Abstract

A miniature Fabry-Perot interferometric sensor with an ultra-high temperature sensitivity was constructed by using an approximate 8-layer graphene diaphragm. The extremely thin diaphragm was transferred onto the endface of a ferrule with an inner diameter of 125 μm, and van der Waals interactions between the graphene diaphragm and its substrate created a low finesse Fabry-Perot interferometer with a cavity length of 42.86 μm. Temperature testing demonstrated a temperature-induced cavity length change of 352 nm/°C with a good linearity in the range of 20-60 °C. The result conformed well to the proposed analytical models relating to thermal expansion of trapped gas, thermal-optical property of graphene diaphragm and deflection behavior of bulged graphene blister. However, the ultra-thin diaphragm exhibited a small deflection deformation characteristic due to the applied higher loads.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Fiber-optic Fabry–Perot pressure sensor based on low-temperature co-fired ceramic technology for high-temperature applications

Jia Liu, Pinggang Jia, Huixin Zhang, Xiaodan Tian, Hao Liang, Yingping Hong, Ting Liang, Wenyi Liu, and Jijun Xiong
Appl. Opt. 57(15) 4211-4215 (2018)

Ultrathin graphene diaphragm-based extrinsic Fabry-Perot interferometer for ultra-wideband fiber optic acoustic sensing

Wenjun Ni, Ping Lu, Xin Fu, Wei Zhang, Perry Ping Shum, Handong Sun, Chunyong Yang, Deming Liu, and Jiangshan Zhang
Opt. Express 26(16) 20758-20767 (2018)

References

  • View by:
  • |
  • |
  • |

  1. S. Avino, J. A. Barnes, G. Gagliardi, X. Gu, D. Gutstein, J. R. Mester, C. Nicholaou, and H.-P. Loock, “Musical instrument pickup based on a laser locked to an optical fiber resonator,” Opt. Express 19(25), 25057–25065 (2011).
    [Crossref] [PubMed]
  2. Y. Wang, D. N. Wang, C. Wang, and T. Hu, “Compressible fiber optic micro-Fabry-Pérot cavity with ultra-high pressure sensitivity,” Opt. Express 21(12), 14084–14089 (2013).
    [Crossref] [PubMed]
  3. F. Xu, D. Ren, X. Shi, C. Li, W. Lu, L. Lu, L. Lu, and B. Yu, “High-sensitivity Fabry-Perot interferometric pressure sensor based on a nanothick silver diaphragm,” Opt. Lett. 37(2), 133–135 (2012).
    [Crossref] [PubMed]
  4. G. Beheim, K. Fritsch, and R. N. Poorman, “Fiber-linked interferometric pressure sensor,” Rev. Sci. Instrum. 58(9), 1655–1659 (1987).
    [Crossref]
  5. W. Wang, N. Wu, Y. Tian, C. Niezrecki, and X. Wang, “Miniature all-silica optical fiber pressure sensor with an ultrathin uniform diaphragm,” Opt. Express 18(9), 9006–9014 (2010).
    [Crossref] [PubMed]
  6. G. C. Hill, R. Melamud, F. E. Declercq, A. A. Davenport, I. H. Chan, P. G. Hartwell, and B. L. Pruitt, “SU-8 MEMS Fabry-Perot pressure sensor,” Sens. Actuators A Phys. 138(1), 52–62 (2007).
    [Crossref]
  7. F. Guo, T. Fink, M. Han, L. Koester, J. Turner, and J. Huang, “High-sensitivity, high-frequency extrinsic Fabry-Perot interferometric fiber-tip sensor based on a thin silver diaphragm,” Opt. Lett. 37(9), 1505–1507 (2012).
    [Crossref] [PubMed]
  8. J. Ma, H. F. Xuan, H. L. Ho, W. Jin, Y. H. Yang, and S. C. Fan, “Fiber-optic Fabry-Perot acoustic sensor with multilayer graphene diaphragm,” IEEE Photonics Technol. Lett. 25(10), 932–935 (2013).
    [Crossref]
  9. C. Li, X. Y. Gao, T. T. Guo, J. Xiao, S. C. Fan, and W. Jin, “Analyzing the applicability of miniature ultra-high sensitivity Fabry-Perot acoustic sensor using a nanothick graphene diaphragm,” Meas. Sci. Technol. 26(8), 085101 (2015).
    [Crossref]
  10. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
    [Crossref] [PubMed]
  11. C. Lee, X. Wei, J. W. Kysar, and J. Hone, “Measurement of the elastic properties and intrinsic strength of monolayer graphene,” Science 321(5887), 385–388 (2008).
    [Crossref] [PubMed]
  12. S. P. Koenig, N. G. Boddeti, M. L. Dunn, and J. S. Bunch, “Ultrastrong adhesion of graphene membranes,” Nat. Nanotechnol. 6(9), 543–546 (2011).
    [Crossref] [PubMed]
  13. J. S. Bunch, S. S. Verbridge, J. S. Alden, A. M. van der Zande, J. M. Parpia, H. G. Craighead, and P. L. McEuen, “Impermeable atomic membranes from graphene sheets,” Nano Lett. 8(8), 2458–2462 (2008).
    [Crossref] [PubMed]
  14. L. A. Falkovsky and S. S. Pershoguba, “Optical far-infrared properties of a graphene monolayer and multilayer,” Phys. Rev. B Condens. Matter 76(15), 153410 (2007).
    [Crossref]
  15. X. Chen, F. Shen, Z. Wang, Z. Huang, and A. Wang, “Micro-air-gap based intrinsic Fabry-Perot interferometric fiber-optic sensor,” Appl. Opt. 45(30), 7760–7766 (2006).
    [Crossref] [PubMed]
  16. P. A. R. Tafulo, P. A. S. Jorge, J. L. Santos, F. M. Araújo, and O. Frazão, “Intrinsic Fabry-Perot cavity sensor based on etched multimode graded index fiber for strain and temperature measurement,” IEEE Sens. J. 12(1), 8–12 (2012).
    [Crossref]
  17. G. Zhang, M. Yang, and M. Wang, “Large temperature sensitivity of fiber-optic extrinsic Fabry-Perot interferometer based on polymer filled glass capillary,” Opt. Fiber Technol. 19(6), 618–622 (2013).
    [Crossref]
  18. L. Li, Z. Y. Feng, X. G. Qiao, H. Z. Yang, R. H. Wang, D. Su, Y. P. Wang, W. J. Bao, J. C. Li, Z. H. Shao, and M. Hu, “Ultrahigh sensitive temperature sensor based on Fabry–Pérot interference assisted by a graphene diaphragm,” IEEE Sens. J. 15(1), 505–509 (2015).
    [Crossref]
  19. C. Li, J. Xiao, T. T. Guo, S. C. Fan, and W. Jin, “Interference characteristics in a Fabry-Perot cavity with graphene membrane for optical fiber pressure sensors,” Microsyst. Technol. 21(11), 2297–2306 (2015).
    [Crossref]
  20. D. Yoon, Y.-W. Son, and H. Cheong, “Negative thermal expansion coefficient of graphene measured by Raman spectroscopy,” Nano Lett. 11(8), 3227–3231 (2011).
    [Crossref] [PubMed]
  21. N. G. Boddeti, S. P. Koenig, R. Long, J. L. Xiao, J. S. Bunch, and M. L. Dunn, “Mechanics of adhered, pressurized graphene blisters,” J. Appl. Mech. 80(4), 040909 (2013).
    [Crossref]
  22. J. W. Beams, The Structure and Properties of Thin Film (Wiley, 1959).
  23. L. A. Falkovsky, “Optical properties of graphene,” J. Phys. Conf. Ser. 129, 012004 (2008).
    [Crossref]
  24. A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).
    [Crossref] [PubMed]
  25. A. Fasolino, J. H. Los, and M. I. Katsnelson, “Intrinsic ripples in graphene,” Nat. Mater. 6(11), 858–861 (2007).
    [Crossref] [PubMed]
  26. M. A. N. Dewapriya, A. Srikantha Phani, and R. K. N. D. Rajapakse, “Influence of temperature and free edges on the mechanical properties of graphene,” Model. Simul. Mater. Sci. Eng. 21(6), 065017 (2013).
    [Crossref]

