Abstract

We investigated the effect of temporal shaped femtosecond pulses on silicon laser micromachining. By using sinusoidal spectral phases, pulse trains composed of sub-pulses with distinct temporal separations were generated and applied to the silicon surface to produce Laser Induced Periodic Surface Structures (LIPSS). The LIPSS obtained with different sub-pulse separation were analyzed by comparing the intensity of the two-dimensional fast Fourier Transform (2D-FFT) of the AFM images of the ripples (LIPSS). It was observed that LIPSS amplitude is more emphasized for the pulse train with sub-pulses separation of 128 fs, even when compared with the Fourier transform limited pulse. By estimating the carrier density achieved at the end of each pulse train, we have been able to interpret our results with the Sipe-Drude model, that predicts that LIPSS efficacy is higher for a specific induced carrier density. Hence, our results indicate that temporal shaping of the excitation pulse, performed by spectral phase modulation, can be explored in fs-laser microstructuring.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Anisotropy modulations of femtosecond laser pulse induced periodic surface structures on silicon by adjusting double pulse delay

Weina Han, Lan Jiang, Xiaowei Li, Qingsong Wang, Hao Li, and YongFeng Lu
Opt. Express 22(13) 15820-15828 (2014)

Femtosecond laser-induced periodic surface structures on silicon upon polarization controlled two-color double-pulse irradiation

Sandra Höhm, Marcel Herzlieb, Arkadi Rosenfeld, Jörg Krüger, and Jörn Bonse
Opt. Express 23(1) 61-71 (2015)

Ultrafast imaging on the formation of periodic ripples on a Si surface with a prefabricated nanogroove induced by a single femtosecond laser pulse

Jukun Liu, Xin Jia, Weishu Wu, Ke Cheng, Donghai Feng, Shian Zhang, Zhenrong Sun, and Tianqing Jia
Opt. Express 26(5) 6302-6315 (2018)

References

  • View by:
  • |
  • |
  • |

  1. T. H. Her, R. J. Finlay, C. Wu, and E. Mazur, “Femtosecond laser-induced formation of spikes on silicon,” Appl. Phys., A Mater. Sci. Process. 70(4), 383–385 (2000).
    [Crossref]
  2. M. Shen, J. E. Carey, C. H. Crouch, M. Kandyla, H. A. Stone, and E. Mazur, “High-density regular arrays of nanometer-scale rods formed on silicon surfaces via femtosecond laser irradiation in water,” Nano Lett. 8(7), 2087–2091 (2008).
    [Crossref] [PubMed]
  3. T. Baldacchini, J. E. Carey, M. Zhou, and E. Mazur, “Superhydrophobic surfaces prepared by microstructuring of silicon using a femtosecond laser,” Langmuir 22(11), 4917–4919 (2006).
    [Crossref] [PubMed]
  4. B. R. Tull, J. E. Carey, E. Mazur, J. P. McDonald, and S. M. Yalisove, “Silicon surface morphologies after femtosecond laser irradiation,” MRS Bull. 31(08), 626–633 (2006).
    [Crossref]
  5. T. H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, “Microstructuring of silicon with femtosecond laser pulses,” Appl. Phys. Lett. 73(12), 1673–1675 (1998).
    [Crossref]
  6. R. Younkin, J. E. Carey, E. Mazur, J. A. Levinson, and C. M. Friend, “Infrared absorption by conical silicon microstructures made in a variety of background gases using femtosecond-laser pulses,” J. Appl. Phys. 93(5), 2626–2629 (2003).
    [Crossref]
  7. B. R. Tull, J. E. Carey, M. A. Sheehy, C. Friend, and E. Mazur, “Formation of silicon nanoparticles and web-like aggregates by femtosecond laser ablation in a background gas,” Appl. Phys., A Mater. Sci. Process. 83(3), 341–346 (2006).
    [Crossref]
  8. Y. Jee, M. F. Becker, and R. M. Walser, “Laser-induced damage on single-crystal metal-surfaces,” J. Opt. Soc. Am. B 5(3), 648–659 (1988).
    [Crossref]
  9. P. A. Temple and M. J. Soileau, “Polarization charge model for laser-induced ripple patterns in dielectric materials,” IEEE J. Quantum Electron. 17(10), 2067–2072 (1981).
    [Crossref]
  10. S. Baudach, J. Bonse, and W. Kautek, “Ablation experiments on polyimide with femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process. 69(7), S395–S398 (1999).
    [Crossref]
  11. M. Csete, S. Hild, A. Plettl, P. Ziemann, Z. Bor, and O. Marti, “The role of original surface roughness in laser-induced periodic surface structure formation process on poly-carbonate films,” Thin Solid Films 453–454, 114–120 (2004).
    [Crossref]
  12. D. C. Emmony, R. P. Howson, and L. J. Willis, “Laser mirror damage in germanium at 10.6 mu,” Appl. Phys. Lett. 23(11), 598–600 (1973).
    [Crossref]
  13. J. F. Young, J. S. Preston, H. M. Vandriel, and J. E. Sipe, “Laser-induced periodic surface-structure. 2. Experiments on Ge, Si, Al, and brass,” Phys. Rev. B Condens. Matter 27(2), 1155–1172 (1983).
    [Crossref]
  14. J. E. Sipe, J. F. Young, J. S. Preston, and H. M. Vandriel, “Laser-induced periodic surface-structure. 1. Theory,” Phys. Rev. B Condens. Matter 27(2), 1141–1154 (1983).
    [Crossref]
  15. T. Okada, H. Kawahara, Y. Ishida, R. Kumai, T. Tomita, S. Matsuo, S. Hashimoto, M. Kawamoto, Y. Makita, and M. Yamaguchi, “Cross-sectional TEM analysis of laser-induced ripple structures on the 4H-SiC single-crystal surface,” Appl. Phys., A Mater. Sci. Process. 92(3), 665–668 (2008).
    [Crossref]
  16. E. M. Hsu, T. H. R. Crawford, C. Maunders, G. A. Botton, and H. K. Haugen, “Cross-sectional study of periodic surface structures on gallium phosphide induced by ultrashort laser pulse irradiation,” Appl. Phys. Lett. 92(22), 221112 (2008).
    [Crossref]
  17. A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71(5), 1929–1960 (2000).
    [Crossref]
  18. A. Präkelt, M. Wollenhaupt, A. Assion, C. Horn, C. Sarpe-Tudoran, M. Winter, and T. Baumert, “Compact, robust, and flexible setup for femtosecond pulse shaping,” Rev. Sci. Instrum. 74(11), 4950–4953 (2003).
    [Crossref]
  19. R. J. Martins, J. P. Siqueira, P. H. D. Ferreira, L. Misoguti, T. Voss, and C. R. Mendonca, “Enhancing multi-photon induced excitonic emission of ZnO single crystals by shaping fs laser pulses,” Laser Phys. Lett. 10(10), 105403 (2013).
    [Crossref]
  20. S. A. Rice, “Interfering for the good of a chemical reaction,” Nature 409(6818), 422–426 (2001).
    [Crossref] [PubMed]
  21. Y. Silberberg and D. Meshulach, “Coherent quantum control of two-photon transitions by a femtosecond laser pulse,” Nature 396(6708), 239–242 (1998).
    [Crossref]
  22. X. Shi, L. Jiang, X. Li, S. Wang, Y. Yuan, and Y. Lu, “Femtosecond laser-induced periodic structure adjustments based on electron dynamics control: from subwavelength ripples to double-grating structures,” Opt. Lett. 38(19), 3743–3746 (2013).
    [Crossref] [PubMed]
  23. X. Shi, L. Jiang, X. Li, K. Zhang, D. Yu, Y. Yu, and Y. Lu, “Temporal femtosecond pulse shaping dependence of laser-induced periodic surface structures in fused silica,” J. Appl. Phys. 116(3), 033104 (2014).
    [Crossref]
  24. K. Lou, S.-X. Qian, X.-L. Wang, Y. Li, B. Gu, C. Tu, and H.-T. Wang, “Two-dimensional microstructures induced by femtosecond vector light fields on silicon,” Opt. Express 20(1), 120–127 (2012).
    [Crossref] [PubMed]
  25. S. Zoppel, M. Farsari, R. Merz, J. Zehetner, G. Stangl, G. A. Reider, and C. Fotakis, “Laser micro machining of 3C-SiC single crystals,” Microelectron. Eng. 83(4-9), 1400–1402 (2006).
    [Crossref]
  26. R. Le Harzic, D. Breitling, M. Weikert, S. Sommer, C. Fohl, S. Valette, C. Donnet, E. Audouard, and F. Dausinger, “Pulse width and energy influence on laser micromachining of metals in a range of 100 fs to 5 ps,” Appl. Surf. Sci. 249(1-4), 322–331 (2005).
    [Crossref]
  27. N. Leng, L. Jiang, X. Li, C. Xu, P. Liu, and Y. Lu, “Femtosecond laser processing of fused silica and aluminum based on electron dynamics control by shaping pulse trains,” Appl. Phys., A Mater. Sci. Process. 109(3), 679–684 (2012).
    [Crossref]
  28. R. Stoian, M. Boyle, A. Thoss, A. Rosenfeld, G. Korn, and I. V. Hertel, “Dynamic temporal pulse shaping in advanced ultrafast laser material processing,” Appl. Phys., A Mater. Sci. Process. 77, 265–269 (2003).
  29. L. Jiang and H. L. Tsai, “Repeatable nanostructures in dielectrics by femtosecond laser pulse trains,” Appl. Phys. Lett. 87(15), 151104 (2005).
    [Crossref]
  30. S. Preuss, M. Spath, Y. Zhang, and M. Stuke, “Time-resolved dynamics of subpicosecond laser ablation,” Appl. Phys. Lett. 62(23), 3049–3051 (1993).
    [Crossref]
  31. S. Preuss and M. Stuke, “Subpicosecond ultraviolet-laser ablation of diamond - nonlinear properties at 248 nm and time-resolved characterization of ablation dynamics,” Appl. Phys. Lett. 67(3), 338–340 (1995).
    [Crossref]
  32. C. M. Liebig, P. Srisungsitthisunti, A. M. Weiner, and X. Xu, “Enhanced machining of steel using femtosecond pulse pairs,” Appl. Phys., A Mater. Sci. Process. 101(3), 487–490 (2010).
    [Crossref]
  33. M. E. Povarnitsyn, T. E. Itina, M. Sentis, K. V. Khishchenko, and P. R. Levashov, “Material decomposition mechanisms in femtosecond laser interactions with metals,” Phys. Rev. B Condens. Matter 75(23), 235414 (2007).
    [Crossref]
  34. J. Bonse, A. Rosenfeld, and J. Krüger, “On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond-laser pulses,” J. Appl. Phys. 106(10), 104910 (2009).
    [Crossref]
  35. F. Keilmann and Y. H. Bai, “Periodic surface-structures frozen into co2 laser-melted quartz,” Appl. Phys., A Mater. Sci. Process. 29(1), 9–18 (1982).
    [Crossref]
  36. B. Tan and K. Venkatakrishnan, “A femtosecond laser-induced periodical surface structure on crystalline silicon,” J. Micromech. Microeng. 16(5), 1080–1085 (2006).
    [Crossref]
  37. D. Vonder Linde, K. Sokolowski Tinten, and J. Bialkowski, “Laser-solid interaction in the femtosecond time regime,” Appl. Surf. Sci. 109, 1–10 (1997).
  38. R. Stoian, M. Boyle, A. Thoss, A. Rosenfeld, G. Korn, and I. V. Hertel, “Advanced ultrafast laser material processing using temporal pulse shaping,” in 3rd International Symposium on Laser Precision Microfabrication (Osaka, Japan, 2002), pp. 435–441.
  39. A. J. Sabbah and D. M. Riffe, “Femtosecond pump-probe reflectivity study of silicon carrier dynamics,” Phys. Rev. B Condens. Matter 66(16), 165217 (2002).
    [Crossref]
  40. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).
  41. K. Sokolowski-Tinten and D. von der Linde, “Generation of dense electron-hole plasmas in silicon,” Phys. Rev. B Condens. Matter 61(4), 2643–2650 (2000).
    [Crossref]
  42. E. J. Yoffa, “Screening of hot-carrier relaxation in highly photo-excited semiconductors,” Phys. Rev. B Condens. Matter 23(4), 1909–1919 (1981).
    [Crossref]
  43. E. J. Yoffa, “Dynamics of dense laser-induced plasmas,” Phys. Rev. B Condens. Matter 21(6), 2415–2425 (1980).
    [Crossref]
  44. T. Sjodin, H. Petek, and H. L. Dai, “Ultrafast carrier dynamics in silicon: A two-color transient reflection grating study on a (111)surface,” Phys. Rev. Lett. 81(25), 5664–5667 (1998).
    [Crossref]
  45. T. J.-Y. Derrien, J. Krüger, T. E. Itina, S. Höhm, A. Rosenfeld, and J. Bonse, “Rippled area formed by surface plasmon polaritons upon femtosecond laser double-pulse irradiation of silicon: the role of carrier generation and relaxation processes,” Appl. Phys., A Mater. Sci. Process. 117(1), 77–81 (2014).
    [Crossref]
  46. T. J. Y. Derrien, J. Krüger, T. E. Itina, S. Höhm, A. Rosenfeld, and J. Bonse, “Rippled area formed by surface plasmon polaritons upon femtosecond laser double-pulse irradiation of silicon,” Opt. Express 21(24), 29643–29655 (2013).
    [Crossref] [PubMed]
  47. T. J. Y. Derrien, T. E. Itina, R. Torres, T. Sarnet, and M. Sentis, “Possible surface plasmon polariton excitation under femtosecond laser irradiation of silicon,” J. Appl. Phys. 114(8), 083104 (2013).
    [Crossref]
  48. W. Han, L. Jiang, X. Li, Q. Wang, H. Li, and Y. Lu, “Anisotropy modulations of femtosecond laser pulse induced periodic surface structures on silicon by adjusting double pulse delay,” Opt. Express 22(13), 15820–15828 (2014).
    [Crossref] [PubMed]

