beam irradiation,” Appl. Phys. Lett. 84(5), 684–686 (2004).
[Crossref]

2002 (2)

G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, “Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3: Planar optical waveguide formation and characterization,” J. Appl. Phys. 92(11), 6477–6483 (2002).
[Crossref]

R. Ramponi, R. Osellame, and M. Marangoni, “Two straightforward methods for the measurement of optical losses in planar waveguides,” Rev. Sci. Instrum. 73(3), 1117–1121 (2002).
[Crossref]

2001 (1)

1998 (2)

J. P. Koplow, L. Goldberg, and D. A. V. Kliner, “Compact 1-W Yb-doped double-cladding fiber amplifier using V-groove side-pumping,” IEEE Photon. Technol. Lett. 10(6), 793–795 (1998).
[Crossref]

D. Kip, “Photorefractive waveguides in oxide crystals: fabrication, properties, and applications,” Appl. Phys. B 67(2), 131–150 (1998).
[Crossref]

1986 (1)

P. J. Chandler and F. L. Lama, “A new approach to the determination of planar waveguide profiles by means of a non-stationary mode index calculation,” Opt. Acta (Lond.) 33(2), 127–143 (1986).
[Crossref]

1974 (1)

S. Kawakami and S. Nishida, “Characteristics of a doubly clad optical fiber with a low-index inner cladding,” IEEE J. Quantum Electron. 10(12), 879–887 (1974).
[Crossref]

Agulló-López, F.

J. Olivares, G. Garcia, A. Garcia-Navarro, F. Agulló-López, O. Caballero, and A. García-Cabañes, “Generation of high-confinement step-like optical waveguides in LiNbO3 by swift heavy ion-beam irradiation,” Appl. Phys. Lett. 86(18), 183501 (2005).
[Crossref]

Akhmadaliev, S.

Argiolas, N.

G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, “Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3: Planar optical waveguide formation and characterization,” J. Appl. Phys. 92(11), 6477–6483 (2002).
[Crossref]

Bazzan, M.

G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, “Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3: Planar optical waveguide formation and characterization,” J. Appl. Phys. 92(11), 6477–6483 (2002).
[Crossref]

Belliol, A. A.

K. Liu, E. Y. B. Pun, T. C. Sum, A. A. Belliol, J. A. Kan, and F. Watt, “Erbium doped waveguide amplifiers fabricated using focused proton beam irradiation,” Appl. Phys. Lett. 84(5), 684–686 (2004).
[Crossref]

Bentini, G. G.

G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, “Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3: Planar optical waveguide formation and characterization,” J. Appl. Phys. 92(11), 6477–6483 (2002).
[Crossref]

Bettiol, A. A.

Bianconi, M.

G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, “Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3: Planar optical waveguide formation and characterization,” J. Appl. Phys. 92(11), 6477–6483 (2002).
[Crossref]

Caballero, O.

J. Olivares, G. Garcia, A. Garcia-Navarro, F. Agulló-López, O. Caballero, and A. García-Cabañes, “Generation of high-confinement step-like optical waveguides in LiNbO3 by swift heavy ion-beam irradiation,” Appl. Phys. Lett. 86(18), 183501 (2005).
[Crossref]

Chandler, P. J.

P. J. Chandler and F. L. Lama, “A new approach to the determination of planar waveguide profiles by means of a non-stationary mode index calculation,” Opt. Acta (Lond.) 33(2), 127–143 (1986).
[Crossref]

Chen, F.

Y. Tan, C. Cheng, S. Akhmadaliev, S. Zhou, and F. Chen, “Nd:YAG waveguide laser Q-switched by evanescent-field interaction with graphene,” Opt. Express 22(8), 9101–9106 (2014).
[Crossref] [PubMed]

Y. Tan, S. Akhmadaliev, S. Zhou, S. Sun, and F. Chen, “Guided continuous-wave and graphene-based Q-switched lasers in carbon ion irradiated Nd:YAG ceramic channel waveguide,” Opt. Express 22(3), 3572–3577 (2014).
[Crossref] [PubMed]