2015 (3)

C. Li, X. Y. Gao, T. T. Guo, J. Xiao, S. C. Fan, and W. Jin, “Analyzing the applicability of miniature ultra-high sensitivity Fabry-Perot acoustic sensor using a nanothick graphene diaphragm,” Meas. Sci. Technol. 26(8), 085101 (2015).
[Crossref]

L. Li, Z. Y. Feng, X. G. Qiao, H. Z. Yang, R. H. Wang, D. Su, Y. P. Wang, W. J. Bao, J. C. Li, Z. H. Shao, and M. Hu, “Ultrahigh sensitive temperature sensor based on Fabry–Pérot interference assisted by a graphene diaphragm,” IEEE Sens. J. 15(1), 505–509 (2015).
[Crossref]

C. Li, J. Xiao, T. T. Guo, S. C. Fan, and W. Jin, “Interference characteristics in a Fabry-Perot cavity with graphene membrane for optical fiber pressure sensors,” Microsyst. Technol. 21(11), 2297–2306 (2015).
[Crossref]

2013 (5)

N. G. Boddeti, S. P. Koenig, R. Long, J. L. Xiao, J. S. Bunch, and M. L. Dunn, “Mechanics of adhered, pressurized graphene blisters,” J. Appl. Mech. 80(4), 040909 (2013).
[Crossref]

M. A. N. Dewapriya, A. Srikantha Phani, and R. K. N. D. Rajapakse, “Influence of temperature and free edges on the mechanical properties of graphene,” Model. Simul. Mater. Sci. Eng. 21(6), 065017 (2013).
[Crossref]

J. Ma, H. F. Xuan, H. L. Ho, W. Jin, Y. H. Yang, and S. C. Fan, “Fiber-optic Fabry-Perot acoustic sensor with multilayer graphene diaphragm,” IEEE Photonics Technol. Lett. 25(10), 932–935 (2013).
[Crossref]

G. Zhang, M. Yang, and M. Wang, “Large temperature sensitivity of fiber-optic extrinsic Fabry-Perot interferometer based on polymer filled glass capillary,” Opt. Fiber Technol. 19(6), 618–622 (2013).
[Crossref]

Y. Wang, D. N. Wang, C. Wang, and T. Hu, “Compressible fiber optic micro-Fabry-Pérot cavity with ultra-high pressure sensitivity,” Opt. Express 21(12), 14084–14089 (2013).
[Crossref] [PubMed]

2012 (3)

2011 (4)

S. P. Koenig, N. G. Boddeti, M. L. Dunn, and J. S. Bunch, “Ultrastrong adhesion of graphene membranes,” Nat. Nanotechnol. 6(9), 543–546 (2011).
[Crossref] [PubMed]

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).
[Crossref] [PubMed]

D. Yoon, Y.-W. Son, and H. Cheong, “Negative thermal expansion coefficient of graphene measured by Raman spectroscopy,” Nano Lett. 11(8), 3227–3231 (2011).
[Crossref] [PubMed]

S. Avino, J. A. Barnes, G. Gagliardi, X. Gu, D. Gutstein, J. R. Mester, C. Nicholaou, and H.-P. Loock, “Musical instrument pickup based on a laser locked to an optical fiber resonator,” Opt. Express 19(25), 25057–25065 (2011).
[Crossref] [PubMed]