2014 (3)

T. J.-Y. Derrien, J. Krüger, T. E. Itina, S. Höhm, A. Rosenfeld, and J. Bonse, “Rippled area formed by surface plasmon polaritons upon femtosecond laser double-pulse irradiation of silicon: the role of carrier generation and relaxation processes,” Appl. Phys., A Mater. Sci. Process. 117(1), 77–81 (2014).
[Crossref]

X. Shi, L. Jiang, X. Li, K. Zhang, D. Yu, Y. Yu, and Y. Lu, “Temporal femtosecond pulse shaping dependence of laser-induced periodic surface structures in fused silica,” J. Appl. Phys. 116(3), 033104 (2014).
[Crossref]

W. Han, L. Jiang, X. Li, Q. Wang, H. Li, and Y. Lu, “Anisotropy modulations of femtosecond laser pulse induced periodic surface structures on silicon by adjusting double pulse delay,” Opt. Express 22(13), 15820–15828 (2014).
[Crossref] [PubMed]

2013 (4)

X. Shi, L. Jiang, X. Li, S. Wang, Y. Yuan, and Y. Lu, “Femtosecond laser-induced periodic structure adjustments based on electron dynamics control: from subwavelength ripples to double-grating structures,” Opt. Lett. 38(19), 3743–3746 (2013).
[Crossref] [PubMed]

T. J. Y. Derrien, J. Krüger, T. E. Itina, S. Höhm, A. Rosenfeld, and J. Bonse, “Rippled area formed by surface plasmon polaritons upon femtosecond laser double-pulse irradiation of silicon,” Opt. Express 21(24), 29643–29655 (2013).
[Crossref] [PubMed]

T. J. Y. Derrien, T. E. Itina, R. Torres, T. Sarnet, and M. Sentis, “Possible surface plasmon polariton excitation under femtosecond laser irradiation of silicon,” J. Appl. Phys. 114(8), 083104 (2013).
[Crossref]

R. J. Martins, J. P. Siqueira, P. H. D. Ferreira, L. Misoguti, T. Voss, and C. R. Mendonca, “Enhancing multi-photon induced excitonic emission of ZnO single crystals by shaping fs laser pulses,” Laser Phys. Lett. 10(10), 105403 (2013).
[Crossref]

2012 (2)

N. Leng, L. Jiang, X. Li, C. Xu, P. Liu, and Y. Lu, “Femtosecond laser processing of fused silica and aluminum based on electron dynamics control by shaping pulse trains,” Appl. Phys., A Mater. Sci. Process. 109(3), 679–684 (2012).
[Crossref]

K. Lou, S.-X. Qian, X.-L. Wang, Y. Li, B. Gu, C. Tu, and H.-T. Wang, “Two-dimensional microstructures induced by femtosecond vector light fields on silicon,” Opt. Express 20(1), 120–127 (2012).
[Crossref] [PubMed]

2010 (1)

C. M. Liebig, P. Srisungsitthisunti, A. M. Weiner, and X. Xu, “Enhanced machining of steel using femtosecond pulse pairs,” Appl. Phys., A Mater. Sci. Process. 101(3), 487–490 (2010).
[Crossref]

2009 (1)

J. Bonse, A. Rosenfeld, and J. Krüger, “On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond-laser pulses,” J. Appl. Phys. 106(10), 104910 (2009).
[Crossref]

2008 (3)

M. Shen, J. E. Carey, C. H. Crouch, M. Kandyla, H. A. Stone, and E. Mazur, “High-density regular arrays of nanometer-scale rods formed on silicon surfaces via femtosecond laser irradiation in water,” Nano Lett. 8(7), 2087–2091 (2008).
[Crossref] [PubMed]

T. Okada, H. Kawahara, Y. Ishida, R. Kumai, T. Tomita, S. Matsuo, S. Hashimoto, M. Kawamoto, Y. Makita, and M. Yamaguchi, “Cross-sectional TEM analysis of laser-induced ripple structures on the 4H-SiC single-crystal surface,” Appl. Phys., A Mater. Sci. Process. 92(3), 665–668 (2008).
[Crossref]

E. M. Hsu, T. H. R. Crawford, C. Maunders, G. A. Botton, and H. K. Haugen, “Cross-sectional study of periodic surface structures on gallium phosphide induced by ultrashort laser pulse irradiation,” Appl. Phys. Lett. 92(22), 221112 (2008).
[Crossref]

2007 (1)

M. E. Povarnitsyn, T. E. Itina, M. Sentis, K. V. Khishchenko, and P. R. Levashov, “Material decomposition mechanisms in femtosecond laser interactions with metals,” Phys. Rev. B Condens. Matter 75(23), 235414 (2007).
[Crossref]

2006 (5)

S. Zoppel, M. Farsari, R. Merz, J. Zehetner, G. Stangl, G. A. Reider, and C. Fotakis, “Laser micro machining of 3C-SiC single crystals,” Microelectron. Eng. 83(4-9), 1400–1402 (2006).
[Crossref]

T. Baldacchini, J. E. Carey, M. Zhou, and E. Mazur, “Superhydrophobic surfaces prepared by microstructuring of silicon using a femtosecond laser,” Langmuir 22(11), 4917–4919 (2006).
[Crossref] [PubMed]

B. R. Tull, J. E. Carey, E. Mazur, J. P. McDonald, and S. M. Yalisove, “Silicon surface morphologies after femtosecond laser irradiation,” MRS Bull. 31(08), 626–633 (2006).
[Crossref]

B. R. Tull, J. E. Carey, M. A. Sheehy, C. Friend, and E. Mazur, “Formation of silicon nanoparticles and web-like aggregates by femtosecond laser ablation in a background gas,” Appl. Phys., A Mater. Sci. Process. 83(3), 341–346 (2006).
[Crossref]

B. Tan and K. Venkatakrishnan, “A femtosecond laser-induced periodical surface structure on crystalline silicon,” J. Micromech. Microeng. 16(5), 1080–1085 (2006).
[Crossref]

2005 (2)

R. Le Harzic, D. Breitling, M. Weikert, S. Sommer, C. Fohl, S. Valette, C. Donnet, E. Audouard, and F. Dausinger, “Pulse width and energy influence on laser micromachining of metals in a range of 100 fs to 5 ps,” Appl. Surf. Sci. 249(1-4), 322–331 (2005).
[Crossref]

L. Jiang and H. L. Tsai, “Repeatable nanostructures in dielectrics by femtosecond laser pulse trains,” Appl. Phys. Lett. 87(15), 151104 (2005).
[Crossref]

2004 (1)

M. Csete, S. Hild, A. Plettl, P. Ziemann, Z. Bor, and O. Marti, “The role of original surface roughness in laser-induced periodic surface structure formation process on poly-carbonate films,” Thin Solid Films 453–454, 114–120 (2004).
[Crossref]

2003 (3)

A. Präkelt, M. Wollenhaupt, A. Assion, C. Horn, C. Sarpe-Tudoran, M. Winter, and T. Baumert, “Compact, robust, and flexible setup for femtosecond pulse shaping,” Rev. Sci. Instrum. 74(11), 4950–4953 (2003).
[Crossref]

R. Younkin, J. E. Carey, E. Mazur, J. A. Levinson, and C. M. Friend, “Infrared absorption by conical silicon microstructures made in a variety of background gases using femtosecond-laser pulses,” J. Appl. Phys. 93(5), 2626–2629 (2003).
[Crossref]

R. Stoian, M. Boyle, A. Thoss, A. Rosenfeld, G. Korn, and I. V. Hertel, “Dynamic temporal pulse shaping in advanced ultrafast laser material processing,” Appl. Phys., A Mater. Sci. Process. 77, 265–269 (2003).

2002 (1)

A. J. Sabbah and D. M. Riffe, “Femtosecond pump-probe reflectivity study of silicon carrier dynamics,” Phys. Rev. B Condens. Matter 66(16), 165217 (2002).
[Crossref]

2001 (1)

S. A. Rice, “Interfering for the good of a chemical reaction,” Nature 409(6818), 422–426 (2001).
[Crossref] [PubMed]

2000 (3)

K. Sokolowski-Tinten and D. von der Linde, “Generation of dense electron-hole plasmas in silicon,” Phys. Rev. B Condens. Matter 61(4), 2643–2650 (2000).
[Crossref]

T. H. Her, R. J. Finlay, C. Wu, and E. Mazur, “Femtosecond laser-induced formation of spikes on silicon,” Appl. Phys., A Mater. Sci. Process. 70(4), 383–385 (2000).
[Crossref]

A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71(5), 1929–1960 (2000).
[Crossref]

1999 (1)

S. Baudach, J. Bonse, and W. Kautek, “Ablation experiments on polyimide with femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process. 69(7), S395–S398 (1999).
[Crossref]

1998 (3)

T. H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, “Microstructuring of silicon with femtosecond laser pulses,” Appl. Phys. Lett. 73(12), 1673–1675 (1998).
[Crossref]

Y. Silberberg and D. Meshulach, “Coherent quantum control of two-photon transitions by a femtosecond laser pulse,” Nature 396(6708), 239–242 (1998).
[Crossref]

T. Sjodin, H. Petek, and H. L. Dai, “Ultrafast carrier dynamics in silicon: A two-color transient reflection grating study on a (111)surface,” Phys. Rev. Lett. 81(25), 5664–5667 (1998).
[Crossref]

1997 (1)

D. Vonder Linde, K. Sokolowski Tinten, and J. Bialkowski, “Laser-solid interaction in the femtosecond time regime,” Appl. Surf. Sci. 109, 1–10 (1997).

