Abstract

Some dynamical aspects of fluorescence and lasing have been studied in a dye-doped cholesteric liquid crystal by measuring the response of the material to nanosecond optical pumping. It has been found that as the pumping energy is increased the fluorescence pulse duration decreases, reaching a minimum at the lasing threshold. Above the threshold the temporal profiles are irregular and consist of a set of narrow pulses whose measured duration is limited by the detector risetime (1 ns). The results are interpreted in terms of a recently proposed model [JETP, 118, 822 (2014)] that makes use of rate equations to account for the laser generation in cholesteric liquid crystals. The prediction of such equations for an experimental configuration appropriate for fluorescence lifetime measurements is analyzed.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Lasing properties of a cholesteric liquid crystal containing aggregation-induced-emission material

Nan Wang, Julian S. Evans, Ju Mei, Jianhao Zhang, Iam-Choon Khoo, and Sailing He
Opt. Express 23(26) 33938-33946 (2015)

Ultraviolet lasing in cholesteric liquid crystals

A. Muñoz F., P. Palffy-Muhoray, and B. Taheri
Opt. Lett. 26(11) 804-806 (2001)

Cholesteric liquid crystal laser in a dielectric mirror cavity upon band-edge excitation

Yuko Matsuhisa, Yuhua Huang, Ying Zhou, Shin-Tson Wu, Yuuki Takao, Akihiko Fujii, and Masanori Ozaki
Opt. Express 15(2) 616-622 (2007)