2010 (1)

2008 (3)

L. A. Falkovsky, “Optical properties of graphene,” J. Phys. Conf. Ser. 129, 012004 (2008).
[Crossref]

J. S. Bunch, S. S. Verbridge, J. S. Alden, A. M. van der Zande, J. M. Parpia, H. G. Craighead, and P. L. McEuen, “Impermeable atomic membranes from graphene sheets,” Nano Lett. 8(8), 2458–2462 (2008).
[Crossref] [PubMed]

C. Lee, X. Wei, J. W. Kysar, and J. Hone, “Measurement of the elastic properties and intrinsic strength of monolayer graphene,” Science 321(5887), 385–388 (2008).
[Crossref] [PubMed]

2007 (3)

L. A. Falkovsky and S. S. Pershoguba, “Optical far-infrared properties of a graphene monolayer and multilayer,” Phys. Rev. B Condens. Matter 76(15), 153410 (2007).
[Crossref]

A. Fasolino, J. H. Los, and M. I. Katsnelson, “Intrinsic ripples in graphene,” Nat. Mater. 6(11), 858–861 (2007).
[Crossref] [PubMed]

G. C. Hill, R. Melamud, F. E. Declercq, A. A. Davenport, I. H. Chan, P. G. Hartwell, and B. L. Pruitt, “SU-8 MEMS Fabry-Perot pressure sensor,” Sens. Actuators A Phys. 138(1), 52–62 (2007).
[Crossref]

2006 (1)

2004 (1)

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

1987 (1)

G. Beheim, K. Fritsch, and R. N. Poorman, “Fiber-linked interferometric pressure sensor,” Rev. Sci. Instrum. 58(9), 1655–1659 (1987).
[Crossref]

Alden, J. S.

J. S. Bunch, S. S. Verbridge, J. S. Alden, A. M. van der Zande, J. M. Parpia, H. G. Craighead, and P. L. McEuen, “Impermeable atomic membranes from graphene sheets,” Nano Lett. 8(8), 2458–2462 (2008).
[Crossref] [PubMed]

Araújo, F. M.

P. A. R. Tafulo, P. A. S. Jorge, J. L. Santos, F. M. Araújo, and O. Frazão, “Intrinsic Fabry-Perot cavity sensor based on etched multimode graded index fiber for strain and temperature measurement,” IEEE Sens. J. 12(1), 8–12 (2012).
[Crossref]

Avino, S.

Bao, W. J.

L. Li, Z. Y. Feng, X. G. Qiao, H. Z. Yang, R. H. Wang, D. Su, Y. P. Wang, W. J. Bao, J. C. Li, Z. H. Shao, and M. Hu, “Ultrahigh sensitive temperature sensor based on Fabry–Pérot interference assisted by a graphene diaphragm,” IEEE Sens. J. 15(1), 505–509 (2015).
[Crossref]

Barnes, J. A.

Beheim, G.

G. Beheim, K. Fritsch, and R. N. Poorman, “Fiber-linked interferometric pressure sensor,” Rev. Sci. Instrum. 58(9), 1655–1659 (1987).
[Crossref]

Boddeti, N. G.

N. G. Boddeti, S. P. Koenig, R. Long, J. L. Xiao, J. S. Bunch, and M. L. Dunn, “Mechanics of adhered, pressurized graphene blisters,” J. Appl. Mech. 80(4), 040909 (2013).
[Crossref]

S. P. Koenig, N. G. Boddeti, M. L. Dunn, and J. S. Bunch, “Ultrastrong adhesion of graphene membranes,” Nat. Nanotechnol. 6(9), 543–546 (2011).
[Crossref] [PubMed]

Bunch, J. S.

N. G. Boddeti, S. P. Koenig, R. Long, J. L. Xiao, J. S. Bunch, and M. L. Dunn, “Mechanics of adhered, pressurized graphene blisters,” J. Appl. Mech. 80(4), 040909 (2013).
[Crossref]

S. P. Koenig, N. G. Boddeti, M. L. Dunn, and J. S. Bunch, “Ultrastrong adhesion of graphene membranes,” Nat. Nanotechnol. 6(9), 543–546 (2011).
[Crossref] [PubMed]

J. S. Bunch, S. S. Verbridge, J. S. Alden, A. M. van der Zande, J. M. Parpia, H. G. Craighead, and P. L. McEuen, “Impermeable atomic membranes from graphene sheets,” Nano Lett. 8(8), 2458–2462 (2008).
[Crossref] [PubMed]

Chan, I. H.

G. C. Hill, R. Melamud, F. E. Declercq, A. A. Davenport, I. H. Chan, P. G. Hartwell, and B. L. Pruitt, “SU-8 MEMS Fabry-Perot pressure sensor,” Sens. Actuators A Phys. 138(1), 52–62 (2007).
[Crossref]

Chen, X.

Cheong, H.

D. Yoon, Y.-W. Son, and H. Cheong, “Negative thermal expansion coefficient of graphene measured by Raman spectroscopy,” Nano Lett. 11(8), 3227–3231 (2011).
[Crossref] [PubMed]

Craighead, H. G.

J. S. Bunch, S. S. Verbridge, J. S. Alden, A. M. van der Zande, J. M. Parpia, H. G. Craighead, and P. L. McEuen, “Impermeable atomic membranes from graphene sheets,” Nano Lett. 8(8), 2458–2462 (2008).
[Crossref] [PubMed]

Davenport, A. A.

G. C. Hill, R. Melamud, F. E. Declercq, A. A. Davenport, I. H. Chan, P. G. Hartwell, and B. L. Pruitt, “SU-8 MEMS Fabry-Perot pressure sensor,” Sens. Actuators A Phys. 138(1), 52–62 (2007).
[Crossref]

Declercq, F. E.