1995 (1)

S. Preuss and M. Stuke, “Subpicosecond ultraviolet-laser ablation of diamond - nonlinear properties at 248 nm and time-resolved characterization of ablation dynamics,” Appl. Phys. Lett. 67(3), 338–340 (1995).
[Crossref]

1993 (1)

S. Preuss, M. Spath, Y. Zhang, and M. Stuke, “Time-resolved dynamics of subpicosecond laser ablation,” Appl. Phys. Lett. 62(23), 3049–3051 (1993).
[Crossref]

1988 (1)

1983 (2)

J. F. Young, J. S. Preston, H. M. Vandriel, and J. E. Sipe, “Laser-induced periodic surface-structure. 2. Experiments on Ge, Si, Al, and brass,” Phys. Rev. B Condens. Matter 27(2), 1155–1172 (1983).
[Crossref]

J. E. Sipe, J. F. Young, J. S. Preston, and H. M. Vandriel, “Laser-induced periodic surface-structure. 1. Theory,” Phys. Rev. B Condens. Matter 27(2), 1141–1154 (1983).
[Crossref]

1982 (1)

F. Keilmann and Y. H. Bai, “Periodic surface-structures frozen into co2 laser-melted quartz,” Appl. Phys., A Mater. Sci. Process. 29(1), 9–18 (1982).
[Crossref]

1981 (2)

E. J. Yoffa, “Screening of hot-carrier relaxation in highly photo-excited semiconductors,” Phys. Rev. B Condens. Matter 23(4), 1909–1919 (1981).
[Crossref]

P. A. Temple and M. J. Soileau, “Polarization charge model for laser-induced ripple patterns in dielectric materials,” IEEE J. Quantum Electron. 17(10), 2067–2072 (1981).
[Crossref]

1980 (1)

E. J. Yoffa, “Dynamics of dense laser-induced plasmas,” Phys. Rev. B Condens. Matter 21(6), 2415–2425 (1980).
[Crossref]

1973 (1)

D. C. Emmony, R. P. Howson, and L. J. Willis, “Laser mirror damage in germanium at 10.6 mu,” Appl. Phys. Lett. 23(11), 598–600 (1973).
[Crossref]

Assion, A.

A. Präkelt, M. Wollenhaupt, A. Assion, C. Horn, C. Sarpe-Tudoran, M. Winter, and T. Baumert, “Compact, robust, and flexible setup for femtosecond pulse shaping,” Rev. Sci. Instrum. 74(11), 4950–4953 (2003).
[Crossref]

Audouard, E.

R. Le Harzic, D. Breitling, M. Weikert, S. Sommer, C. Fohl, S. Valette, C. Donnet, E. Audouard, and F. Dausinger, “Pulse width and energy influence on laser micromachining of metals in a range of 100 fs to 5 ps,” Appl. Surf. Sci. 249(1-4), 322–331 (2005).
[Crossref]

Bai, Y. H.

F. Keilmann and Y. H. Bai, “Periodic surface-structures frozen into co2 laser-melted quartz,” Appl. Phys., A Mater. Sci. Process. 29(1), 9–18 (1982).
[Crossref]

Baldacchini, T.

T. Baldacchini, J. E. Carey, M. Zhou, and E. Mazur, “Superhydrophobic surfaces prepared by microstructuring of silicon using a femtosecond laser,” Langmuir 22(11), 4917–4919 (2006).
[Crossref] [PubMed]

Baudach, S.

S. Baudach, J. Bonse, and W. Kautek, “Ablation experiments on polyimide with femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process. 69(7), S395–S398 (1999).
[Crossref]

Baumert, T.

A. Präkelt, M. Wollenhaupt, A. Assion, C. Horn, C. Sarpe-Tudoran, M. Winter, and T. Baumert, “Compact, robust, and flexible setup for femtosecond pulse shaping,” Rev. Sci. Instrum. 74(11), 4950–4953 (2003).
[Crossref]

Becker, M. F.

Bialkowski, J.

D. Vonder Linde, K. Sokolowski Tinten, and J. Bialkowski, “Laser-solid interaction in the femtosecond time regime,” Appl. Surf. Sci. 109, 1–10 (1997).

Bonse, J.

T. J.-Y. Derrien, J. Krüger, T. E. Itina, S. Höhm, A. Rosenfeld, and J. Bonse, “Rippled area formed by surface plasmon polaritons upon femtosecond laser double-pulse irradiation of silicon: the role of carrier generation and relaxation processes,” Appl. Phys., A Mater. Sci. Process. 117(1), 77–81 (2014).
[Crossref]

T. J. Y. Derrien, J. Krüger, T. E. Itina, S. Höhm, A. Rosenfeld, and J. Bonse, “Rippled area formed by surface plasmon polaritons upon femtosecond laser double-pulse irradiation of silicon,” Opt. Express 21(24), 29643–29655 (2013).
[Crossref] [PubMed]

J. Bonse, A. Rosenfeld, and J. Krüger, “On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond-laser pulses,” J. Appl. Phys. 106(10), 104910 (2009).
[Crossref]

S. Baudach, J. Bonse, and W. Kautek, “Ablation experiments on polyimide with femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process. 69(7), S395–S398 (1999).
[Crossref]

Bor, Z.

M. Csete, S. Hild, A. Plettl, P. Ziemann, Z. Bor, and O. Marti, “The role of original surface roughness in laser-induced periodic surface structure formation process on poly-carbonate films,” Thin Solid Films 453–454, 114–120 (2004).
[Crossref]

Botton, G. A.

E. M. Hsu, T. H. R. Crawford, C. Maunders, G. A. Botton, and H. K. Haugen, “Cross-sectional study of periodic surface structures on gallium phosphide induced by ultrashort laser pulse irradiation,” Appl. Phys. Lett. 92(22), 221112 (2008).
[Crossref]

Boyle, M.

R. Stoian, M. Boyle, A. Thoss, A. Rosenfeld, G. Korn, and I. V. Hertel, “Dynamic temporal pulse shaping in advanced ultrafast laser material processing,” Appl. Phys., A Mater. Sci. Process. 77, 265–269 (2003).

R. Stoian, M. Boyle, A. Thoss, A. Rosenfeld, G. Korn, and I. V. Hertel, “Advanced ultrafast laser material processing using temporal pulse shaping,” in 3rd International Symposium on Laser Precision Microfabrication (Osaka, Japan, 2002), pp. 435–441.

Breitling, D.

R. Le Harzic, D. Breitling, M. Weikert, S. Sommer, C. Fohl, S. Valette, C. Donnet, E. Audouard, and F. Dausinger, “Pulse width and energy influence on laser micromachining of metals in a range of 100 fs to 5 ps,” Appl. Surf. Sci. 249(1-4), 322–331 (2005).
[Crossref]

Carey, J. E.

M. Shen, J. E. Carey, C. H. Crouch, M. Kandyla, H. A. Stone, and E. Mazur, “High-density regular arrays of nanometer-scale rods formed on silicon surfaces via femtosecond laser irradiation in water,” Nano Lett. 8(7), 2087–2091 (2008).
[Crossref] [PubMed]

T. Baldacchini, J. E. Carey, M. Zhou, and E. Mazur, “Superhydrophobic surfaces prepared by microstructuring of silicon using a femtosecond laser,” Langmuir 22(11), 4917–4919 (2006).
[Crossref] [PubMed]

B. R. Tull, J. E. Carey, E. Mazur, J. P. McDonald, and S. M. Yalisove, “Silicon surface morphologies after femtosecond laser irradiation,” MRS Bull. 31(08), 626–633 (2006).
[Crossref]

B. R. Tull, J. E. Carey, M. A. Sheehy, C. Friend, and E. Mazur, “Formation of silicon nanoparticles and web-like aggregates by femtosecond laser ablation in a background gas,” Appl. Phys., A Mater. Sci. Process. 83(3), 341–346 (2006).
[Crossref]

R. Younkin, J. E. Carey, E. Mazur, J. A. Levinson, and C. M. Friend, “Infrared absorption by conical silicon microstructures made in a variety of background gases using femtosecond-laser pulses,” J. Appl. Phys. 93(5), 2626–2629 (2003).
[Crossref]

Crawford, T. H. R.

E. M. Hsu, T. H. R. Crawford, C. Maunders, G. A. Botton, and H. K. Haugen, “Cross-sectional study of periodic surface structures on gallium phosphide induced by ultrashort laser pulse irradiation,” Appl. Phys. Lett. 92(22), 221112 (2008).
[Crossref]

Crouch, C. H.

M. Shen, J. E. Carey, C. H. Crouch, M. Kandyla, H. A. Stone, and E. Mazur, “High-density regular arrays of nanometer-scale rods formed on silicon surfaces via femtosecond laser irradiation in water,” Nano Lett. 8(7), 2087–2091 (2008).
[Crossref] [PubMed]

Csete, M.

M. Csete, S. Hild, A. Plettl, P. Ziemann, Z. Bor, and O. Marti, “The role of original surface roughness in laser-induced periodic surface structure formation process on poly-carbonate films,” Thin Solid Films 453–454, 114–120 (2004).
[Crossref]

Dai, H. L.

T. Sjodin, H. Petek, and H. L. Dai, “Ultrafast carrier dynamics in silicon: A two-color transient reflection grating study on a (111)surface,” Phys. Rev. Lett. 81(25), 5664–5667 (1998).
[Crossref]

Dausinger, F.

R. Le Harzic, D. Breitling, M. Weikert, S. Sommer, C. Fohl, S. Valette, C. Donnet, E. Audouard, and F. Dausinger, “Pulse width and energy influence on laser micromachining of metals in a range of 100 fs to 5 ps,” Appl. Surf. Sci. 249(1-4), 322–331 (2005).
[Crossref]

Deliwala, S.

T. H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, “Microstructuring of silicon with femtosecond laser pulses,” Appl. Phys. Lett. 73(12), 1673–1675 (1998).
[Crossref]

Derrien, T. J. Y.

T. J. Y. Derrien, T. E. Itina, R. Torres, T. Sarnet, and M. Sentis, “Possible surface plasmon polariton excitation under femtosecond laser irradiation of silicon,” J. Appl. Phys. 114(8), 083104 (2013).
[Crossref]

T. J. Y. Derrien, J. Krüger, T. E. Itina, S. Höhm, A. Rosenfeld, and J. Bonse, “Rippled area formed by surface plasmon polaritons upon femtosecond laser double-pulse irradiation of silicon,” Opt. Express 21(24), 29643–29655 (2013).
[Crossref] [PubMed]

Derrien, T. J.-Y.

T. J.-Y. Derrien, J. Krüger, T. E. Itina, S. Höhm, A. Rosenfeld, and J. Bonse, “Rippled area formed by surface plasmon polaritons upon femtosecond laser double-pulse irradiation of silicon: the role of carrier generation and relaxation processes,” Appl. Phys., A Mater. Sci. Process. 117(1), 77–81 (2014).
[Crossref]

Donnet, C.

R. Le Harzic, D. Breitling, M. Weikert, S. Sommer, C. Fohl, S. Valette, C. Donnet, E. Audouard, and F. Dausinger, “Pulse width and energy influence on laser micromachining of metals in a range of 100 fs to 5 ps,” Appl. Surf. Sci. 249(1-4), 322–331 (2005).
[Crossref]

Emmony, D. C.

