Abstract

A fiber amplifier supporting 2 LP modes that employs a ring-core erbium-doped fiber (RC-EDF) is investigated to reduce differential modal gain (DMG). The inner and outer radii of the ring-core of the RC-EDF are clarified for 2-LP mode operation of the amplifier, and are optimized to reduce the DMG. It is shown that using the overlap integral between the erbium-doped core area and the signal power mode distribution is a good way to optimize the inner and outer radii of the ring-core of the RC-EDF and thus minimize the DMG. A fabricated RC-EDF and a constructed 2-LP mode EDFA are described and a small DMG of around 1 dB is realized for LP01, LP11 and LP21 pumping.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Doping concentration distribution in 2-signal LP-mode ring-core erbium-doped fiber

Makoto Yamada, Daiki Nobuhira, Shota Miyagawa, Osanori Koyama, and Hirotaka Ono
Appl. Opt. 56(36) 10040-10045 (2017)

Accurate modal gain control in a multimode erbium doped fiber amplifier incorporating ring doping and a simple LP01 pump configuration

Qiongyue Kang, Ee-Leong Lim, Yongmin Jung, Jayanta K. Sahu, Francesco Poletti, Catherine Baskiotis, Shaif-ul Alam, and David J. Richardson
Opt. Express 20(19) 20835-20843 (2012)

Modal gain equalization of 18 modes using a single-trench ring-core EDFA

Ankita Gaur and Vipul Rastogi
J. Opt. Soc. Am. B 35(9) 2211-2216 (2018)