G. C. Hill, R. Melamud, F. E. Declercq, A. A. Davenport, I. H. Chan, P. G. Hartwell, and B. L. Pruitt, “SU-8 MEMS Fabry-Perot pressure sensor,” Sens. Actuators A Phys. 138(1), 52–62 (2007).
[Crossref]

Dewapriya, M. A. N.

M. A. N. Dewapriya, A. Srikantha Phani, and R. K. N. D. Rajapakse, “Influence of temperature and free edges on the mechanical properties of graphene,” Model. Simul. Mater. Sci. Eng. 21(6), 065017 (2013).
[Crossref]

Dubonos, S. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Dunn, M. L.

N. G. Boddeti, S. P. Koenig, R. Long, J. L. Xiao, J. S. Bunch, and M. L. Dunn, “Mechanics of adhered, pressurized graphene blisters,” J. Appl. Mech. 80(4), 040909 (2013).
[Crossref]

S. P. Koenig, N. G. Boddeti, M. L. Dunn, and J. S. Bunch, “Ultrastrong adhesion of graphene membranes,” Nat. Nanotechnol. 6(9), 543–546 (2011).
[Crossref] [PubMed]

Engheta, N.

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).
[Crossref] [PubMed]

Falkovsky, L. A.

L. A. Falkovsky, “Optical properties of graphene,” J. Phys. Conf. Ser. 129, 012004 (2008).
[Crossref]

L. A. Falkovsky and S. S. Pershoguba, “Optical far-infrared properties of a graphene monolayer and multilayer,” Phys. Rev. B Condens. Matter 76(15), 153410 (2007).
[Crossref]

Fan, S. C.

C. Li, J. Xiao, T. T. Guo, S. C. Fan, and W. Jin, “Interference characteristics in a Fabry-Perot cavity with graphene membrane for optical fiber pressure sensors,” Microsyst. Technol. 21(11), 2297–2306 (2015).
[Crossref]

C. Li, X. Y. Gao, T. T. Guo, J. Xiao, S. C. Fan, and W. Jin, “Analyzing the applicability of miniature ultra-high sensitivity Fabry-Perot acoustic sensor using a nanothick graphene diaphragm,” Meas. Sci. Technol. 26(8), 085101 (2015).
[Crossref]

J. Ma, H. F. Xuan, H. L. Ho, W. Jin, Y. H. Yang, and S. C. Fan, “Fiber-optic Fabry-Perot acoustic sensor with multilayer graphene diaphragm,” IEEE Photonics Technol. Lett. 25(10), 932–935 (2013).
[Crossref]

Fasolino, A.

A. Fasolino, J. H. Los, and M. I. Katsnelson, “Intrinsic ripples in graphene,” Nat. Mater. 6(11), 858–861 (2007).
[Crossref] [PubMed]

Feng, Z. Y.

L. Li, Z. Y. Feng, X. G. Qiao, H. Z. Yang, R. H. Wang, D. Su, Y. P. Wang, W. J. Bao, J. C. Li, Z. H. Shao, and M. Hu, “Ultrahigh sensitive temperature sensor based on Fabry–Pérot interference assisted by a graphene diaphragm,” IEEE Sens. J. 15(1), 505–509 (2015).
[Crossref]

Fink, T.

Firsov, A. A.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Frazão, O.

P. A. R. Tafulo, P. A. S. Jorge, J. L. Santos, F. M. Araújo, and O. Frazão, “Intrinsic Fabry-Perot cavity sensor based on etched multimode graded index fiber for strain and temperature measurement,” IEEE Sens. J. 12(1), 8–12 (2012).
[Crossref]

Fritsch, K.

G. Beheim, K. Fritsch, and R. N. Poorman, “Fiber-linked interferometric pressure sensor,” Rev. Sci. Instrum. 58(9), 1655–1659 (1987).
[Crossref]

Gagliardi, G.

Gao, X. Y.

C. Li, X. Y. Gao, T. T. Guo, J. Xiao, S. C. Fan, and W. Jin, “Analyzing the applicability of miniature ultra-high sensitivity Fabry-Perot acoustic sensor using a nanothick graphene diaphragm,” Meas. Sci. Technol. 26(8), 085101 (2015).
[Crossref]

Geim, A. K.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Grigorieva, I. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Gu, X.

Guo, F.

Guo, T. T.

C. Li, X. Y. Gao, T. T. Guo, J. Xiao, S. C. Fan, and W. Jin, “Analyzing the applicability of miniature ultra-high sensitivity Fabry-Perot acoustic sensor using a nanothick graphene diaphragm,” Meas. Sci. Technol. 26(8), 085101 (2015).
[Crossref]

C. Li, J. Xiao, T. T. Guo, S. C. Fan, and W. Jin, “Interference characteristics in a Fabry-Perot cavity with graphene membrane for optical fiber pressure sensors,” Microsyst. Technol. 21(11), 2297–2306 (2015).
[Crossref]

Gutstein, D.

Han, M.

Hartwell, P. G.

G. C. Hill, R. Melamud, F. E. Declercq, A. A. Davenport, I. H. Chan, P. G. Hartwell, and B. L. Pruitt, “SU-8 MEMS Fabry-Perot pressure sensor,” Sens. Actuators A Phys. 138(1), 52–62 (2007).
[Crossref]

Hill, G. C.

G. C. Hill, R. Melamud, F. E. Declercq, A. A. Davenport, I. H. Chan, P. G. Hartwell, and B. L. Pruitt, “SU-8 MEMS Fabry-Perot pressure sensor,” Sens. Actuators A Phys. 138(1), 52–62 (2007).
[Crossref]

Ho, H. L.