D. C. Emmony, R. P. Howson, and L. J. Willis, “Laser mirror damage in germanium at 10.6 mu,” Appl. Phys. Lett. 23(11), 598–600 (1973).
[Crossref]

Farsari, M.

S. Zoppel, M. Farsari, R. Merz, J. Zehetner, G. Stangl, G. A. Reider, and C. Fotakis, “Laser micro machining of 3C-SiC single crystals,” Microelectron. Eng. 83(4-9), 1400–1402 (2006).
[Crossref]

Ferreira, P. H. D.

R. J. Martins, J. P. Siqueira, P. H. D. Ferreira, L. Misoguti, T. Voss, and C. R. Mendonca, “Enhancing multi-photon induced excitonic emission of ZnO single crystals by shaping fs laser pulses,” Laser Phys. Lett. 10(10), 105403 (2013).
[Crossref]

Finlay, R. J.

T. H. Her, R. J. Finlay, C. Wu, and E. Mazur, “Femtosecond laser-induced formation of spikes on silicon,” Appl. Phys., A Mater. Sci. Process. 70(4), 383–385 (2000).
[Crossref]

T. H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, “Microstructuring of silicon with femtosecond laser pulses,” Appl. Phys. Lett. 73(12), 1673–1675 (1998).
[Crossref]

Fohl, C.

R. Le Harzic, D. Breitling, M. Weikert, S. Sommer, C. Fohl, S. Valette, C. Donnet, E. Audouard, and F. Dausinger, “Pulse width and energy influence on laser micromachining of metals in a range of 100 fs to 5 ps,” Appl. Surf. Sci. 249(1-4), 322–331 (2005).
[Crossref]

Fotakis, C.

S. Zoppel, M. Farsari, R. Merz, J. Zehetner, G. Stangl, G. A. Reider, and C. Fotakis, “Laser micro machining of 3C-SiC single crystals,” Microelectron. Eng. 83(4-9), 1400–1402 (2006).
[Crossref]

Friend, C.

B. R. Tull, J. E. Carey, M. A. Sheehy, C. Friend, and E. Mazur, “Formation of silicon nanoparticles and web-like aggregates by femtosecond laser ablation in a background gas,” Appl. Phys., A Mater. Sci. Process. 83(3), 341–346 (2006).
[Crossref]

Friend, C. M.

R. Younkin, J. E. Carey, E. Mazur, J. A. Levinson, and C. M. Friend, “Infrared absorption by conical silicon microstructures made in a variety of background gases using femtosecond-laser pulses,” J. Appl. Phys. 93(5), 2626–2629 (2003).
[Crossref]

Gu, B.

Han, W.

Hashimoto, S.

T. Okada, H. Kawahara, Y. Ishida, R. Kumai, T. Tomita, S. Matsuo, S. Hashimoto, M. Kawamoto, Y. Makita, and M. Yamaguchi, “Cross-sectional TEM analysis of laser-induced ripple structures on the 4H-SiC single-crystal surface,” Appl. Phys., A Mater. Sci. Process. 92(3), 665–668 (2008).
[Crossref]

Haugen, H. K.

E. M. Hsu, T. H. R. Crawford, C. Maunders, G. A. Botton, and H. K. Haugen, “Cross-sectional study of periodic surface structures on gallium phosphide induced by ultrashort laser pulse irradiation,” Appl. Phys. Lett. 92(22), 221112 (2008).
[Crossref]

Her, T. H.

T. H. Her, R. J. Finlay, C. Wu, and E. Mazur, “Femtosecond laser-induced formation of spikes on silicon,” Appl. Phys., A Mater. Sci. Process. 70(4), 383–385 (2000).
[Crossref]

T. H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, “Microstructuring of silicon with femtosecond laser pulses,” Appl. Phys. Lett. 73(12), 1673–1675 (1998).
[Crossref]

Hertel, I. V.

R. Stoian, M. Boyle, A. Thoss, A. Rosenfeld, G. Korn, and I. V. Hertel, “Dynamic temporal pulse shaping in advanced ultrafast laser material processing,” Appl. Phys., A Mater. Sci. Process. 77, 265–269 (2003).

R. Stoian, M. Boyle, A. Thoss, A. Rosenfeld, G. Korn, and I. V. Hertel, “Advanced ultrafast laser material processing using temporal pulse shaping,” in 3rd International Symposium on Laser Precision Microfabrication (Osaka, Japan, 2002), pp. 435–441.

Hild, S.

M. Csete, S. Hild, A. Plettl, P. Ziemann, Z. Bor, and O. Marti, “The role of original surface roughness in laser-induced periodic surface structure formation process on poly-carbonate films,” Thin Solid Films 453–454, 114–120 (2004).
[Crossref]

Höhm, S.

T. J.-Y. Derrien, J. Krüger, T. E. Itina, S. Höhm, A. Rosenfeld, and J. Bonse, “Rippled area formed by surface plasmon polaritons upon femtosecond laser double-pulse irradiation of silicon: the role of carrier generation and relaxation processes,” Appl. Phys., A Mater. Sci. Process. 117(1), 77–81 (2014).
[Crossref]

T. J. Y. Derrien, J. Krüger, T. E. Itina, S. Höhm, A. Rosenfeld, and J. Bonse, “Rippled area formed by surface plasmon polaritons upon femtosecond laser double-pulse irradiation of silicon,” Opt. Express 21(24), 29643–29655 (2013).
[Crossref] [PubMed]

Horn, C.

A. Präkelt, M. Wollenhaupt, A. Assion, C. Horn, C. Sarpe-Tudoran, M. Winter, and T. Baumert, “Compact, robust, and flexible setup for femtosecond pulse shaping,” Rev. Sci. Instrum. 74(11), 4950–4953 (2003).
[Crossref]

Howson, R. P.

D. C. Emmony, R. P. Howson, and L. J. Willis, “Laser mirror damage in germanium at 10.6 mu,” Appl. Phys. Lett. 23(11), 598–600 (1973).
[Crossref]

Hsu, E. M.

E. M. Hsu, T. H. R. Crawford, C. Maunders, G. A. Botton, and H. K. Haugen, “Cross-sectional study of periodic surface structures on gallium phosphide induced by ultrashort laser pulse irradiation,” Appl. Phys. Lett. 92(22), 221112 (2008).
[Crossref]

Ishida, Y.

T. Okada, H. Kawahara, Y. Ishida, R. Kumai, T. Tomita, S. Matsuo, S. Hashimoto, M. Kawamoto, Y. Makita, and M. Yamaguchi, “Cross-sectional TEM analysis of laser-induced ripple structures on the 4H-SiC single-crystal surface,” Appl. Phys., A Mater. Sci. Process. 92(3), 665–668 (2008).
[Crossref]

Itina, T. E.

T. J.-Y. Derrien, J. Krüger, T. E. Itina, S. Höhm, A. Rosenfeld, and J. Bonse, “Rippled area formed by surface plasmon polaritons upon femtosecond laser double-pulse irradiation of silicon: the role of carrier generation and relaxation processes,” Appl. Phys., A Mater. Sci. Process. 117(1), 77–81 (2014).
[Crossref]

T. J. Y. Derrien, T. E. Itina, R. Torres, T. Sarnet, and M. Sentis, “Possible surface plasmon polariton excitation under femtosecond laser irradiation of silicon,” J. Appl. Phys. 114(8), 083104 (2013).
[Crossref]

T. J. Y. Derrien, J. Krüger, T. E. Itina, S. Höhm, A. Rosenfeld, and J. Bonse, “Rippled area formed by surface plasmon polaritons upon femtosecond laser double-pulse irradiation of silicon,” Opt. Express 21(24), 29643–29655 (2013).
[Crossref] [PubMed]

M. E. Povarnitsyn, T. E. Itina, M. Sentis, K. V. Khishchenko, and P. R. Levashov, “Material decomposition mechanisms in femtosecond laser interactions with metals,” Phys. Rev. B Condens. Matter 75(23), 235414 (2007).
[Crossref]

Jee, Y.

Jiang, L.

W. Han, L. Jiang, X. Li, Q. Wang, H. Li, and Y. Lu, “Anisotropy modulations of femtosecond laser pulse induced periodic surface structures on silicon by adjusting double pulse delay,” Opt. Express 22(13), 15820–15828 (2014).
[Crossref] [PubMed]

X. Shi, L. Jiang, X. Li, K. Zhang, D. Yu, Y. Yu, and Y. Lu, “Temporal femtosecond pulse shaping dependence of laser-induced periodic surface structures in fused silica,” J. Appl. Phys. 116(3), 033104 (2014).
[Crossref]

X. Shi, L. Jiang, X. Li, S. Wang, Y. Yuan, and Y. Lu, “Femtosecond laser-induced periodic structure adjustments based on electron dynamics control: from subwavelength ripples to double-grating structures,” Opt. Lett. 38(19), 3743–3746 (2013).
[Crossref] [PubMed]

N. Leng, L. Jiang, X. Li, C. Xu, P. Liu, and Y. Lu, “Femtosecond laser processing of fused silica and aluminum based on electron dynamics control by shaping pulse trains,” Appl. Phys., A Mater. Sci. Process. 109(3), 679–684 (2012).
[Crossref]

L. Jiang and H. L. Tsai, “Repeatable nanostructures in dielectrics by femtosecond laser pulse trains,” Appl. Phys. Lett. 87(15), 151104 (2005).
[Crossref]

Kandyla, M.

M. Shen, J. E. Carey, C. H. Crouch, M. Kandyla, H. A. Stone, and E. Mazur, “High-density regular arrays of nanometer-scale rods formed on silicon surfaces via femtosecond laser irradiation in water,” Nano Lett. 8(7), 2087–2091 (2008).
[Crossref] [PubMed]

Kautek, W.

S. Baudach, J. Bonse, and W. Kautek, “Ablation experiments on polyimide with femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process. 69(7), S395–S398 (1999).
[Crossref]

Kawahara, H.

T. Okada, H. Kawahara, Y. Ishida, R. Kumai, T. Tomita, S. Matsuo, S. Hashimoto, M. Kawamoto, Y. Makita, and M. Yamaguchi, “Cross-sectional TEM analysis of laser-induced ripple structures on the 4H-SiC single-crystal surface,” Appl. Phys., A Mater. Sci. Process. 92(3), 665–668 (2008).
[Crossref]

Kawamoto, M.

T. Okada, H. Kawahara, Y. Ishida, R. Kumai, T. Tomita, S. Matsuo, S. Hashimoto, M. Kawamoto, Y. Makita, and M. Yamaguchi, “Cross-sectional TEM analysis of laser-induced ripple structures on the 4H-SiC single-crystal surface,” Appl. Phys., A Mater. Sci. Process. 92(3), 665–668 (2008).
[Crossref]

Keilmann, F.

F. Keilmann and Y. H. Bai, “Periodic surface-structures frozen into co2 laser-melted quartz,” Appl. Phys., A Mater. Sci. Process. 29(1), 9–18 (1982).
[Crossref]

Khishchenko, K. V.

M. E. Povarnitsyn, T. E. Itina, M. Sentis, K. V. Khishchenko, and P. R. Levashov, “Material decomposition mechanisms in femtosecond laser interactions with metals,” Phys. Rev. B Condens. Matter 75(23), 235414 (2007).
[Crossref]

Korn, G.

R. Stoian, M. Boyle, A. Thoss, A. Rosenfeld, G. Korn, and I. V. Hertel, “Dynamic temporal pulse shaping in advanced ultrafast laser material processing,” Appl. Phys., A Mater. Sci. Process. 77, 265–269 (2003).