References

  • View by:
  • |
  • |
  • |

  1. T. Morioka, Y. Awaji, R. Ryf, P. Winzer, D. Richardson, and F. Poletti, “Enhancing optical communications with brand new fibers,” IEEE Commun. Mag. 50(2), s31–s42 (2012).
    [Crossref]
  2. T. Mizuno, T. Kobayashi, H. Takara, A. Sano, H. Kawakami, T. Nakagawa, Y. Miyamoto, Y. Abe, T. Goh, M. Oguma, T. Sakamoto, Y. Sasaki, I. Ishida, K. Takenaga, S. Matsuo, K. Saitoh, and T. Morioka, “12-core × 3-mode dense space division multiplexed transmission over 40 km employing multi-carrier signals with parallel MIMO equalization,” in Optical Fiber Communication Conference, OSA Technical Digest Series (OSA, 2014), paper Th5B.2.
    [Crossref]
  3. E. Ip, N. Bai, Y.-K. Huang, E. Mateo, F. Yaman, M.-J. Li, S. Bickham, S. Ten, J. Liñares, C. Montero, V. Moreno, X. Prieto, V. Tse, K. M. Chung, A. Lau, H.-Y. Tam, C. Lu, Y. Luo, G.-D. Peng, and G. Li, “88 × 3 × 112 Gb/s WDM transmission over 50 km of three-mode fiber with inline few-mode fiber amplifier,” in The 37th European Conference and Exhibition on Optical Communication (ECOC, 2011), paper Th.13.C.2.
  4. V. A. J. M. Sleiffer, Y. Jung, V. Veljanovski, R. G. H. Van Uden, M. Kuschnerov, Q. Kang, L. Grüner-Nielsen, Y. Sun, D. J. Richardson, S. Alam, F. Poletti, J. K. Sahu, A. Dhar, H. Chen, B. Inan, A. M. J. Koonen, B. Corbett, R. Winfield, A. D. Ellis, and H. De Waardt, “73.7 Tb/s (96 × 3 × 256-Gb/s) mode-division-multiplexed DP-16QAM transmission with inline MM-EDFA,” in The 38th European Conference and Exhibition on Optical Communication (ECOC, 2012), paper Th.3.C.4.
  5. V. A. J. M. Sleiffer, P. Leoni, Y. Jung, J. Surof, M. Kuschnerov, V. Veljanovski, S. U. Alam, D. J. Richardson, L. Grüner-Nielsen, Y. Sun, B. Corbett, R. Winfield, S. Calabrò, and H. de Waardt, “20 × 960-Gb/s Space-division-multiplexed 32QAM transmission over 60 km few-mode fiber,” Opt. Express 22(1), 749–755 (2014).
    [Crossref] [PubMed]
  6. Y. Jung, S. Alam, Z. Li, A. Dhar, D. Giles, I. P. Giles, J. K. Sahu, F. Poletti, L. Grüner-Nielsen, and D. J. Richardson, “First demonstration and detailed characterization of a multimode amplifier for space division multiplexed transmission systems,” Opt. Express 19(26), B952–B957 (2011).
    [Crossref] [PubMed]
  7. Q. Kang, E. Lim, Y. Jung, F. Poletti, S. Alam, and D. J. Richardson, “Design of four-mode erbium doped fiber amplifier with low differential modal gain for modal division multiplexed transmission,” in Optical Fiber Communication Conference and Exposition / National Fiber Optic Engineers Conference, OSA Technical Digest Series (OSA, 2013), paper OTu3G.3.
    [Crossref]
  8. E. Ip, M.-J. Li, K. Bennett, A. Korolev, K. Koreshkov, W. Wood, C. Montero, and J. Liñares, “Experimental characterization of a ring-profile few-mode erbium-doped fiber amplifier enabling gain equalization,” in Optical Fiber Communication Conference, OSA Technical Digest Series (OSA, 2013), paper JTh2A.18.
    [Crossref]
  9. N. Bai, E. Ip, T. Wang, and G. Li, “Multimode fiber amplifier with tunable modal gain using a reconfigurable multimode pump,” Opt. Express 19(17), 16601–16611 (2011).
    [Crossref] [PubMed]
  10. D. Gloge and E. A. J. Marcatili, “Impulse response of fibers with ring-shaped parabolic index distribution,” Bell Syst. Tech. J. 52(7), 1161–1168 (1973).
    [Crossref]
  11. C. Brunet, B. Ung, P.-A. Belanger, Y. Messaddeq, S. LaRochelle, and L. A. Rusch, “Vector mode analysis of ring-core fibers: design tools for spatial division multiplexing,” J. Lightwave Technol. 32(23), 4046–4057 (2014).
    [Crossref]
  12. Q. Kang, E.-L. Lim, Y. Jung, J. K. Sahu, F. Poletti, C. Baskiotis, S. U. Alam, and D. J. Richardson, “Accurate modal gain control in a multimode erbium doped fiber amplifier incorporating ring doping and a simple LP₀₁ pump configuration,” Opt. Express 20(19), 20835–20843 (2012).
    [Crossref] [PubMed]
  13. Q. Kang, E. Lim, Y. Jun, X. Jin, F. P. Payne, S. Alam, and D. J. Richardson, “Gain equalization of a six-mode-group ring core multimode EDFA,” in The 40th European Conference and Exhibition on Optical Communication (ECOC, 2014), paper P.1.14.
    [Crossref]
  14. H. Ono, T. Hosokawa, K. Ichii, S. Matsuo, and M. Yamada, “Improvement of differential modal gain in few-mode fibre amplifier by employing ring-core erbium-doped fibre,” Electron. Lett. 51(2), 172–173 (2015).
    [Crossref]
  15. Y. Sasaki, Y. Amma, K. Takenaga, S. Matsuo, K. Saitoh, and M. Koshiba, “Trench-assisted low-crosstalk few-mode multicore fiber,” in The 39th European Conference and Exhibition on Optical Communication (ECOC, 2013), paper Mo.3.A.5.
    [Crossref]
  16. K. Shibahara, T. Mizuno, H. Takara, A. Sano, H. Kawakami, D. Lee, Y. Miyamoto, H. Ono, M. Oguma, Y. Abe, T. Kobayashi, T. Matsui, R. Fukumoto, Y. Amma, T. Hosokawa, S. Matsuo, K. Saito, H. Nasu, and T. Morioka, “Dense SDM (12-core × 3-mode) transmission over 527 km with 33.2-ns mode-dispersion employing low-complexity parallel MIMO frequency-domain equalization,” in Optical Fiber Communication Conference, OSA Technical Digest Series (OSA, 2015), paper PD.Th5C.3.
    [Crossref]

2015 (1)

H. Ono, T. Hosokawa, K. Ichii, S. Matsuo, and M. Yamada, “Improvement of differential modal gain in few-mode fibre amplifier by employing ring-core erbium-doped fibre,” Electron. Lett. 51(2), 172–173 (2015).
[Crossref]

2014 (2)

2012 (2)

2011 (2)

1973 (1)

D. Gloge and E. A. J. Marcatili, “Impulse response of fibers with ring-shaped parabolic index distribution,” Bell Syst. Tech. J. 52(7), 1161–1168 (1973).
[Crossref]

Alam, S.

Alam, S. U.

Awaji, Y.