Y. Jia, C. E. Rüter, S. Akhmadaliev, S. Zhou, F. Chen, and D. Kip, “Ridge waveguide lasers in Nd:YAG crystals produced by combining swift heavy ion irradiation and precise diamond blade dicing,” Opt. Mater. Express 3(4), 433–438 (2013).
[Crossref]

Y. Ren, Y. Jia, N. Dong, L. Pang, Z. Wang, Q. Lu, and F. Chen, “Guided-wave second harmonics in Nd:YCOB optical waveguides for integrated green lasers,” Opt. Lett. 37(2), 244–246 (2012).
[Crossref] [PubMed]

F. Chen, “Micro-and submicrometric waveguiding structures in optical crystals produced by ion beams for photonic applications,” Laser Photonics Rev. 6(5), 622–640 (2012).
[Crossref]

Y. Tan and F. Chen, “Proton-implanted optical channel waveguides in Nd:YAG laser ceramics,” J. Phys. D. 43(7), 075105 (2010).
[Crossref]

Y. Yao, Y. Tan, N. Dong, F. Chen, and A. A. Bettiol, “Continuous wave Nd:YAG channel waveguide laser produced by focused proton beam writing,” Opt. Express 18(24), 24516–24521 (2010).
[Crossref] [PubMed]

F. Chen, “Photonic guiding structures in lithium niobate crystals produced by energetic ion beams,” J. Appl. Phys. 106(8), 081101 (2009).
[Crossref]

L. Wang, F. Chen, X. Wang, K. Wang, Y. Jiao, L. Wang, X. Li, Q. Lu, H.-J. Ma, and R. Nie, “Low-loss planar and stripe waveguides in Nd3+ doped silicate glass produced by oxygen-ion implantation,” J. Appl. Phys. 101(5), 053112 (2007).
[Crossref]

Cheng, C.

Chiarini, M.

G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, “Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3: Planar optical waveguide formation and characterization,” J. Appl. Phys. 92(11), 6477–6483 (2002).
[Crossref]

Correra, L.

G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, “Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3: Planar optical waveguide formation and characterization,” J. Appl. Phys. 92(11), 6477–6483 (2002).
[Crossref]

Dong, N.

Dong, X.

Feng, S. Y.

Furusawa, K.

Garcia, G.

J. Olivares, G. Garcia, A. Garcia-Navarro, F. Agulló-López, O. Caballero, and A. García-Cabañes, “Generation of high-confinement step-like optical waveguides in LiNbO3 by swift heavy ion-beam irradiation,” Appl. Phys. Lett. 86(18), 183501 (2005).
[Crossref]

García-Cabañes, A.

J. Olivares, G. Garcia, A. Garcia-Navarro, F. Agulló-López, O. Caballero, and A. García-Cabañes, “Generation of high-confinement step-like optical waveguides in LiNbO3 by swift heavy ion-beam irradiation,” Appl. Phys. Lett. 86(18), 183501 (2005).
[Crossref]

Garcia-Navarro, A.

J. Olivares, G. Garcia, A. Garcia-Navarro, F. Agulló-López, O. Caballero, and A. García-Cabañes, “Generation of high-confinement step-like optical waveguides in LiNbO3 by swift heavy ion-beam irradiation,” Appl. Phys. Lett. 86(18), 183501 (2005).
[Crossref]

Goldberg, L.

J. P. Koplow, L. Goldberg, and D. A. V. Kliner, “Compact 1-W Yb-doped double-cladding fiber amplifier using V-groove side-pumping,” IEEE Photon. Technol. Lett. 10(6), 793–795 (1998).
[Crossref]

Grivas, C.

C. Grivas, “Optically pumped planar waveguide lasers, Part I: Fundamentals and fabrication techniques,” Prog. Quantum Electron. 35(6), 159–239 (2011).
[Crossref]

Guzzi, R.

G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, “Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3: Planar optical waveguide formation and characterization,” J. Appl. Phys. 92(11), 6477–6483 (2002).
[Crossref]

Hu, L. L.

Jia, Y.

Jiao, Y.