R. Stoian, M. Boyle, A. Thoss, A. Rosenfeld, G. Korn, and I. V. Hertel, “Advanced ultrafast laser material processing using temporal pulse shaping,” in 3rd International Symposium on Laser Precision Microfabrication (Osaka, Japan, 2002), pp. 435–441.

Krüger, J.

T. J.-Y. Derrien, J. Krüger, T. E. Itina, S. Höhm, A. Rosenfeld, and J. Bonse, “Rippled area formed by surface plasmon polaritons upon femtosecond laser double-pulse irradiation of silicon: the role of carrier generation and relaxation processes,” Appl. Phys., A Mater. Sci. Process. 117(1), 77–81 (2014).
[Crossref]

T. J. Y. Derrien, J. Krüger, T. E. Itina, S. Höhm, A. Rosenfeld, and J. Bonse, “Rippled area formed by surface plasmon polaritons upon femtosecond laser double-pulse irradiation of silicon,” Opt. Express 21(24), 29643–29655 (2013).
[Crossref] [PubMed]

J. Bonse, A. Rosenfeld, and J. Krüger, “On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond-laser pulses,” J. Appl. Phys. 106(10), 104910 (2009).
[Crossref]

Kumai, R.

T. Okada, H. Kawahara, Y. Ishida, R. Kumai, T. Tomita, S. Matsuo, S. Hashimoto, M. Kawamoto, Y. Makita, and M. Yamaguchi, “Cross-sectional TEM analysis of laser-induced ripple structures on the 4H-SiC single-crystal surface,” Appl. Phys., A Mater. Sci. Process. 92(3), 665–668 (2008).
[Crossref]

Le Harzic, R.

R. Le Harzic, D. Breitling, M. Weikert, S. Sommer, C. Fohl, S. Valette, C. Donnet, E. Audouard, and F. Dausinger, “Pulse width and energy influence on laser micromachining of metals in a range of 100 fs to 5 ps,” Appl. Surf. Sci. 249(1-4), 322–331 (2005).
[Crossref]

Leng, N.

N. Leng, L. Jiang, X. Li, C. Xu, P. Liu, and Y. Lu, “Femtosecond laser processing of fused silica and aluminum based on electron dynamics control by shaping pulse trains,” Appl. Phys., A Mater. Sci. Process. 109(3), 679–684 (2012).
[Crossref]

Levashov, P. R.

M. E. Povarnitsyn, T. E. Itina, M. Sentis, K. V. Khishchenko, and P. R. Levashov, “Material decomposition mechanisms in femtosecond laser interactions with metals,” Phys. Rev. B Condens. Matter 75(23), 235414 (2007).
[Crossref]

Levinson, J. A.

R. Younkin, J. E. Carey, E. Mazur, J. A. Levinson, and C. M. Friend, “Infrared absorption by conical silicon microstructures made in a variety of background gases using femtosecond-laser pulses,” J. Appl. Phys. 93(5), 2626–2629 (2003).
[Crossref]

Li, H.

Li, X.

W. Han, L. Jiang, X. Li, Q. Wang, H. Li, and Y. Lu, “Anisotropy modulations of femtosecond laser pulse induced periodic surface structures on silicon by adjusting double pulse delay,” Opt. Express 22(13), 15820–15828 (2014).
[Crossref] [PubMed]

X. Shi, L. Jiang, X. Li, K. Zhang, D. Yu, Y. Yu, and Y. Lu, “Temporal femtosecond pulse shaping dependence of laser-induced periodic surface structures in fused silica,” J. Appl. Phys. 116(3), 033104 (2014).
[Crossref]

X. Shi, L. Jiang, X. Li, S. Wang, Y. Yuan, and Y. Lu, “Femtosecond laser-induced periodic structure adjustments based on electron dynamics control: from subwavelength ripples to double-grating structures,” Opt. Lett. 38(19), 3743–3746 (2013).
[Crossref] [PubMed]

N. Leng, L. Jiang, X. Li, C. Xu, P. Liu, and Y. Lu, “Femtosecond laser processing of fused silica and aluminum based on electron dynamics control by shaping pulse trains,” Appl. Phys., A Mater. Sci. Process. 109(3), 679–684 (2012).
[Crossref]

Li, Y.

Liebig, C. M.

C. M. Liebig, P. Srisungsitthisunti, A. M. Weiner, and X. Xu, “Enhanced machining of steel using femtosecond pulse pairs,” Appl. Phys., A Mater. Sci. Process. 101(3), 487–490 (2010).
[Crossref]

Liu, P.

N. Leng, L. Jiang, X. Li, C. Xu, P. Liu, and Y. Lu, “Femtosecond laser processing of fused silica and aluminum based on electron dynamics control by shaping pulse trains,” Appl. Phys., A Mater. Sci. Process. 109(3), 679–684 (2012).
[Crossref]

Lou, K.

Lu, Y.

X. Shi, L. Jiang, X. Li, K. Zhang, D. Yu, Y. Yu, and Y. Lu, “Temporal femtosecond pulse shaping dependence of laser-induced periodic surface structures in fused silica,” J. Appl. Phys. 116(3), 033104 (2014).
[Crossref]

W. Han, L. Jiang, X. Li, Q. Wang, H. Li, and Y. Lu, “Anisotropy modulations of femtosecond laser pulse induced periodic surface structures on silicon by adjusting double pulse delay,” Opt. Express 22(13), 15820–15828 (2014).
[Crossref] [PubMed]

X. Shi, L. Jiang, X. Li, S. Wang, Y. Yuan, and Y. Lu, “Femtosecond laser-induced periodic structure adjustments based on electron dynamics control: from subwavelength ripples to double-grating structures,” Opt. Lett. 38(19), 3743–3746 (2013).
[Crossref] [PubMed]

N. Leng, L. Jiang, X. Li, C. Xu, P. Liu, and Y. Lu, “Femtosecond laser processing of fused silica and aluminum based on electron dynamics control by shaping pulse trains,” Appl. Phys., A Mater. Sci. Process. 109(3), 679–684 (2012).
[Crossref]

Makita, Y.

T. Okada, H. Kawahara, Y. Ishida, R. Kumai, T. Tomita, S. Matsuo, S. Hashimoto, M. Kawamoto, Y. Makita, and M. Yamaguchi, “Cross-sectional TEM analysis of laser-induced ripple structures on the 4H-SiC single-crystal surface,” Appl. Phys., A Mater. Sci. Process. 92(3), 665–668 (2008).
[Crossref]

Marti, O.

M. Csete, S. Hild, A. Plettl, P. Ziemann, Z. Bor, and O. Marti, “The role of original surface roughness in laser-induced periodic surface structure formation process on poly-carbonate films,” Thin Solid Films 453–454, 114–120 (2004).
[Crossref]

Martins, R. J.

R. J. Martins, J. P. Siqueira, P. H. D. Ferreira, L. Misoguti, T. Voss, and C. R. Mendonca, “Enhancing multi-photon induced excitonic emission of ZnO single crystals by shaping fs laser pulses,” Laser Phys. Lett. 10(10), 105403 (2013).
[Crossref]

Matsuo, S.

T. Okada, H. Kawahara, Y. Ishida, R. Kumai, T. Tomita, S. Matsuo, S. Hashimoto, M. Kawamoto, Y. Makita, and M. Yamaguchi, “Cross-sectional TEM analysis of laser-induced ripple structures on the 4H-SiC single-crystal surface,” Appl. Phys., A Mater. Sci. Process. 92(3), 665–668 (2008).
[Crossref]

Maunders, C.

E. M. Hsu, T. H. R. Crawford, C. Maunders, G. A. Botton, and H. K. Haugen, “Cross-sectional study of periodic surface structures on gallium phosphide induced by ultrashort laser pulse irradiation,” Appl. Phys. Lett. 92(22), 221112 (2008).
[Crossref]

Mazur, E.

M. Shen, J. E. Carey, C. H. Crouch, M. Kandyla, H. A. Stone, and E. Mazur, “High-density regular arrays of nanometer-scale rods formed on silicon surfaces via femtosecond laser irradiation in water,” Nano Lett. 8(7), 2087–2091 (2008).
[Crossref] [PubMed]

B. R. Tull, J. E. Carey, E. Mazur, J. P. McDonald, and S. M. Yalisove, “Silicon surface morphologies after femtosecond laser irradiation,” MRS Bull. 31(08), 626–633 (2006).
[Crossref]

B. R. Tull, J. E. Carey, M. A. Sheehy, C. Friend, and E. Mazur, “Formation of silicon nanoparticles and web-like aggregates by femtosecond laser ablation in a background gas,” Appl. Phys., A Mater. Sci. Process. 83(3), 341–346 (2006).
[Crossref]

T. Baldacchini, J. E. Carey, M. Zhou, and E. Mazur, “Superhydrophobic surfaces prepared by microstructuring of silicon using a femtosecond laser,” Langmuir 22(11), 4917–4919 (2006).
[Crossref] [PubMed]

R. Younkin, J. E. Carey, E. Mazur, J. A. Levinson, and C. M. Friend, “Infrared absorption by conical silicon microstructures made in a variety of background gases using femtosecond-laser pulses,” J. Appl. Phys. 93(5), 2626–2629 (2003).
[Crossref]

T. H. Her, R. J. Finlay, C. Wu, and E. Mazur, “Femtosecond laser-induced formation of spikes on silicon,” Appl. Phys., A Mater. Sci. Process. 70(4), 383–385 (2000).
[Crossref]

T. H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, “Microstructuring of silicon with femtosecond laser pulses,” Appl. Phys. Lett. 73(12), 1673–1675 (1998).
[Crossref]

McDonald, J. P.

B. R. Tull, J. E. Carey, E. Mazur, J. P. McDonald, and S. M. Yalisove, “Silicon surface morphologies after femtosecond laser irradiation,” MRS Bull. 31(08), 626–633 (2006).
[Crossref]

Mendonca, C. R.

R. J. Martins, J. P. Siqueira, P. H. D. Ferreira, L. Misoguti, T. Voss, and C. R. Mendonca, “Enhancing multi-photon induced excitonic emission of ZnO single crystals by shaping fs laser pulses,” Laser Phys. Lett. 10(10), 105403 (2013).
[Crossref]

Merz, R.

S. Zoppel, M. Farsari, R. Merz, J. Zehetner, G. Stangl, G. A. Reider, and C. Fotakis, “Laser micro machining of 3C-SiC single crystals,” Microelectron. Eng. 83(4-9), 1400–1402 (2006).
[Crossref]

Meshulach, D.

Y. Silberberg and D. Meshulach, “Coherent quantum control of two-photon transitions by a femtosecond laser pulse,” Nature 396(6708), 239–242 (1998).
[Crossref]

Misoguti, L.

R. J. Martins, J. P. Siqueira, P. H. D. Ferreira, L. Misoguti, T. Voss, and C. R. Mendonca, “Enhancing multi-photon induced excitonic emission of ZnO single crystals by shaping fs laser pulses,” Laser Phys. Lett. 10(10), 105403 (2013).
[Crossref]

Okada, T.

T. Okada, H. Kawahara, Y. Ishida, R. Kumai, T. Tomita, S. Matsuo, S. Hashimoto, M. Kawamoto, Y. Makita, and M. Yamaguchi, “Cross-sectional TEM analysis of laser-induced ripple structures on the 4H-SiC single-crystal surface,” Appl. Phys., A Mater. Sci. Process. 92(3), 665–668 (2008).
[Crossref]

Petek, H.

T. Sjodin, H. Petek, and H. L. Dai, “Ultrafast carrier dynamics in silicon: A two-color transient reflection grating study on a (111)surface,” Phys. Rev. Lett. 81(25), 5664–5667 (1998).
[Crossref]

Plettl, A.