J. Ma, H. F. Xuan, H. L. Ho, W. Jin, Y. H. Yang, and S. C. Fan, “Fiber-optic Fabry-Perot acoustic sensor with multilayer graphene diaphragm,” IEEE Photonics Technol. Lett. 25(10), 932–935 (2013).
[Crossref]

Hone, J.

C. Lee, X. Wei, J. W. Kysar, and J. Hone, “Measurement of the elastic properties and intrinsic strength of monolayer graphene,” Science 321(5887), 385–388 (2008).
[Crossref] [PubMed]

Hu, M.

L. Li, Z. Y. Feng, X. G. Qiao, H. Z. Yang, R. H. Wang, D. Su, Y. P. Wang, W. J. Bao, J. C. Li, Z. H. Shao, and M. Hu, “Ultrahigh sensitive temperature sensor based on Fabry–Pérot interference assisted by a graphene diaphragm,” IEEE Sens. J. 15(1), 505–509 (2015).
[Crossref]

Hu, T.

Huang, J.

Huang, Z.

Jiang, D.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Jin, W.

C. Li, X. Y. Gao, T. T. Guo, J. Xiao, S. C. Fan, and W. Jin, “Analyzing the applicability of miniature ultra-high sensitivity Fabry-Perot acoustic sensor using a nanothick graphene diaphragm,” Meas. Sci. Technol. 26(8), 085101 (2015).
[Crossref]

C. Li, J. Xiao, T. T. Guo, S. C. Fan, and W. Jin, “Interference characteristics in a Fabry-Perot cavity with graphene membrane for optical fiber pressure sensors,” Microsyst. Technol. 21(11), 2297–2306 (2015).
[Crossref]

J. Ma, H. F. Xuan, H. L. Ho, W. Jin, Y. H. Yang, and S. C. Fan, “Fiber-optic Fabry-Perot acoustic sensor with multilayer graphene diaphragm,” IEEE Photonics Technol. Lett. 25(10), 932–935 (2013).
[Crossref]

Jorge, P. A. S.

P. A. R. Tafulo, P. A. S. Jorge, J. L. Santos, F. M. Araújo, and O. Frazão, “Intrinsic Fabry-Perot cavity sensor based on etched multimode graded index fiber for strain and temperature measurement,” IEEE Sens. J. 12(1), 8–12 (2012).
[Crossref]

Katsnelson, M. I.

A. Fasolino, J. H. Los, and M. I. Katsnelson, “Intrinsic ripples in graphene,” Nat. Mater. 6(11), 858–861 (2007).
[Crossref] [PubMed]

Koenig, S. P.

N. G. Boddeti, S. P. Koenig, R. Long, J. L. Xiao, J. S. Bunch, and M. L. Dunn, “Mechanics of adhered, pressurized graphene blisters,” J. Appl. Mech. 80(4), 040909 (2013).
[Crossref]

S. P. Koenig, N. G. Boddeti, M. L. Dunn, and J. S. Bunch, “Ultrastrong adhesion of graphene membranes,” Nat. Nanotechnol. 6(9), 543–546 (2011).
[Crossref] [PubMed]

Koester, L.

Kysar, J. W.

C. Lee, X. Wei, J. W. Kysar, and J. Hone, “Measurement of the elastic properties and intrinsic strength of monolayer graphene,” Science 321(5887), 385–388 (2008).
[Crossref] [PubMed]

Lee, C.

C. Lee, X. Wei, J. W. Kysar, and J. Hone, “Measurement of the elastic properties and intrinsic strength of monolayer graphene,” Science 321(5887), 385–388 (2008).
[Crossref] [PubMed]

Li, C.

C. Li, X. Y. Gao, T. T. Guo, J. Xiao, S. C. Fan, and W. Jin, “Analyzing the applicability of miniature ultra-high sensitivity Fabry-Perot acoustic sensor using a nanothick graphene diaphragm,” Meas. Sci. Technol. 26(8), 085101 (2015).
[Crossref]

C. Li, J. Xiao, T. T. Guo, S. C. Fan, and W. Jin, “Interference characteristics in a Fabry-Perot cavity with graphene membrane for optical fiber pressure sensors,” Microsyst. Technol. 21(11), 2297–2306 (2015).
[Crossref]

F. Xu, D. Ren, X. Shi, C. Li, W. Lu, L. Lu, L. Lu, and B. Yu, “High-sensitivity Fabry-Perot interferometric pressure sensor based on a nanothick silver diaphragm,” Opt. Lett. 37(2), 133–135 (2012).
[Crossref] [PubMed]

Li, J. C.

L. Li, Z. Y. Feng, X. G. Qiao, H. Z. Yang, R. H. Wang, D. Su, Y. P. Wang, W. J. Bao, J. C. Li, Z. H. Shao, and M. Hu, “Ultrahigh sensitive temperature sensor based on Fabry–Pérot interference assisted by a graphene diaphragm,” IEEE Sens. J. 15(1), 505–509 (2015).
[Crossref]

Li, L.

L. Li, Z. Y. Feng, X. G. Qiao, H. Z. Yang, R. H. Wang, D. Su, Y. P. Wang, W. J. Bao, J. C. Li, Z. H. Shao, and M. Hu, “Ultrahigh sensitive temperature sensor based on Fabry–Pérot interference assisted by a graphene diaphragm,” IEEE Sens. J. 15(1), 505–509 (2015).
[Crossref]

Long, R.

N. G. Boddeti, S. P. Koenig, R. Long, J. L. Xiao, J. S. Bunch, and M. L. Dunn, “Mechanics of adhered, pressurized graphene blisters,” J. Appl. Mech. 80(4), 040909 (2013).
[Crossref]

Loock, H.-P.