T. Morioka, Y. Awaji, R. Ryf, P. Winzer, D. Richardson, and F. Poletti, “Enhancing optical communications with brand new fibers,” IEEE Commun. Mag. 50(2), s31–s42 (2012).
[Crossref]

Bai, N.

Baskiotis, C.

Belanger, P.-A.

Brunet, C.

Calabrò, S.

Corbett, B.

de Waardt, H.

Dhar, A.

Giles, D.

Giles, I. P.

Gloge, D.

D. Gloge and E. A. J. Marcatili, “Impulse response of fibers with ring-shaped parabolic index distribution,” Bell Syst. Tech. J. 52(7), 1161–1168 (1973).
[Crossref]

Grüner-Nielsen, L.

Hosokawa, T.

H. Ono, T. Hosokawa, K. Ichii, S. Matsuo, and M. Yamada, “Improvement of differential modal gain in few-mode fibre amplifier by employing ring-core erbium-doped fibre,” Electron. Lett. 51(2), 172–173 (2015).
[Crossref]

Ichii, K.

H. Ono, T. Hosokawa, K. Ichii, S. Matsuo, and M. Yamada, “Improvement of differential modal gain in few-mode fibre amplifier by employing ring-core erbium-doped fibre,” Electron. Lett. 51(2), 172–173 (2015).
[Crossref]

Ip, E.

Jung, Y.

Kang, Q.

Kuschnerov, M.

LaRochelle, S.

Leoni, P.

Li, G.

Li, Z.

Lim, E.-L.

Marcatili, E. A. J.

D. Gloge and E. A. J. Marcatili, “Impulse response of fibers with ring-shaped parabolic index distribution,” Bell Syst. Tech. J. 52(7), 1161–1168 (1973).
[Crossref]

Matsuo, S.

H. Ono, T. Hosokawa, K. Ichii, S. Matsuo, and M. Yamada, “Improvement of differential modal gain in few-mode fibre amplifier by employing ring-core erbium-doped fibre,” Electron. Lett. 51(2), 172–173 (2015).
[Crossref]

Messaddeq, Y.

Morioka, T.

T. Morioka, Y. Awaji, R. Ryf, P. Winzer, D. Richardson, and F. Poletti, “Enhancing optical communications with brand new fibers,” IEEE Commun. Mag. 50(2), s31–s42 (2012).
[Crossref]

Ono, H.

H. Ono, T. Hosokawa, K. Ichii, S. Matsuo, and M. Yamada, “Improvement of differential modal gain in few-mode fibre amplifier by employing ring-core erbium-doped fibre,” Electron. Lett. 51(2), 172–173 (2015).
[Crossref]

Poletti, F.

Richardson, D.

T. Morioka, Y. Awaji, R. Ryf, P. Winzer, D. Richardson, and F. Poletti, “Enhancing optical communications with brand new fibers,” IEEE Commun. Mag. 50(2), s31–s42 (2012).
[Crossref]

Richardson, D. J.

Rusch, L. A.

Ryf, R.

T. Morioka, Y. Awaji, R. Ryf, P. Winzer, D. Richardson, and F. Poletti, “Enhancing optical communications with brand new fibers,” IEEE Commun. Mag. 50(2), s31–s42 (2012).
[Crossref]

Sahu, J. K.

Sleiffer, V. A. J. M.

Sun, Y.

Surof, J.

Ung, B.

Veljanovski, V.

Wang, T.

Winfield, R.

Winzer, P.

T. Morioka, Y. Awaji, R. Ryf, P. Winzer, D. Richardson, and F. Poletti, “Enhancing optical communications with brand new fibers,” IEEE Commun. Mag. 50(2), s31–s42 (2012).
[Crossref]

Yamada, M.

H. Ono, T. Hosokawa, K. Ichii, S. Matsuo, and M. Yamada, “Improvement of differential modal gain in few-mode fibre amplifier by employing ring-core erbium-doped fibre,” Electron. Lett. 51(2), 172–173 (2015).
[Crossref]

Bell Syst. Tech. J. (1)

D. Gloge and E. A. J. Marcatili, “Impulse response of fibers with ring-shaped parabolic index distribution,” Bell Syst. Tech. J. 52(7), 1161–1168 (1973).
[Crossref]

Electron. Lett. (1)

H. Ono, T. Hosokawa, K. Ichii, S. Matsuo, and M. Yamada, “Improvement of differential modal gain in few-mode fibre amplifier by employing ring-core erbium-doped fibre,” Electron. Lett. 51(2), 172–173 (2015).
[Crossref]