M. Csete, S. Hild, A. Plettl, P. Ziemann, Z. Bor, and O. Marti, “The role of original surface roughness in laser-induced periodic surface structure formation process on poly-carbonate films,” Thin Solid Films 453–454, 114–120 (2004).
[Crossref]

Povarnitsyn, M. E.

M. E. Povarnitsyn, T. E. Itina, M. Sentis, K. V. Khishchenko, and P. R. Levashov, “Material decomposition mechanisms in femtosecond laser interactions with metals,” Phys. Rev. B Condens. Matter 75(23), 235414 (2007).
[Crossref]

Präkelt, A.

A. Präkelt, M. Wollenhaupt, A. Assion, C. Horn, C. Sarpe-Tudoran, M. Winter, and T. Baumert, “Compact, robust, and flexible setup for femtosecond pulse shaping,” Rev. Sci. Instrum. 74(11), 4950–4953 (2003).
[Crossref]

Preston, J. S.

J. F. Young, J. S. Preston, H. M. Vandriel, and J. E. Sipe, “Laser-induced periodic surface-structure. 2. Experiments on Ge, Si, Al, and brass,” Phys. Rev. B Condens. Matter 27(2), 1155–1172 (1983).
[Crossref]

J. E. Sipe, J. F. Young, J. S. Preston, and H. M. Vandriel, “Laser-induced periodic surface-structure. 1. Theory,” Phys. Rev. B Condens. Matter 27(2), 1141–1154 (1983).
[Crossref]

Preuss, S.

S. Preuss and M. Stuke, “Subpicosecond ultraviolet-laser ablation of diamond - nonlinear properties at 248 nm and time-resolved characterization of ablation dynamics,” Appl. Phys. Lett. 67(3), 338–340 (1995).
[Crossref]

S. Preuss, M. Spath, Y. Zhang, and M. Stuke, “Time-resolved dynamics of subpicosecond laser ablation,” Appl. Phys. Lett. 62(23), 3049–3051 (1993).
[Crossref]

Qian, S.-X.

Reider, G. A.

S. Zoppel, M. Farsari, R. Merz, J. Zehetner, G. Stangl, G. A. Reider, and C. Fotakis, “Laser micro machining of 3C-SiC single crystals,” Microelectron. Eng. 83(4-9), 1400–1402 (2006).
[Crossref]

Rice, S. A.

S. A. Rice, “Interfering for the good of a chemical reaction,” Nature 409(6818), 422–426 (2001).
[Crossref] [PubMed]

Riffe, D. M.

A. J. Sabbah and D. M. Riffe, “Femtosecond pump-probe reflectivity study of silicon carrier dynamics,” Phys. Rev. B Condens. Matter 66(16), 165217 (2002).
[Crossref]

Rosenfeld, A.

T. J.-Y. Derrien, J. Krüger, T. E. Itina, S. Höhm, A. Rosenfeld, and J. Bonse, “Rippled area formed by surface plasmon polaritons upon femtosecond laser double-pulse irradiation of silicon: the role of carrier generation and relaxation processes,” Appl. Phys., A Mater. Sci. Process. 117(1), 77–81 (2014).
[Crossref]

T. J. Y. Derrien, J. Krüger, T. E. Itina, S. Höhm, A. Rosenfeld, and J. Bonse, “Rippled area formed by surface plasmon polaritons upon femtosecond laser double-pulse irradiation of silicon,” Opt. Express 21(24), 29643–29655 (2013).
[Crossref] [PubMed]

J. Bonse, A. Rosenfeld, and J. Krüger, “On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond-laser pulses,” J. Appl. Phys. 106(10), 104910 (2009).
[Crossref]

R. Stoian, M. Boyle, A. Thoss, A. Rosenfeld, G. Korn, and I. V. Hertel, “Dynamic temporal pulse shaping in advanced ultrafast laser material processing,” Appl. Phys., A Mater. Sci. Process. 77, 265–269 (2003).

R. Stoian, M. Boyle, A. Thoss, A. Rosenfeld, G. Korn, and I. V. Hertel, “Advanced ultrafast laser material processing using temporal pulse shaping,” in 3rd International Symposium on Laser Precision Microfabrication (Osaka, Japan, 2002), pp. 435–441.

Sabbah, A. J.

A. J. Sabbah and D. M. Riffe, “Femtosecond pump-probe reflectivity study of silicon carrier dynamics,” Phys. Rev. B Condens. Matter 66(16), 165217 (2002).
[Crossref]

Sarnet, T.

T. J. Y. Derrien, T. E. Itina, R. Torres, T. Sarnet, and M. Sentis, “Possible surface plasmon polariton excitation under femtosecond laser irradiation of silicon,” J. Appl. Phys. 114(8), 083104 (2013).
[Crossref]

Sarpe-Tudoran, C.

A. Präkelt, M. Wollenhaupt, A. Assion, C. Horn, C. Sarpe-Tudoran, M. Winter, and T. Baumert, “Compact, robust, and flexible setup for femtosecond pulse shaping,” Rev. Sci. Instrum. 74(11), 4950–4953 (2003).
[Crossref]

Sentis, M.

T. J. Y. Derrien, T. E. Itina, R. Torres, T. Sarnet, and M. Sentis, “Possible surface plasmon polariton excitation under femtosecond laser irradiation of silicon,” J. Appl. Phys. 114(8), 083104 (2013).
[Crossref]

M. E. Povarnitsyn, T. E. Itina, M. Sentis, K. V. Khishchenko, and P. R. Levashov, “Material decomposition mechanisms in femtosecond laser interactions with metals,” Phys. Rev. B Condens. Matter 75(23), 235414 (2007).
[Crossref]

Sheehy, M. A.

B. R. Tull, J. E. Carey, M. A. Sheehy, C. Friend, and E. Mazur, “Formation of silicon nanoparticles and web-like aggregates by femtosecond laser ablation in a background gas,” Appl. Phys., A Mater. Sci. Process. 83(3), 341–346 (2006).
[Crossref]

Shen, M.

M. Shen, J. E. Carey, C. H. Crouch, M. Kandyla, H. A. Stone, and E. Mazur, “High-density regular arrays of nanometer-scale rods formed on silicon surfaces via femtosecond laser irradiation in water,” Nano Lett. 8(7), 2087–2091 (2008).
[Crossref] [PubMed]

Shi, X.

X. Shi, L. Jiang, X. Li, K. Zhang, D. Yu, Y. Yu, and Y. Lu, “Temporal femtosecond pulse shaping dependence of laser-induced periodic surface structures in fused silica,” J. Appl. Phys. 116(3), 033104 (2014).
[Crossref]

X. Shi, L. Jiang, X. Li, S. Wang, Y. Yuan, and Y. Lu, “Femtosecond laser-induced periodic structure adjustments based on electron dynamics control: from subwavelength ripples to double-grating structures,” Opt. Lett. 38(19), 3743–3746 (2013).
[Crossref] [PubMed]

Silberberg, Y.

Y. Silberberg and D. Meshulach, “Coherent quantum control of two-photon transitions by a femtosecond laser pulse,” Nature 396(6708), 239–242 (1998).
[Crossref]

Sipe, J. E.

J. F. Young, J. S. Preston, H. M. Vandriel, and J. E. Sipe, “Laser-induced periodic surface-structure. 2. Experiments on Ge, Si, Al, and brass,” Phys. Rev. B Condens. Matter 27(2), 1155–1172 (1983).
[Crossref]

J. E. Sipe, J. F. Young, J. S. Preston, and H. M. Vandriel, “Laser-induced periodic surface-structure. 1. Theory,” Phys. Rev. B Condens. Matter 27(2), 1141–1154 (1983).
[Crossref]

Siqueira, J. P.

R. J. Martins, J. P. Siqueira, P. H. D. Ferreira, L. Misoguti, T. Voss, and C. R. Mendonca, “Enhancing multi-photon induced excitonic emission of ZnO single crystals by shaping fs laser pulses,” Laser Phys. Lett. 10(10), 105403 (2013).
[Crossref]

Sjodin, T.

T. Sjodin, H. Petek, and H. L. Dai, “Ultrafast carrier dynamics in silicon: A two-color transient reflection grating study on a (111)surface,” Phys. Rev. Lett. 81(25), 5664–5667 (1998).
[Crossref]

Soileau, M. J.

P. A. Temple and M. J. Soileau, “Polarization charge model for laser-induced ripple patterns in dielectric materials,” IEEE J. Quantum Electron. 17(10), 2067–2072 (1981).
[Crossref]

Sokolowski Tinten, K.

D. Vonder Linde, K. Sokolowski Tinten, and J. Bialkowski, “Laser-solid interaction in the femtosecond time regime,” Appl. Surf. Sci. 109, 1–10 (1997).

Sokolowski-Tinten, K.

K. Sokolowski-Tinten and D. von der Linde, “Generation of dense electron-hole plasmas in silicon,” Phys. Rev. B Condens. Matter 61(4), 2643–2650 (2000).
[Crossref]

Sommer, S.

R. Le Harzic, D. Breitling, M. Weikert, S. Sommer, C. Fohl, S. Valette, C. Donnet, E. Audouard, and F. Dausinger, “Pulse width and energy influence on laser micromachining of metals in a range of 100 fs to 5 ps,” Appl. Surf. Sci. 249(1-4), 322–331 (2005).
[Crossref]

Spath, M.

S. Preuss, M. Spath, Y. Zhang, and M. Stuke, “Time-resolved dynamics of subpicosecond laser ablation,” Appl. Phys. Lett. 62(23), 3049–3051 (1993).
[Crossref]

Srisungsitthisunti, P.

C. M. Liebig, P. Srisungsitthisunti, A. M. Weiner, and X. Xu, “Enhanced machining of steel using femtosecond pulse pairs,” Appl. Phys., A Mater. Sci. Process. 101(3), 487–490 (2010).
[Crossref]

Stangl, G.

S. Zoppel, M. Farsari, R. Merz, J. Zehetner, G. Stangl, G. A. Reider, and C. Fotakis, “Laser micro machining of 3C-SiC single crystals,” Microelectron. Eng. 83(4-9), 1400–1402 (2006).
[Crossref]

Stoian, R.

R. Stoian, M. Boyle, A. Thoss, A. Rosenfeld, G. Korn, and I. V. Hertel, “Dynamic temporal pulse shaping in advanced ultrafast laser material processing,” Appl. Phys., A Mater. Sci. Process. 77, 265–269 (2003).

R. Stoian, M. Boyle, A. Thoss, A. Rosenfeld, G. Korn, and I. V. Hertel, “Advanced ultrafast laser material processing using temporal pulse shaping,” in 3rd International Symposium on Laser Precision Microfabrication (Osaka, Japan, 2002), pp. 435–441.

Stone, H. A.

M. Shen, J. E. Carey, C. H. Crouch, M. Kandyla, H. A. Stone, and E. Mazur, “High-density regular arrays of nanometer-scale rods formed on silicon surfaces via femtosecond laser irradiation in water,” Nano Lett. 8(7), 2087–2091 (2008).
[Crossref] [PubMed]

Stuke, M.

S. Preuss and M. Stuke, “Subpicosecond ultraviolet-laser ablation of diamond - nonlinear properties at 248 nm and time-resolved characterization of ablation dynamics,” Appl. Phys. Lett. 67(3), 338–340 (1995).
[Crossref]

S. Preuss, M. Spath, Y. Zhang, and M. Stuke, “Time-resolved dynamics of subpicosecond laser ablation,” Appl. Phys. Lett. 62(23), 3049–3051 (1993).
[Crossref]

Tan, B.