Los, J. H.

A. Fasolino, J. H. Los, and M. I. Katsnelson, “Intrinsic ripples in graphene,” Nat. Mater. 6(11), 858–861 (2007).
[Crossref] [PubMed]

Lu, L.

Lu, W.

Ma, J.

J. Ma, H. F. Xuan, H. L. Ho, W. Jin, Y. H. Yang, and S. C. Fan, “Fiber-optic Fabry-Perot acoustic sensor with multilayer graphene diaphragm,” IEEE Photonics Technol. Lett. 25(10), 932–935 (2013).
[Crossref]

McEuen, P. L.

J. S. Bunch, S. S. Verbridge, J. S. Alden, A. M. van der Zande, J. M. Parpia, H. G. Craighead, and P. L. McEuen, “Impermeable atomic membranes from graphene sheets,” Nano Lett. 8(8), 2458–2462 (2008).
[Crossref] [PubMed]

Melamud, R.

G. C. Hill, R. Melamud, F. E. Declercq, A. A. Davenport, I. H. Chan, P. G. Hartwell, and B. L. Pruitt, “SU-8 MEMS Fabry-Perot pressure sensor,” Sens. Actuators A Phys. 138(1), 52–62 (2007).
[Crossref]

Mester, J. R.

Morozov, S. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Nicholaou, C.

Niezrecki, C.

Novoselov, K. S.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Parpia, J. M.

J. S. Bunch, S. S. Verbridge, J. S. Alden, A. M. van der Zande, J. M. Parpia, H. G. Craighead, and P. L. McEuen, “Impermeable atomic membranes from graphene sheets,” Nano Lett. 8(8), 2458–2462 (2008).
[Crossref] [PubMed]

Pershoguba, S. S.

L. A. Falkovsky and S. S. Pershoguba, “Optical far-infrared properties of a graphene monolayer and multilayer,” Phys. Rev. B Condens. Matter 76(15), 153410 (2007).
[Crossref]

Poorman, R. N.

G. Beheim, K. Fritsch, and R. N. Poorman, “Fiber-linked interferometric pressure sensor,” Rev. Sci. Instrum. 58(9), 1655–1659 (1987).
[Crossref]

Pruitt, B. L.

G. C. Hill, R. Melamud, F. E. Declercq, A. A. Davenport, I. H. Chan, P. G. Hartwell, and B. L. Pruitt, “SU-8 MEMS Fabry-Perot pressure sensor,” Sens. Actuators A Phys. 138(1), 52–62 (2007).
[Crossref]

Qiao, X. G.

L. Li, Z. Y. Feng, X. G. Qiao, H. Z. Yang, R. H. Wang, D. Su, Y. P. Wang, W. J. Bao, J. C. Li, Z. H. Shao, and M. Hu, “Ultrahigh sensitive temperature sensor based on Fabry–Pérot interference assisted by a graphene diaphragm,” IEEE Sens. J. 15(1), 505–509 (2015).
[Crossref]

Rajapakse, R. K. N. D.

M. A. N. Dewapriya, A. Srikantha Phani, and R. K. N. D. Rajapakse, “Influence of temperature and free edges on the mechanical properties of graphene,” Model. Simul. Mater. Sci. Eng. 21(6), 065017 (2013).
[Crossref]

Ren, D.

Santos, J. L.

P. A. R. Tafulo, P. A. S. Jorge, J. L. Santos, F. M. Araújo, and O. Frazão, “Intrinsic Fabry-Perot cavity sensor based on etched multimode graded index fiber for strain and temperature measurement,” IEEE Sens. J. 12(1), 8–12 (2012).
[Crossref]

Shao, Z. H.

L. Li, Z. Y. Feng, X. G. Qiao, H. Z. Yang, R. H. Wang, D. Su, Y. P. Wang, W. J. Bao, J. C. Li, Z. H. Shao, and M. Hu, “Ultrahigh sensitive temperature sensor based on Fabry–Pérot interference assisted by a graphene diaphragm,” IEEE Sens. J. 15(1), 505–509 (2015).
[Crossref]

Shen, F.

Shi, X.

Son, Y.-W.

D. Yoon, Y.-W. Son, and H. Cheong, “Negative thermal expansion coefficient of graphene measured by Raman spectroscopy,” Nano Lett. 11(8), 3227–3231 (2011).
[Crossref] [PubMed]

Srikantha Phani, A.

M. A. N. Dewapriya, A. Srikantha Phani, and R. K. N. D. Rajapakse, “Influence of temperature and free edges on the mechanical properties of graphene,” Model. Simul. Mater. Sci. Eng. 21(6), 065017 (2013).
[Crossref]

Su, D.

L. Li, Z. Y. Feng, X. G. Qiao, H. Z. Yang, R. H. Wang, D. Su, Y. P. Wang, W. J. Bao, J. C. Li, Z. H. Shao, and M. Hu, “Ultrahigh sensitive temperature sensor based on Fabry–Pérot interference assisted by a graphene diaphragm,” IEEE Sens. J. 15(1), 505–509 (2015).
[Crossref]

Tafulo, P. A. R.

P. A. R. Tafulo, P. A. S. Jorge, J. L. Santos, F. M. Araújo, and O. Frazão, “Intrinsic Fabry-Perot cavity sensor based on etched multimode graded index fiber for strain and temperature measurement,” IEEE Sens. J. 12(1), 8–12 (2012).
[Crossref]

Tian, Y.

Turner, J.

Vakil, A.

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).
[Crossref] [PubMed]

van der Zande, A. M.

J. S. Bunch, S. S. Verbridge, J. S. Alden, A. M. van der Zande, J. M. Parpia, H. G. Craighead, and P. L. McEuen, “Impermeable atomic membranes from graphene sheets,” Nano Lett. 8(8), 2458–2462 (2008).
[Crossref] [PubMed]

Verbridge, S. S.