IEEE Commun. Mag. (1)

T. Morioka, Y. Awaji, R. Ryf, P. Winzer, D. Richardson, and F. Poletti, “Enhancing optical communications with brand new fibers,” IEEE Commun. Mag. 50(2), s31–s42 (2012).
[Crossref]

J. Lightwave Technol. (1)

Opt. Express (4)

Other (8)

Q. Kang, E. Lim, Y. Jung, F. Poletti, S. Alam, and D. J. Richardson, “Design of four-mode erbium doped fiber amplifier with low differential modal gain for modal division multiplexed transmission,” in Optical Fiber Communication Conference and Exposition / National Fiber Optic Engineers Conference, OSA Technical Digest Series (OSA, 2013), paper OTu3G.3.
[Crossref]

E. Ip, M.-J. Li, K. Bennett, A. Korolev, K. Koreshkov, W. Wood, C. Montero, and J. Liñares, “Experimental characterization of a ring-profile few-mode erbium-doped fiber amplifier enabling gain equalization,” in Optical Fiber Communication Conference, OSA Technical Digest Series (OSA, 2013), paper JTh2A.18.
[Crossref]

T. Mizuno, T. Kobayashi, H. Takara, A. Sano, H. Kawakami, T. Nakagawa, Y. Miyamoto, Y. Abe, T. Goh, M. Oguma, T. Sakamoto, Y. Sasaki, I. Ishida, K. Takenaga, S. Matsuo, K. Saitoh, and T. Morioka, “12-core × 3-mode dense space division multiplexed transmission over 40 km employing multi-carrier signals with parallel MIMO equalization,” in Optical Fiber Communication Conference, OSA Technical Digest Series (OSA, 2014), paper Th5B.2.
[Crossref]

E. Ip, N. Bai, Y.-K. Huang, E. Mateo, F. Yaman, M.-J. Li, S. Bickham, S. Ten, J. Liñares, C. Montero, V. Moreno, X. Prieto, V. Tse, K. M. Chung, A. Lau, H.-Y. Tam, C. Lu, Y. Luo, G.-D. Peng, and G. Li, “88 × 3 × 112 Gb/s WDM transmission over 50 km of three-mode fiber with inline few-mode fiber amplifier,” in The 37th European Conference and Exhibition on Optical Communication (ECOC, 2011), paper Th.13.C.2.

V. A. J. M. Sleiffer, Y. Jung, V. Veljanovski, R. G. H. Van Uden, M. Kuschnerov, Q. Kang, L. Grüner-Nielsen, Y. Sun, D. J. Richardson, S. Alam, F. Poletti, J. K. Sahu, A. Dhar, H. Chen, B. Inan, A. M. J. Koonen, B. Corbett, R. Winfield, A. D. Ellis, and H. De Waardt, “73.7 Tb/s (96 × 3 × 256-Gb/s) mode-division-multiplexed DP-16QAM transmission with inline MM-EDFA,” in The 38th European Conference and Exhibition on Optical Communication (ECOC, 2012), paper Th.3.C.4.

Y. Sasaki, Y. Amma, K. Takenaga, S. Matsuo, K. Saitoh, and M. Koshiba, “Trench-assisted low-crosstalk few-mode multicore fiber,” in The 39th European Conference and Exhibition on Optical Communication (ECOC, 2013), paper Mo.3.A.5.
[Crossref]

K. Shibahara, T. Mizuno, H. Takara, A. Sano, H. Kawakami, D. Lee, Y. Miyamoto, H. Ono, M. Oguma, Y. Abe, T. Kobayashi, T. Matsui, R. Fukumoto, Y. Amma, T. Hosokawa, S. Matsuo, K. Saito, H. Nasu, and T. Morioka, “Dense SDM (12-core × 3-mode) transmission over 527 km with 33.2-ns mode-dispersion employing low-complexity parallel MIMO frequency-domain equalization,” in Optical Fiber Communication Conference, OSA Technical Digest Series (OSA, 2015), paper PD.Th5C.3.
[Crossref]

Q. Kang, E. Lim, Y. Jun, X. Jin, F. P. Payne, S. Alam, and D. J. Richardson, “Gain equalization of a six-mode-group ring core multimode EDFA,” in The 40th European Conference and Exhibition on Optical Communication (ECOC, 2014), paper P.1.14.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (18)