B. Tan and K. Venkatakrishnan, “A femtosecond laser-induced periodical surface structure on crystalline silicon,” J. Micromech. Microeng. 16(5), 1080–1085 (2006).
[Crossref]

Temple, P. A.

P. A. Temple and M. J. Soileau, “Polarization charge model for laser-induced ripple patterns in dielectric materials,” IEEE J. Quantum Electron. 17(10), 2067–2072 (1981).
[Crossref]

Thoss, A.

R. Stoian, M. Boyle, A. Thoss, A. Rosenfeld, G. Korn, and I. V. Hertel, “Dynamic temporal pulse shaping in advanced ultrafast laser material processing,” Appl. Phys., A Mater. Sci. Process. 77, 265–269 (2003).

R. Stoian, M. Boyle, A. Thoss, A. Rosenfeld, G. Korn, and I. V. Hertel, “Advanced ultrafast laser material processing using temporal pulse shaping,” in 3rd International Symposium on Laser Precision Microfabrication (Osaka, Japan, 2002), pp. 435–441.

Tomita, T.

T. Okada, H. Kawahara, Y. Ishida, R. Kumai, T. Tomita, S. Matsuo, S. Hashimoto, M. Kawamoto, Y. Makita, and M. Yamaguchi, “Cross-sectional TEM analysis of laser-induced ripple structures on the 4H-SiC single-crystal surface,” Appl. Phys., A Mater. Sci. Process. 92(3), 665–668 (2008).
[Crossref]

Torres, R.

T. J. Y. Derrien, T. E. Itina, R. Torres, T. Sarnet, and M. Sentis, “Possible surface plasmon polariton excitation under femtosecond laser irradiation of silicon,” J. Appl. Phys. 114(8), 083104 (2013).
[Crossref]

Tsai, H. L.

L. Jiang and H. L. Tsai, “Repeatable nanostructures in dielectrics by femtosecond laser pulse trains,” Appl. Phys. Lett. 87(15), 151104 (2005).
[Crossref]

Tu, C.

Tull, B. R.

B. R. Tull, J. E. Carey, M. A. Sheehy, C. Friend, and E. Mazur, “Formation of silicon nanoparticles and web-like aggregates by femtosecond laser ablation in a background gas,” Appl. Phys., A Mater. Sci. Process. 83(3), 341–346 (2006).
[Crossref]

B. R. Tull, J. E. Carey, E. Mazur, J. P. McDonald, and S. M. Yalisove, “Silicon surface morphologies after femtosecond laser irradiation,” MRS Bull. 31(08), 626–633 (2006).
[Crossref]

Valette, S.

R. Le Harzic, D. Breitling, M. Weikert, S. Sommer, C. Fohl, S. Valette, C. Donnet, E. Audouard, and F. Dausinger, “Pulse width and energy influence on laser micromachining of metals in a range of 100 fs to 5 ps,” Appl. Surf. Sci. 249(1-4), 322–331 (2005).
[Crossref]

Vandriel, H. M.

J. E. Sipe, J. F. Young, J. S. Preston, and H. M. Vandriel, “Laser-induced periodic surface-structure. 1. Theory,” Phys. Rev. B Condens. Matter 27(2), 1141–1154 (1983).
[Crossref]

J. F. Young, J. S. Preston, H. M. Vandriel, and J. E. Sipe, “Laser-induced periodic surface-structure. 2. Experiments on Ge, Si, Al, and brass,” Phys. Rev. B Condens. Matter 27(2), 1155–1172 (1983).
[Crossref]

Venkatakrishnan, K.

B. Tan and K. Venkatakrishnan, “A femtosecond laser-induced periodical surface structure on crystalline silicon,” J. Micromech. Microeng. 16(5), 1080–1085 (2006).
[Crossref]

von der Linde, D.

K. Sokolowski-Tinten and D. von der Linde, “Generation of dense electron-hole plasmas in silicon,” Phys. Rev. B Condens. Matter 61(4), 2643–2650 (2000).
[Crossref]

Vonder Linde, D.

D. Vonder Linde, K. Sokolowski Tinten, and J. Bialkowski, “Laser-solid interaction in the femtosecond time regime,” Appl. Surf. Sci. 109, 1–10 (1997).

Voss, T.

R. J. Martins, J. P. Siqueira, P. H. D. Ferreira, L. Misoguti, T. Voss, and C. R. Mendonca, “Enhancing multi-photon induced excitonic emission of ZnO single crystals by shaping fs laser pulses,” Laser Phys. Lett. 10(10), 105403 (2013).
[Crossref]

Walser, R. M.

Wang, H.-T.

Wang, Q.

Wang, S.

Wang, X.-L.

Weikert, M.

R. Le Harzic, D. Breitling, M. Weikert, S. Sommer, C. Fohl, S. Valette, C. Donnet, E. Audouard, and F. Dausinger, “Pulse width and energy influence on laser micromachining of metals in a range of 100 fs to 5 ps,” Appl. Surf. Sci. 249(1-4), 322–331 (2005).
[Crossref]

Weiner, A. M.

C. M. Liebig, P. Srisungsitthisunti, A. M. Weiner, and X. Xu, “Enhanced machining of steel using femtosecond pulse pairs,” Appl. Phys., A Mater. Sci. Process. 101(3), 487–490 (2010).
[Crossref]

A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71(5), 1929–1960 (2000).
[Crossref]

Willis, L. J.

D. C. Emmony, R. P. Howson, and L. J. Willis, “Laser mirror damage in germanium at 10.6 mu,” Appl. Phys. Lett. 23(11), 598–600 (1973).
[Crossref]

Winter, M.

A. Präkelt, M. Wollenhaupt, A. Assion, C. Horn, C. Sarpe-Tudoran, M. Winter, and T. Baumert, “Compact, robust, and flexible setup for femtosecond pulse shaping,” Rev. Sci. Instrum. 74(11), 4950–4953 (2003).
[Crossref]

Wollenhaupt, M.

A. Präkelt, M. Wollenhaupt, A. Assion, C. Horn, C. Sarpe-Tudoran, M. Winter, and T. Baumert, “Compact, robust, and flexible setup for femtosecond pulse shaping,” Rev. Sci. Instrum. 74(11), 4950–4953 (2003).
[Crossref]

Wu, C.

T. H. Her, R. J. Finlay, C. Wu, and E. Mazur, “Femtosecond laser-induced formation of spikes on silicon,” Appl. Phys., A Mater. Sci. Process. 70(4), 383–385 (2000).
[Crossref]

T. H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, “Microstructuring of silicon with femtosecond laser pulses,” Appl. Phys. Lett. 73(12), 1673–1675 (1998).
[Crossref]

Xu, C.

N. Leng, L. Jiang, X. Li, C. Xu, P. Liu, and Y. Lu, “Femtosecond laser processing of fused silica and aluminum based on electron dynamics control by shaping pulse trains,” Appl. Phys., A Mater. Sci. Process. 109(3), 679–684 (2012).
[Crossref]

Xu, X.

C. M. Liebig, P. Srisungsitthisunti, A. M. Weiner, and X. Xu, “Enhanced machining of steel using femtosecond pulse pairs,” Appl. Phys., A Mater. Sci. Process. 101(3), 487–490 (2010).
[Crossref]

Yalisove, S. M.

B. R. Tull, J. E. Carey, E. Mazur, J. P. McDonald, and S. M. Yalisove, “Silicon surface morphologies after femtosecond laser irradiation,” MRS Bull. 31(08), 626–633 (2006).
[Crossref]

Yamaguchi, M.

T. Okada, H. Kawahara, Y. Ishida, R. Kumai, T. Tomita, S. Matsuo, S. Hashimoto, M. Kawamoto, Y. Makita, and M. Yamaguchi, “Cross-sectional TEM analysis of laser-induced ripple structures on the 4H-SiC single-crystal surface,” Appl. Phys., A Mater. Sci. Process. 92(3), 665–668 (2008).
[Crossref]

Yoffa, E. J.

E. J. Yoffa, “Screening of hot-carrier relaxation in highly photo-excited semiconductors,” Phys. Rev. B Condens. Matter 23(4), 1909–1919 (1981).
[Crossref]

E. J. Yoffa, “Dynamics of dense laser-induced plasmas,” Phys. Rev. B Condens. Matter 21(6), 2415–2425 (1980).
[Crossref]

Young, J. F.

J. F. Young, J. S. Preston, H. M. Vandriel, and J. E. Sipe, “Laser-induced periodic surface-structure. 2. Experiments on Ge, Si, Al, and brass,” Phys. Rev. B Condens. Matter 27(2), 1155–1172 (1983).
[Crossref]

J. E. Sipe, J. F. Young, J. S. Preston, and H. M. Vandriel, “Laser-induced periodic surface-structure. 1. Theory,” Phys. Rev. B Condens. Matter 27(2), 1141–1154 (1983).
[Crossref]

Younkin, R.

R. Younkin, J. E. Carey, E. Mazur, J. A. Levinson, and C. M. Friend, “Infrared absorption by conical silicon microstructures made in a variety of background gases using femtosecond-laser pulses,” J. Appl. Phys. 93(5), 2626–2629 (2003).
[Crossref]

Yu, D.

X. Shi, L. Jiang, X. Li, K. Zhang, D. Yu, Y. Yu, and Y. Lu, “Temporal femtosecond pulse shaping dependence of laser-induced periodic surface structures in fused silica,” J. Appl. Phys. 116(3), 033104 (2014).
[Crossref]

Yu, Y.

X. Shi, L. Jiang, X. Li, K. Zhang, D. Yu, Y. Yu, and Y. Lu, “Temporal femtosecond pulse shaping dependence of laser-induced periodic surface structures in fused silica,” J. Appl. Phys. 116(3), 033104 (2014).
[Crossref]

Yuan, Y.

Zehetner, J.

S. Zoppel, M. Farsari, R. Merz, J. Zehetner, G. Stangl, G. A. Reider, and C. Fotakis, “Laser micro machining of 3C-SiC single crystals,” Microelectron. Eng. 83(4-9), 1400–1402 (2006).
[Crossref]

Zhang, K.

X. Shi, L. Jiang, X. Li, K. Zhang, D. Yu, Y. Yu, and Y. Lu, “Temporal femtosecond pulse shaping dependence of laser-induced periodic surface structures in fused silica,” J. Appl. Phys. 116(3), 033104 (2014).
[Crossref]

Zhang, Y.

S. Preuss, M. Spath, Y. Zhang, and M. Stuke, “Time-resolved dynamics of subpicosecond laser ablation,” Appl. Phys. Lett. 62(23), 3049–3051 (1993).
[Crossref]

Zhou, M.

T. Baldacchini, J. E. Carey, M. Zhou, and E. Mazur, “Superhydrophobic surfaces prepared by microstructuring of silicon using a femtosecond laser,” Langmuir 22(11), 4917–4919 (2006).
[Crossref] [PubMed]

Ziemann, P.

M. Csete, S. Hild, A. Plettl, P. Ziemann, Z. Bor, and O. Marti, “The role of original surface roughness in laser-induced periodic surface structure formation process on poly-carbonate films,” Thin Solid Films 453–454, 114–120 (2004).
[Crossref]

Zoppel, S.