J. S. Bunch, S. S. Verbridge, J. S. Alden, A. M. van der Zande, J. M. Parpia, H. G. Craighead, and P. L. McEuen, “Impermeable atomic membranes from graphene sheets,” Nano Lett. 8(8), 2458–2462 (2008).
[Crossref] [PubMed]

Wang, A.

Wang, C.

Wang, D. N.

Wang, M.

G. Zhang, M. Yang, and M. Wang, “Large temperature sensitivity of fiber-optic extrinsic Fabry-Perot interferometer based on polymer filled glass capillary,” Opt. Fiber Technol. 19(6), 618–622 (2013).
[Crossref]

Wang, R. H.

L. Li, Z. Y. Feng, X. G. Qiao, H. Z. Yang, R. H. Wang, D. Su, Y. P. Wang, W. J. Bao, J. C. Li, Z. H. Shao, and M. Hu, “Ultrahigh sensitive temperature sensor based on Fabry–Pérot interference assisted by a graphene diaphragm,” IEEE Sens. J. 15(1), 505–509 (2015).
[Crossref]

Wang, W.

Wang, X.

Wang, Y.

Wang, Y. P.

L. Li, Z. Y. Feng, X. G. Qiao, H. Z. Yang, R. H. Wang, D. Su, Y. P. Wang, W. J. Bao, J. C. Li, Z. H. Shao, and M. Hu, “Ultrahigh sensitive temperature sensor based on Fabry–Pérot interference assisted by a graphene diaphragm,” IEEE Sens. J. 15(1), 505–509 (2015).
[Crossref]

Wang, Z.

Wei, X.

C. Lee, X. Wei, J. W. Kysar, and J. Hone, “Measurement of the elastic properties and intrinsic strength of monolayer graphene,” Science 321(5887), 385–388 (2008).
[Crossref] [PubMed]

Wu, N.

Xiao, J.

C. Li, X. Y. Gao, T. T. Guo, J. Xiao, S. C. Fan, and W. Jin, “Analyzing the applicability of miniature ultra-high sensitivity Fabry-Perot acoustic sensor using a nanothick graphene diaphragm,” Meas. Sci. Technol. 26(8), 085101 (2015).
[Crossref]

C. Li, J. Xiao, T. T. Guo, S. C. Fan, and W. Jin, “Interference characteristics in a Fabry-Perot cavity with graphene membrane for optical fiber pressure sensors,” Microsyst. Technol. 21(11), 2297–2306 (2015).
[Crossref]

Xiao, J. L.

N. G. Boddeti, S. P. Koenig, R. Long, J. L. Xiao, J. S. Bunch, and M. L. Dunn, “Mechanics of adhered, pressurized graphene blisters,” J. Appl. Mech. 80(4), 040909 (2013).
[Crossref]

Xu, F.

Xuan, H. F.

J. Ma, H. F. Xuan, H. L. Ho, W. Jin, Y. H. Yang, and S. C. Fan, “Fiber-optic Fabry-Perot acoustic sensor with multilayer graphene diaphragm,” IEEE Photonics Technol. Lett. 25(10), 932–935 (2013).
[Crossref]

Yang, H. Z.

L. Li, Z. Y. Feng, X. G. Qiao, H. Z. Yang, R. H. Wang, D. Su, Y. P. Wang, W. J. Bao, J. C. Li, Z. H. Shao, and M. Hu, “Ultrahigh sensitive temperature sensor based on Fabry–Pérot interference assisted by a graphene diaphragm,” IEEE Sens. J. 15(1), 505–509 (2015).
[Crossref]

Yang, M.

G. Zhang, M. Yang, and M. Wang, “Large temperature sensitivity of fiber-optic extrinsic Fabry-Perot interferometer based on polymer filled glass capillary,” Opt. Fiber Technol. 19(6), 618–622 (2013).
[Crossref]

Yang, Y. H.

J. Ma, H. F. Xuan, H. L. Ho, W. Jin, Y. H. Yang, and S. C. Fan, “Fiber-optic Fabry-Perot acoustic sensor with multilayer graphene diaphragm,” IEEE Photonics Technol. Lett. 25(10), 932–935 (2013).
[Crossref]

Yoon, D.

D. Yoon, Y.-W. Son, and H. Cheong, “Negative thermal expansion coefficient of graphene measured by Raman spectroscopy,” Nano Lett. 11(8), 3227–3231 (2011).
[Crossref] [PubMed]

Yu, B.

Zhang, G.

G. Zhang, M. Yang, and M. Wang, “Large temperature sensitivity of fiber-optic extrinsic Fabry-Perot interferometer based on polymer filled glass capillary,” Opt. Fiber Technol. 19(6), 618–622 (2013).
[Crossref]

Zhang, Y.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Appl. Opt. (1)

IEEE Photonics Technol. Lett. (1)

J. Ma, H. F. Xuan, H. L. Ho, W. Jin, Y. H. Yang, and S. C. Fan, “Fiber-optic Fabry-Perot acoustic sensor with multilayer graphene diaphragm,” IEEE Photonics Technol. Lett. 25(10), 932–935 (2013).
[Crossref]

IEEE Sens. J. (2)

P. A. R. Tafulo, P. A. S. Jorge, J. L. Santos, F. M. Araújo, and O. Frazão, “Intrinsic Fabry-Perot cavity sensor based on etched multimode graded index fiber for strain and temperature measurement,” IEEE Sens. J. 12(1), 8–12 (2012).
[Crossref]