Fig. 1
Fig. 1 Schematics of the cross-section and the refractive index profile of ring-core erbium-doped fiber.
Fig. 2
Fig. 2 Map of the allowable modes for the inner and outer radii, Ri and Ro, of the ring-core of a ring-core erbium-doped fiber.
Fig. 3
Fig. 3 Emission and absorption cross-sections used in the gain calculation.
Fig. 4
Fig. 4 Ring-core erbium-doped fiber length for each Ri and Ro combination to obtain a minimum gain of 17 dB.
Fig. 5
Fig. 5 (a) Differential modal gain and (b) pump power for each Ri and Ro combination when the minimum gain is 17 dB.
Fig. 6
Fig. 6 Relation between the overlap integral of the signal power distribution and the erbium ion doped area and the absolute value of the differential modal gain.
Fig. 7
Fig. 7 (a) Core cross-section image and (b) relative refractive index difference (Δ) profile of the ring-core erbium-doped fiber along with calculated intensity profiles of LP01 and LP11 mode signals in the 1.55 μm band.
Fig. 8
Fig. 8 Radial distributions of doped aluminum and erbium ions.
Fig. 9
Fig. 9 Absorption spectrum for the LP01 mode of the RC-EDF.
Fig. 10
Fig. 10 Differential transmission power spectrum of the RC-EDF wound with 100 and 60 mm bending diameters.
Fig. 11
Fig. 11 Configuration of (a) few-mode fiber amplifier employing the ring-core erbium-doped fiber, (b) wavelength-division-multiplexing module.
Fig. 12
Fig. 12 Radial distribution of each beam profile in Fig. 11 at the center of the x and y axes of the image area.
Fig. 13
Fig. 13 Experimental setup for measuring the gain and the noise figure.
Fig. 14
Fig. 14 Gain and NF for various input signal powers. The signal and pumping modes are (a) LP01 and LP01, (b) LP01 and LP11, (c) LP01 and LP21, (d) LP11 and LP01, (e) LP11 and LP11, (f) LP11 and LP21, respectively.
Fig. 15
Fig. 15 Dependence of the differential modal gain on the input signal power for LP01, LP11 and LP21 mode pumping.
Fig. 16
Fig. 16 Pump power dependence on the input signal power for LP01, LP11 and LP21 mode pumping.
Fig. 17
Fig. 17 Examples of the output power and crosstalk spectra of the FM-EDFA employing the RC-EDF. (a) LP01 mode signal output and LP11 → LP01 crosstalk, (b) LP11 mode signal output and LP01 → LP11 crosstalk.
Fig. 18
Fig. 18 Input signal power dependence of modal crosstalk for LP01, LP11 and LP21 mode pumping.

Tables (1)

Tables Icon

Table 1 Parameters of ring-core erbium-doped fiber.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

d P p,m (z) dz = P p,m (z) 0 R o 0 2π [ σ e,p N 2 (r,θ,z) σ a,p N 1 (r,θ,z) ] ψ ¯ p (r,θ)rdrdθ α p,m P p,m (z),
d P s,m (z) dz = P s,m (z) 0 R o 0 2π [ σ e,s N 2 (r,θ,z) σ a,s N 1 (r,θ,z) ] ψ ¯ s (r,θ)rdrdθ α s,m P s,m (z),
d P k,m ± (z) dz =± P k,m ± (z) 0 R o 0 2π [ σ e,k N 2 (r,θ,z) σ a,k N 1 (r,θ,z) ] ψ ¯ k (r,θ)rdrdθ ±2 σ e,k h ν k,m Δ ν k,m 0 R o 0 2π N 2 (r,θ,z) ψ ¯ k (r,θ)rdrdθ α k,m P k,m ± (z).
N 2 (r,θ,z)=ρ(r,θ) σ a,p P p,m (z) h ν p ψ ¯ p (r,θ)+ m ( s σ a,s P s,m (z) h ν s ψ ¯ s,m (r,θ)+ k σ a,k P k,m (z) h ν k ψ ¯ k,m (r,θ) ) 1/τ+( σ a,p + σ e,p ) P p,m (z) h ν p ψ ¯ p (r,θ)+ m ( s ( σ a,s + σ e,s ) P s,m (z) h ν s ψ ¯ s,m (r,θ)+ k ( σ a,k + σ e,k ) P k,m ± (z) h ν k ψ ¯ k,m (r,θ) )
N 1 (r,θ,z)=ρ(r,θ) N 2 (r,θ,z)
DMG= G 01 (λ) G 11 (λ), for max{ | G 01 (λ) G 11 (λ) | },

Metrics