L. Wang, F. Chen, X. Wang, K. Wang, Y. Jiao, L. Wang, X. Li, Q. Lu, H.-J. Ma, and R. Nie, “Low-loss planar and stripe waveguides in Nd3+ doped silicate glass produced by oxygen-ion implantation,” J. Appl. Phys. 101(5), 053112 (2007).
[Crossref]

Kan, J. A.

K. Liu, E. Y. B. Pun, T. C. Sum, A. A. Belliol, J. A. Kan, and F. Watt, “Erbium doped waveguide amplifiers fabricated using focused proton beam irradiation,” Appl. Phys. Lett. 84(5), 684–686 (2004).
[Crossref]

Kawakami, S.

S. Kawakami and S. Nishida, “Characteristics of a doubly clad optical fiber with a low-index inner cladding,” IEEE J. Quantum Electron. 10(12), 879–887 (1974).
[Crossref]

Kip, D.

Kliner, D. A. V.

J. P. Koplow, L. Goldberg, and D. A. V. Kliner, “Compact 1-W Yb-doped double-cladding fiber amplifier using V-groove side-pumping,” IEEE Photon. Technol. Lett. 10(6), 793–795 (1998).
[Crossref]

Koplow, J. P.

J. P. Koplow, L. Goldberg, and D. A. V. Kliner, “Compact 1-W Yb-doped double-cladding fiber amplifier using V-groove side-pumping,” IEEE Photon. Technol. Lett. 10(6), 793–795 (1998).
[Crossref]

Kuan, P. W.

Lama, F. L.

P. J. Chandler and F. L. Lama, “A new approach to the determination of planar waveguide profiles by means of a non-stationary mode index calculation,” Opt. Acta (Lond.) 33(2), 127–143 (1986).
[Crossref]

Li, K. F.

Li, X.

L. Wang, F. Chen, X. Wang, K. Wang, Y. Jiao, L. Wang, X. Li, Q. Lu, H.-J. Ma, and R. Nie, “Low-loss planar and stripe waveguides in Nd3+ doped silicate glass produced by oxygen-ion implantation,” J. Appl. Phys. 101(5), 053112 (2007).
[Crossref]

Li, Y.

Liu, K.

K. Liu, E. Y. B. Pun, T. C. Sum, A. A. Belliol, J. A. Kan, and F. Watt, “Erbium doped waveguide amplifiers fabricated using focused proton beam irradiation,” Appl. Phys. Lett. 84(5), 684–686 (2004).
[Crossref]

Lou, F. G.

Lu, Q.

Y. Ren, Y. Jia, N. Dong, L. Pang, Z. Wang, Q. Lu, and F. Chen, “Guided-wave second harmonics in Nd:YCOB optical waveguides for integrated green lasers,” Opt. Lett. 37(2), 244–246 (2012).
[Crossref] [PubMed]

L. Wang, F. Chen, X. Wang, K. Wang, Y. Jiao, L. Wang, X. Li, Q. Lu, H.-J. Ma, and R. Nie, “Low-loss planar and stripe waveguides in Nd3+ doped silicate glass produced by oxygen-ion implantation,” J. Appl. Phys. 101(5), 053112 (2007).
[Crossref]

Ma, H.-J.

L. Wang, F. Chen, X. Wang, K. Wang, Y. Jiao, L. Wang, X. Li, Q. Lu, H.-J. Ma, and R. Nie, “Low-loss planar and stripe waveguides in Nd3+ doped silicate glass produced by oxygen-ion implantation,” J. Appl. Phys. 101(5), 053112 (2007).
[Crossref]

Mackenzie, J. I.

J. I. Mackenzie, “Dielectric solid-state planar waveguide lasers: a review,” IEEE J. Sel. Top. Quantum Electron. 13(3), 626–637 (2007).
[Crossref]

Malinowski, A.

Marangoni, M.

R. Ramponi, R. Osellame, and M. Marangoni, “Two straightforward methods for the measurement of optical losses in planar waveguides,” Rev. Sci. Instrum. 73(3), 1117–1121 (2002).
[Crossref]

Mazzoldi, P.

G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, “Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3: Planar optical waveguide formation and characterization,” J. Appl. Phys. 92(11), 6477–6483 (2002).
[Crossref]

Monro, T.

Narusawa, T.