L. Li, Z. Y. Feng, X. G. Qiao, H. Z. Yang, R. H. Wang, D. Su, Y. P. Wang, W. J. Bao, J. C. Li, Z. H. Shao, and M. Hu, “Ultrahigh sensitive temperature sensor based on Fabry–Pérot interference assisted by a graphene diaphragm,” IEEE Sens. J. 15(1), 505–509 (2015).
[Crossref]

J. Appl. Mech. (1)

N. G. Boddeti, S. P. Koenig, R. Long, J. L. Xiao, J. S. Bunch, and M. L. Dunn, “Mechanics of adhered, pressurized graphene blisters,” J. Appl. Mech. 80(4), 040909 (2013).
[Crossref]

J. Phys. Conf. Ser. (1)

L. A. Falkovsky, “Optical properties of graphene,” J. Phys. Conf. Ser. 129, 012004 (2008).
[Crossref]

Meas. Sci. Technol. (1)

C. Li, X. Y. Gao, T. T. Guo, J. Xiao, S. C. Fan, and W. Jin, “Analyzing the applicability of miniature ultra-high sensitivity Fabry-Perot acoustic sensor using a nanothick graphene diaphragm,” Meas. Sci. Technol. 26(8), 085101 (2015).
[Crossref]

Microsyst. Technol. (1)

C. Li, J. Xiao, T. T. Guo, S. C. Fan, and W. Jin, “Interference characteristics in a Fabry-Perot cavity with graphene membrane for optical fiber pressure sensors,” Microsyst. Technol. 21(11), 2297–2306 (2015).
[Crossref]

Model. Simul. Mater. Sci. Eng. (1)

M. A. N. Dewapriya, A. Srikantha Phani, and R. K. N. D. Rajapakse, “Influence of temperature and free edges on the mechanical properties of graphene,” Model. Simul. Mater. Sci. Eng. 21(6), 065017 (2013).
[Crossref]

Nano Lett. (2)

D. Yoon, Y.-W. Son, and H. Cheong, “Negative thermal expansion coefficient of graphene measured by Raman spectroscopy,” Nano Lett. 11(8), 3227–3231 (2011).
[Crossref] [PubMed]

J. S. Bunch, S. S. Verbridge, J. S. Alden, A. M. van der Zande, J. M. Parpia, H. G. Craighead, and P. L. McEuen, “Impermeable atomic membranes from graphene sheets,” Nano Lett. 8(8), 2458–2462 (2008).
[Crossref] [PubMed]

Nat. Mater. (1)

A. Fasolino, J. H. Los, and M. I. Katsnelson, “Intrinsic ripples in graphene,” Nat. Mater. 6(11), 858–861 (2007).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

S. P. Koenig, N. G. Boddeti, M. L. Dunn, and J. S. Bunch, “Ultrastrong adhesion of graphene membranes,” Nat. Nanotechnol. 6(9), 543–546 (2011).
[Crossref] [PubMed]

Opt. Express (3)

Opt. Fiber Technol. (1)

G. Zhang, M. Yang, and M. Wang, “Large temperature sensitivity of fiber-optic extrinsic Fabry-Perot interferometer based on polymer filled glass capillary,” Opt. Fiber Technol. 19(6), 618–622 (2013).
[Crossref]

Opt. Lett. (2)

Phys. Rev. B Condens. Matter (1)

L. A. Falkovsky and S. S. Pershoguba, “Optical far-infrared properties of a graphene monolayer and multilayer,” Phys. Rev. B Condens. Matter 76(15), 153410 (2007).
[Crossref]

Rev. Sci. Instrum. (1)

G. Beheim, K. Fritsch, and R. N. Poorman, “Fiber-linked interferometric pressure sensor,” Rev. Sci. Instrum. 58(9), 1655–1659 (1987).
[Crossref]

Science (3)

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

C. Lee, X. Wei, J. W. Kysar, and J. Hone, “Measurement of the elastic properties and intrinsic strength of monolayer graphene,” Science 321(5887), 385–388 (2008).
[Crossref] [PubMed]

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).
[Crossref] [PubMed]

Sens. Actuators A Phys. (1)

G. C. Hill, R. Melamud, F. E. Declercq, A. A. Davenport, I. H. Chan, P. G. Hartwell, and B. L. Pruitt, “SU-8 MEMS Fabry-Perot pressure sensor,” Sens. Actuators A Phys. 138(1), 52–62 (2007).
[Crossref]

Other (1)

J. W. Beams, The Structure and Properties of Thin Film (Wiley, 1959).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) Schematic diagram and physical picture of the FP sensor and (b) microscopic image of the graphene diaphragm adhered on ferrule.
Fig. 2
Fig. 2 The measured and calculated film reflectivities.
Fig. 3
Fig. 3 Schematic diagram of temperature experimental rig.
Fig. 4
Fig. 4 Cavity length verse temperature at (a) the first cycle, (b) the second cycle and (c) the third cycle of temperature rise/drop measurements.
Fig. 5
Fig. 5 Pressure and deflection verse temperature.
Fig. 6
Fig. 6 The measured reflection spectrums of the FP sensor.
Fig. 7
Fig. 7 The intensity signal in the range of 30-40 °C.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

δ=4πL/λ
ΔL=( β ferrule L ferrule β SMF L SMF )ΔT+ω
p intT = p int V 0 T V T T 0 = p int V 0 T ( V 0 +Δ V T +Δ V ω ) T 0
{ Δ V ω = πC 3 [ 4 a 3 ( 3aω ) ω 2 ] a= r 2 + ω 2 2ω
ΔP= 4 σ 0 t r 2 ω P + 8Et ω P 3 3(1υ) r 4
d λ m dT = 2 m ( β ferrule L ferrule β SMF L SMF + dω dT ) 2 m ( β ferrule L ferrule β SMF L SMF + nR( 1-υ ) r 4 8Et V T ω 2 )

Metrics