S. Zoppel, M. Farsari, R. Merz, J. Zehetner, G. Stangl, G. A. Reider, and C. Fotakis, “Laser micro machining of 3C-SiC single crystals,” Microelectron. Eng. 83(4-9), 1400–1402 (2006).
[Crossref]

Appl. Phys. Lett. (6)

T. H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, “Microstructuring of silicon with femtosecond laser pulses,” Appl. Phys. Lett. 73(12), 1673–1675 (1998).
[Crossref]

D. C. Emmony, R. P. Howson, and L. J. Willis, “Laser mirror damage in germanium at 10.6 mu,” Appl. Phys. Lett. 23(11), 598–600 (1973).
[Crossref]

E. M. Hsu, T. H. R. Crawford, C. Maunders, G. A. Botton, and H. K. Haugen, “Cross-sectional study of periodic surface structures on gallium phosphide induced by ultrashort laser pulse irradiation,” Appl. Phys. Lett. 92(22), 221112 (2008).
[Crossref]

L. Jiang and H. L. Tsai, “Repeatable nanostructures in dielectrics by femtosecond laser pulse trains,” Appl. Phys. Lett. 87(15), 151104 (2005).
[Crossref]

S. Preuss, M. Spath, Y. Zhang, and M. Stuke, “Time-resolved dynamics of subpicosecond laser ablation,” Appl. Phys. Lett. 62(23), 3049–3051 (1993).
[Crossref]

S. Preuss and M. Stuke, “Subpicosecond ultraviolet-laser ablation of diamond - nonlinear properties at 248 nm and time-resolved characterization of ablation dynamics,” Appl. Phys. Lett. 67(3), 338–340 (1995).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (9)

C. M. Liebig, P. Srisungsitthisunti, A. M. Weiner, and X. Xu, “Enhanced machining of steel using femtosecond pulse pairs,” Appl. Phys., A Mater. Sci. Process. 101(3), 487–490 (2010).
[Crossref]

N. Leng, L. Jiang, X. Li, C. Xu, P. Liu, and Y. Lu, “Femtosecond laser processing of fused silica and aluminum based on electron dynamics control by shaping pulse trains,” Appl. Phys., A Mater. Sci. Process. 109(3), 679–684 (2012).
[Crossref]

R. Stoian, M. Boyle, A. Thoss, A. Rosenfeld, G. Korn, and I. V. Hertel, “Dynamic temporal pulse shaping in advanced ultrafast laser material processing,” Appl. Phys., A Mater. Sci. Process. 77, 265–269 (2003).

F. Keilmann and Y. H. Bai, “Periodic surface-structures frozen into co2 laser-melted quartz,” Appl. Phys., A Mater. Sci. Process. 29(1), 9–18 (1982).
[Crossref]

T. Okada, H. Kawahara, Y. Ishida, R. Kumai, T. Tomita, S. Matsuo, S. Hashimoto, M. Kawamoto, Y. Makita, and M. Yamaguchi, “Cross-sectional TEM analysis of laser-induced ripple structures on the 4H-SiC single-crystal surface,” Appl. Phys., A Mater. Sci. Process. 92(3), 665–668 (2008).
[Crossref]

S. Baudach, J. Bonse, and W. Kautek, “Ablation experiments on polyimide with femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process. 69(7), S395–S398 (1999).
[Crossref]

B. R. Tull, J. E. Carey, M. A. Sheehy, C. Friend, and E. Mazur, “Formation of silicon nanoparticles and web-like aggregates by femtosecond laser ablation in a background gas,” Appl. Phys., A Mater. Sci. Process. 83(3), 341–346 (2006).
[Crossref]

T. H. Her, R. J. Finlay, C. Wu, and E. Mazur, “Femtosecond laser-induced formation of spikes on silicon,” Appl. Phys., A Mater. Sci. Process. 70(4), 383–385 (2000).
[Crossref]

T. J.-Y. Derrien, J. Krüger, T. E. Itina, S. Höhm, A. Rosenfeld, and J. Bonse, “Rippled area formed by surface plasmon polaritons upon femtosecond laser double-pulse irradiation of silicon: the role of carrier generation and relaxation processes,” Appl. Phys., A Mater. Sci. Process. 117(1), 77–81 (2014).
[Crossref]

Appl. Surf. Sci. (2)

D. Vonder Linde, K. Sokolowski Tinten, and J. Bialkowski, “Laser-solid interaction in the femtosecond time regime,” Appl. Surf. Sci. 109, 1–10 (1997).

R. Le Harzic, D. Breitling, M. Weikert, S. Sommer, C. Fohl, S. Valette, C. Donnet, E. Audouard, and F. Dausinger, “Pulse width and energy influence on laser micromachining of metals in a range of 100 fs to 5 ps,” Appl. Surf. Sci. 249(1-4), 322–331 (2005).
[Crossref]

IEEE J. Quantum Electron. (1)

P. A. Temple and M. J. Soileau, “Polarization charge model for laser-induced ripple patterns in dielectric materials,” IEEE J. Quantum Electron. 17(10), 2067–2072 (1981).
[Crossref]

J. Appl. Phys. (4)

R. Younkin, J. E. Carey, E. Mazur, J. A. Levinson, and C. M. Friend, “Infrared absorption by conical silicon microstructures made in a variety of background gases using femtosecond-laser pulses,” J. Appl. Phys. 93(5), 2626–2629 (2003).
[Crossref]

X. Shi, L. Jiang, X. Li, K. Zhang, D. Yu, Y. Yu, and Y. Lu, “Temporal femtosecond pulse shaping dependence of laser-induced periodic surface structures in fused silica,” J. Appl. Phys. 116(3), 033104 (2014).
[Crossref]

T. J. Y. Derrien, T. E. Itina, R. Torres, T. Sarnet, and M. Sentis, “Possible surface plasmon polariton excitation under femtosecond laser irradiation of silicon,” J. Appl. Phys. 114(8), 083104 (2013).
[Crossref]

J. Bonse, A. Rosenfeld, and J. Krüger, “On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond-laser pulses,” J. Appl. Phys. 106(10), 104910 (2009).
[Crossref]

J. Micromech. Microeng. (1)

B. Tan and K. Venkatakrishnan, “A femtosecond laser-induced periodical surface structure on crystalline silicon,” J. Micromech. Microeng. 16(5), 1080–1085 (2006).
[Crossref]

J. Opt. Soc. Am. B (1)

Langmuir (1)

T. Baldacchini, J. E. Carey, M. Zhou, and E. Mazur, “Superhydrophobic surfaces prepared by microstructuring of silicon using a femtosecond laser,” Langmuir 22(11), 4917–4919 (2006).
[Crossref] [PubMed]

Laser Phys. Lett. (1)

R. J. Martins, J. P. Siqueira, P. H. D. Ferreira, L. Misoguti, T. Voss, and C. R. Mendonca, “Enhancing multi-photon induced excitonic emission of ZnO single crystals by shaping fs laser pulses,” Laser Phys. Lett. 10(10), 105403 (2013).
[Crossref]

Microelectron. Eng. (1)

S. Zoppel, M. Farsari, R. Merz, J. Zehetner, G. Stangl, G. A. Reider, and C. Fotakis, “Laser micro machining of 3C-SiC single crystals,” Microelectron. Eng. 83(4-9), 1400–1402 (2006).
[Crossref]

MRS Bull. (1)

B. R. Tull, J. E. Carey, E. Mazur, J. P. McDonald, and S. M. Yalisove, “Silicon surface morphologies after femtosecond laser irradiation,” MRS Bull. 31(08), 626–633 (2006).
[Crossref]

Nano Lett. (1)

M. Shen, J. E. Carey, C. H. Crouch, M. Kandyla, H. A. Stone, and E. Mazur, “High-density regular arrays of nanometer-scale rods formed on silicon surfaces via femtosecond laser irradiation in water,” Nano Lett. 8(7), 2087–2091 (2008).
[Crossref] [PubMed]

Nature (2)

S. A. Rice, “Interfering for the good of a chemical reaction,” Nature 409(6818), 422–426 (2001).
[Crossref] [PubMed]

Y. Silberberg and D. Meshulach, “Coherent quantum control of two-photon transitions by a femtosecond laser pulse,” Nature 396(6708), 239–242 (1998).
[Crossref]

Opt. Express (3)

Opt. Lett. (1)

Phys. Rev. B Condens. Matter (7)

M. E. Povarnitsyn, T. E. Itina, M. Sentis, K. V. Khishchenko, and P. R. Levashov, “Material decomposition mechanisms in femtosecond laser interactions with metals,” Phys. Rev. B Condens. Matter 75(23), 235414 (2007).
[Crossref]

J. F. Young, J. S. Preston, H. M. Vandriel, and J. E. Sipe, “Laser-induced periodic surface-structure. 2. Experiments on Ge, Si, Al, and brass,” Phys. Rev. B Condens. Matter 27(2), 1155–1172 (1983).
[Crossref]

J. E. Sipe, J. F. Young, J. S. Preston, and H. M. Vandriel, “Laser-induced periodic surface-structure. 1. Theory,” Phys. Rev. B Condens. Matter 27(2), 1141–1154 (1983).
[Crossref]

A. J. Sabbah and D. M. Riffe, “Femtosecond pump-probe reflectivity study of silicon carrier dynamics,” Phys. Rev. B Condens. Matter 66(16), 165217 (2002).
[Crossref]

K. Sokolowski-Tinten and D. von der Linde, “Generation of dense electron-hole plasmas in silicon,” Phys. Rev. B Condens. Matter 61(4), 2643–2650 (2000).
[Crossref]

E. J. Yoffa, “Screening of hot-carrier relaxation in highly photo-excited semiconductors,” Phys. Rev. B Condens. Matter 23(4), 1909–1919 (1981).
[Crossref]

E. J. Yoffa, “Dynamics of dense laser-induced plasmas,” Phys. Rev. B Condens. Matter 21(6), 2415–2425 (1980).
[Crossref]

Phys. Rev. Lett. (1)

T. Sjodin, H. Petek, and H. L. Dai, “Ultrafast carrier dynamics in silicon: A two-color transient reflection grating study on a (111)surface,” Phys. Rev. Lett. 81(25), 5664–5667 (1998).
[Crossref]

Rev. Sci. Instrum. (2)

A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71(5), 1929–1960 (2000).
[Crossref]

A. Präkelt, M. Wollenhaupt, A. Assion, C. Horn, C. Sarpe-Tudoran, M. Winter, and T. Baumert, “Compact, robust, and flexible setup for femtosecond pulse shaping,” Rev. Sci. Instrum. 74(11), 4950–4953 (2003).
[Crossref]

Thin Solid Films (1)

M. Csete, S. Hild, A. Plettl, P. Ziemann, Z. Bor, and O. Marti, “The role of original surface roughness in laser-induced periodic surface structure formation process on poly-carbonate films,” Thin Solid Films 453–454, 114–120 (2004).
[Crossref]

Other (2)

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

R. Stoian, M. Boyle, A. Thoss, A. Rosenfeld, G. Korn, and I. V. Hertel, “Advanced ultrafast laser material processing using temporal pulse shaping,” in 3rd International Symposium on Laser Precision Microfabrication (Osaka, Japan, 2002), pp. 435–441.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Illustration of the experimental setup. The graphs illustrate the FROG and auto-correlation traces for the FTL pulse.
Fig. 2
Fig. 2 Temporal profile of pulse trains with sub-pulses separation of (a) 64 fs, (b) 85 fs, (c) 128 fs and (d) 170 fs, retrieved from the corresponding FROG traces (shown in the inset).
Fig. 3
Fig. 3 AFM images of the LIPSS obtained with a pulse train of (a) 128 fs, (b) 64 fs and (c) FTL pulse. (d) Profile of the AFM image, obtained along the dashed line in (c), displaying a LIPSS period of 760 nm.
Fig. 4
Fig. 4 Amplitude of the 2D-FFT (circles) for LIPSS obtained with pulse trains with sub-pulse separations of Δτ (left and bottom axis). The solid is a guide to the eye. The dashed line represents the efficacy factor (right axis) obtained from the Sipe-Drude theory, extracted from [34], as a function of the carrier density Ne.

Metrics