F. Qiu and T. Narusawa, “Application of swift and heavy ion implantation to the formation of chalcogenide glass optical waveguides,” Opt. Mater. 33(3), 527–530 (2011).
[Crossref]

Nie, R.

L. Wang, F. Chen, X. Wang, K. Wang, Y. Jiao, L. Wang, X. Li, Q. Lu, H.-J. Ma, and R. Nie, “Low-loss planar and stripe waveguides in Nd3+ doped silicate glass produced by oxygen-ion implantation,” J. Appl. Phys. 101(5), 053112 (2007).
[Crossref]

Nilsson, J.

Nishida, S.

S. Kawakami and S. Nishida, “Characteristics of a doubly clad optical fiber with a low-index inner cladding,” IEEE J. Quantum Electron. 10(12), 879–887 (1974).
[Crossref]

Olivares, J.

J. Olivares, G. Garcia, A. Garcia-Navarro, F. Agulló-López, O. Caballero, and A. García-Cabañes, “Generation of high-confinement step-like optical waveguides in LiNbO3 by swift heavy ion-beam irradiation,” Appl. Phys. Lett. 86(18), 183501 (2005).
[Crossref]

Osellame, R.

R. Ramponi, R. Osellame, and M. Marangoni, “Two straightforward methods for the measurement of optical losses in planar waveguides,” Rev. Sci. Instrum. 73(3), 1117–1121 (2002).
[Crossref]

Pang, L.

Price, J.

Pun, E. Y. B.

K. Liu, E. Y. B. Pun, T. C. Sum, A. A. Belliol, J. A. Kan, and F. Watt, “Erbium doped waveguide amplifiers fabricated using focused proton beam irradiation,” Appl. Phys. Lett. 84(5), 684–686 (2004).
[Crossref]

Qiu, F.

F. Qiu and T. Narusawa, “Application of swift and heavy ion implantation to the formation of chalcogenide glass optical waveguides,” Opt. Mater. 33(3), 527–530 (2011).
[Crossref]

Ramponi, R.

R. Ramponi, R. Osellame, and M. Marangoni, “Two straightforward methods for the measurement of optical losses in planar waveguides,” Rev. Sci. Instrum. 73(3), 1117–1121 (2002).
[Crossref]

Ren, Y.

Richardson, D.

Rüter, C. E.

Sada, C.

G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, “Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3: Planar optical waveguide formation and characterization,” J. Appl. Phys. 92(11), 6477–6483 (2002).
[Crossref]

Sahu, J.

Song, Y.

Song, Y. X.

Y. X. Song, Q. W. Zhang, X. L. Zeng, M. Wang, and T. Y. Wang, “Compact in-fiber mode adapter based on double-cladding fiber for multimode fiber access networks,” Optik (Stuttg.) 125(1), 4–7 (2014).
[Crossref]

Sum, T. C.

K. Liu, E. Y. B. Pun, T. C. Sum, A. A. Belliol, J. A. Kan, and F. Watt, “Erbium doped waveguide amplifiers fabricated using focused proton beam irradiation,” Appl. Phys. Lett. 84(5), 684–686 (2004).
[Crossref]

Sun, S.

Tan, Y.

Tian, J.

Wang, K.

L. Wang, F. Chen, X. Wang, K. Wang, Y. Jiao, L. Wang, X. Li, Q. Lu, H.-J. Ma, and R. Nie, “Low-loss planar and stripe waveguides in Nd3+ doped silicate glass produced by oxygen-ion implantation,” J. Appl. Phys. 101(5), 053112 (2007).
[Crossref]

Wang, L.

L. Wang, F. Chen, X. Wang, K. Wang, Y. Jiao, L. Wang, X. Li, Q. Lu, H.-J. Ma, and R. Nie, “Low-loss planar and stripe waveguides in Nd3+ doped silicate glass produced by oxygen-ion implantation,” J. Appl. Phys. 101(5), 053112 (2007).
[Crossref]

L. Wang, F. Chen, X. Wang, K. Wang, Y. Jiao, L. Wang, X. Li, Q. Lu, H.-J. Ma, and R. Nie, “Low-loss planar and stripe waveguides in Nd3+ doped silicate glass produced by oxygen-ion implantation,” J. Appl. Phys. 101(5), 053112 (2007).
[Crossref]

Wang, M.

Y. X. Song, Q. W. Zhang, X. L. Zeng, M. Wang, and T. Y. Wang, “Compact in-fiber mode adapter based on double-cladding fiber for multimode fiber access networks,” Optik (Stuttg.) 125(1), 4–7 (2014).
[Crossref]

F. G. Lou, P. W. Kuan, L. Zhang, S. K. Wang, Q. L. Zhou, M. Wang, S. Y. Feng, K. F. Li, C. L. Yu, and L. L. Hu, “2 mu m laser properties of Tm3+-doped large core sol-gel silica fiber,” Opt. Mater. Express 4(6), 1267–1275 (2014).
[Crossref]

Wang, S. K.

Wang, T. Y.

Y. X. Song, Q. W. Zhang, X. L. Zeng, M. Wang, and T. Y. Wang, “Compact in-fiber mode adapter based on double-cladding fiber for multimode fiber access networks,” Optik (Stuttg.) 125(1), 4–7 (2014).
[Crossref]

Wang, X.

L. Wang, F. Chen, X. Wang, K. Wang, Y. Jiao, L. Wang, X. Li, Q. Lu, H.-J. Ma, and R. Nie, “Low-loss planar and stripe waveguides in Nd3+ doped silicate glass produced by oxygen-ion implantation,” J. Appl. Phys. 101(5), 053112 (2007).
[Crossref]

Wang, Y.

Wang, Z.

Watt, F.

K. Liu, E. Y. B. Pun, T. C. Sum, A. A. Belliol, J. A. Kan, and F. Watt, “Erbium doped waveguide amplifiers fabricated using focused proton beam irradiation,” Appl. Phys. Lett. 84(5), 684–686 (2004).
[Crossref]

Yao, Y.

Yu, C. L.

Yu, Z.

Zeng, X. L.

Y. X. Song, Q. W. Zhang, X. L. Zeng, M. Wang, and T. Y. Wang, “Compact in-fiber mode adapter based on double-cladding fiber for multimode fiber access networks,” Optik (Stuttg.) 125(1), 4–7 (2014).
[Crossref]

Zhang, L.

Zhang, Q. W.

Y. X. Song, Q. W. Zhang, X. L. Zeng, M. Wang, and T. Y. Wang, “Compact in-fiber mode adapter based on double-cladding fiber for multimode fiber access networks,” Optik (Stuttg.) 125(1), 4–7 (2014).
[Crossref]

Zhou, Q. L.

Zhou, S.

Appl. Opt. (1)

Appl. Phys. B (1)

D. Kip, “Photorefractive waveguides in oxide crystals: fabrication, properties, and applications,” Appl. Phys. B 67(2), 131–150 (1998).
[Crossref]

Appl. Phys. Lett. (2)

J. Olivares, G. Garcia, A. Garcia-Navarro, F. Agulló-López, O. Caballero, and A. García-Cabañes, “Generation of high-confinement step-like optical waveguides in LiNbO3 by swift heavy ion-beam irradiation,” Appl. Phys. Lett. 86(18), 183501 (2005).
[Crossref]

K. Liu, E. Y. B. Pun, T. C. Sum, A. A. Belliol, J. A. Kan, and F. Watt, “Erbium doped waveguide amplifiers fabricated using focused proton beam irradiation,” Appl. Phys. Lett. 84(5), 684–686 (2004).
[Crossref]

IEEE J. Quantum Electron. (1)

S. Kawakami and S. Nishida, “Characteristics of a doubly clad optical fiber with a low-index inner cladding,” IEEE J. Quantum Electron. 10(12), 879–887 (1974).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

J. I. Mackenzie, “Dielectric solid-state planar waveguide lasers: a review,” IEEE J. Sel. Top. Quantum Electron. 13(3), 626–637 (2007).
[Crossref]

IEEE Photon. Technol. Lett. (1)

J. P. Koplow, L. Goldberg, and D. A. V. Kliner, “Compact 1-W Yb-doped double-cladding fiber amplifier using V-groove side-pumping,” IEEE Photon. Technol. Lett. 10(6), 793–795 (1998).
[Crossref]

J. Appl. Phys. (3)

L. Wang, F. Chen, X. Wang, K. Wang, Y. Jiao, L. Wang, X. Li, Q. Lu, H.-J. Ma, and R. Nie, “Low-loss planar and stripe waveguides in Nd3+ doped silicate glass produced by oxygen-ion implantation,” J. Appl. Phys. 101(5), 053112 (2007).
[Crossref]

F. Chen, “Photonic guiding structures in lithium niobate crystals produced by energetic ion beams,” J. Appl. Phys. 106(8), 081101 (2009).
[Crossref]

G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, “Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3: Planar optical waveguide formation and characterization,” J. Appl. Phys. 92(11), 6477–6483 (2002).
[Crossref]

J. Phys. D. (1)

Y. Tan and F. Chen, “Proton-implanted optical channel waveguides in Nd:YAG laser ceramics,” J. Phys. D. 43(7), 075105 (2010).
[Crossref]

Laser Photonics Rev. (1)

F. Chen, “Micro-and submicrometric waveguiding structures in optical crystals produced by ion beams for photonic applications,” Laser Photonics Rev. 6(5), 622–640 (2012).
[Crossref]

Opt. Acta (Lond.) (1)

P. J. Chandler and F. L. Lama, “A new approach to the determination of planar waveguide profiles by means of a non-stationary mode index calculation,” Opt. Acta (Lond.) 33(2), 127–143 (1986).
[Crossref]

Opt. Express (4)

Opt. Lett. (1)

Opt. Mater. (1)

F. Qiu and T. Narusawa, “Application of swift and heavy ion implantation to the formation of chalcogenide glass optical waveguides,” Opt. Mater. 33(3), 527–530 (2011).
[Crossref]

Opt. Mater. Express (2)

Optik (Stuttg.) (1)

Y. X. Song, Q. W. Zhang, X. L. Zeng, M. Wang, and T. Y. Wang, “Compact in-fiber mode adapter based on double-cladding fiber for multimode fiber access networks,” Optik (Stuttg.) 125(1), 4–7 (2014).
[Crossref]

Prog. Quantum Electron. (1)

C. Grivas, “Optically pumped planar waveguide lasers, Part I: Fundamentals and fabrication techniques,” Prog. Quantum Electron. 35(6), 159–239 (2011).
[Crossref]

Rev. Sci. Instrum. (1)

R. Ramponi, R. Osellame, and M. Marangoni, “Two straightforward methods for the measurement of optical losses in planar waveguides,” Rev. Sci. Instrum. 73(3), 1117–1121 (2002).
[Crossref]

Other (2)

P. D. Townsend, P. J. Chandler, and L. Zhang, Optical Effects of Ion Implantation (Cambridge Univ. Press, Cambridge, UK 1994)

J. S. Williams and J. M. Poate, Ion Implantation and BeamProcessing (Academic Press Inc., Orlando, 1984).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Cross-sectional microscope images of waveguide S1 (a), S2 (b) and S3 (c).
Fig. 2
Fig. 2 Refractive index profiles of S1 (a), S2 (b) and S3 (c) at the wavelength of 1064 nm; measured propagation modes of S1 (d), S2 (e) and S3 (f) at the wavelength of 1064 nm; simulated propagation modes of S1 (g), S2 (h) and S3 (i) at the wavelength of 1064 nm.
Fig. 3
Fig. 3 The power of the output laser versus the coupled pumping power in S2 and S3 at the wavelength of 1064 nm. The laser oscillation spectrum of the output laser is shown in the inset.
Fig. 4
Fig. 4 (a) Microscope image of the cross section of the ridged waveguide; (b) the laser modal profile of the 25 μm waveguide at the wavelength of ~1064 nm; (c) The power of the output laser as a function of input pumping power (blue square) and the reported fitting curve in Ref [26]. (red dashed line).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Δ n s3 (z)=aΔ n s1 (z)+bΔ n s2 (z)
P th = hc λ p 1 η σ e τ δ 2 A eff

Metrics