References

  • View by:
  • |
  • |
  • |

  1. V. I. Kopp, Z.-Q. Zhang, and A. Z. Genack, “Lasing in chiral photonic structures,” Prog. Quantum Electron. 27(6), 369–416 (2003).
    [Crossref]
  2. L. M. Blinov and R. Bartolino, eds., Liquid Crystal Microlasers, (Transworld Research Network, 2010).
  3. H. Coles and S. Morris, “Liquid-crystal lasers,” Nat. Photonics 4(10), 676–685 (2010).
    [Crossref]
  4. H. Takezoe, “Liquid Crystal Lasers” in Q. Li, ed., Liquid Crystals Beyond Displays, (Wiley, 2012).
  5. J. Schmidtke and W. Stille, “Fluorescence of a dye-doped cholesteric liquid crystal film in the region of the stop band: theory and experiment,” Eur. Phys. J. B 31(2), 179–194 (2003).
    [Crossref]
  6. W. Cao, P. Palffy-Muhoray, B. Taheri, A. Marino, and G. Abbate, “Lasing Thresholds of Cholesteric Liquid Crystals Lasers,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 429(1), 101–110 (2005).
    [Crossref]
  7. I. P. Ilchishin and E. A. Tikhonov, “Dye-doped cholesteric lasers:Distributed feedback and photonic bandgap lasing models,” Prog. Quantum Electron. 41, 1–22 (2015).
    [Crossref]
  8. H. Finkelmann, S. T. Kim, A. Muñoz, P. Palffy-Muhoray, and B. Taheri, “Tunable mirrorless lasing in cholesteric liquid crystalline elastomers,” Adv. Mater. 13(14), 1069–1072 (2001).
    [Crossref]
  9. Y. Huang, Y. Zhou, C. Doyle, and S. T. Wu, “Tuning the photonic band gap in cholesteric liquid crystals by temperature-dependent dopant solubility,” Opt. Express 14(3), 1236–1242 (2006).
    [Crossref] [PubMed]
  10. S. S. Choi, S. M. Morris, W. T. S. Huck, and H. J. Coles, “Electrically tuneable liquid crystal photonic bandgaps,” Adv. Mater. 21(38–39), 3915–3918 (2009).
    [Crossref]
  11. B. Park, M. Kim, S. W. Kim, W. Jang, H. Takezoe, Y. Kim, E. H. Choi, Y. H. Seo, G. S. Cho, and S. O. Kang, “Electrically controllable omnidirectional laser emission from a helical-polymer network composite film,” Adv. Mater. 21(7), 771–775 (2009).
    [Crossref]
  12. J. Schmidtke, G. Jünnemann, S. Keuker-Baumann, and H.-S. Kitzerow, “Electrical fine tuning of liquid cristal lasers,” Appl. Phys. Lett. 101(5), 051117 (2012).
    [Crossref]
  13. L. J. Chen, J. D. Lin, and C. R. Lee, “An optically stable and tunable quantum dot nanocrystal-embedded cholesteric liquid cristal composite laser,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(22), 4388–4394 (2014).
    [Crossref]
  14. T. V. Mykytiuk, I. P. Ilchishin, O. V. Yaroshchuk, R. M. Kravchuk, Y. Li, and Q. Li, “Rapid reversible phototuning of lasing frequency in dye-doped cholesteric liquid crystal,” Opt. Lett. 39(22), 6490–6493 (2014).
    [Crossref] [PubMed]
  15. H. Yu, B. Tang, J. Li, and L. Li, “Electrically tunable lasers made from electro-optically active photonics band gap materials,” Opt. Express 13(18), 7243–7249 (2005).
    [Crossref] [PubMed]
  16. H. Yu, B. Tang, J. Li, and L. Li, “Electrically tunable lasers made from electro-optically active photonics band gap materials,” Opt. Express 13(18), 7243–7249 (2005).
    [Crossref] [PubMed]
  17. G. S. Chilaya, “Light-controlled change in the helical pitch and broadband tunable cholesteric liquid-crystal lasers,” Crystallogr. Rep. 51(S1), S108–S118 (2006).
    [Crossref]
  18. J. M. Bendickson, J. P. Dowling, and M. Scalora, “Analytic expressions for the electromagnetic mode density in finite, one-dimensional, photonic band-gap structures,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 53(4), 4107–4121 (1996).
    [Crossref] [PubMed]
  19. L. Penninck, J. Beeckman, P. De Visschere, and K. Neyts, “Light emission from dye-doped cholesteric liquid crystals at oblique angles: Simulation and experiment,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 85(4), 041702 (2012).
    [Crossref] [PubMed]
  20. W. Cao, “Fluorescence and lasing in liquid crystalline bandgap materials,” PhD Thesis, Kent State University, 2005. Ch. 4. http://www.e-lc.org/dissertations/tmp/Wenyi__Cao_2006_02_09_00_14_38.pdf
  21. E. P. Petrov, V. N. Bogomolov, I. I. Kalosha, and S. V. Gaponenko, “Spontaneous Emission of Organic Molecules Embedded in a Photonic Crystal,” Phys. Rev. Lett. 81(1), 77–80 (1998).
    [Crossref]
  22. Y. Zhong, Z. Yue, G. K. L. Wong, Y. Y. Xi, Y. F. Hsu, A. B. Djurišić, J. Dong, W. Chen, and K. S. Wong, “Enhancement of spontaneous emission rate and reduction in amplified spontaneous emission threshold in electrodeposited three-dimensional ZnO photonic crystal,” Appl. Phys. Lett. 97(19), 191102 (2010).
    [Crossref]
  23. J. Zhou, Y. Zhou, S. Buddhudu, S. L. Ng, Y. L. Lam, and C. H. Kam, “Photoluminescence of ZnS:Mn embedded in three-dimensional photonic crystals of submicron polymer spheres,” Appl. Phys. Lett. 76(24), 3513–3515 (2000).
    [Crossref]
  24. J. Lub, W. P. M. Nijssen, R. T. Wegh, I. De Francisco, M. P. Ezquerro, and B. Malo, “Photoisomerizable chiral compounds derived from isosorbide and cinnamic acid,” Liq. Cryst. 32(8), 1031–1044 (2005).
    [Crossref]
  25. N. M. Shtykov and S. P. Palto, “Modeling laser generation in cholesteric liquid crystals using kinetic equations,” J. Exp. Theor. Phys. 118(5), 822–830 (2014).
    [Crossref]
  26. V. A. Belyakov and S. V. Semenov, “Optical edge modes in photonic liquid crystals,” J. Exp. Theor. Phys. 109(4), 687–699 (2009).
    [Crossref]
  27. L. M. Blinov, “Lasers on cholesteric liquid crystals: Mode density and lasing threshold,” JETP Lett. 90(3), 166–171 (2009).
    [Crossref]
  28. W. Koechner, Solid-state laser engineering, (Springer-Verlag 1988), Chap. 3.
  29. L. M. Blinov, “Scattering and Amplification of Light in a Layer of a Nematic Liquid Crystal,” JETP Lett. 88(3), 160–163 (2008).
    [Crossref]
  30. S. T. Wu and K. C. Lim, “Absorption and scattering measurements of nematic liquid crystals,” Appl. Opt. 26(9), 1722–1727 (1987).
    [Crossref] [PubMed]
  31. J. Etxebarria, J. Ortega, C. L. Folcia, G. Sanz-Enguita, and I. Aramburu, “Thermally induced light-scattering effects as responsible for the degradation of cholesteric liquid crystal lasers,” Opt. Lett. 40(7), 1262–1265 (2015).
    [Crossref] [PubMed]

2015 (2)

2014 (3)

N. M. Shtykov and S. P. Palto, “Modeling laser generation in cholesteric liquid crystals using kinetic equations,” J. Exp. Theor. Phys. 118(5), 822–830 (2014).
[Crossref]

T. V. Mykytiuk, I. P. Ilchishin, O. V. Yaroshchuk, R. M. Kravchuk, Y. Li, and Q. Li, “Rapid reversible phototuning of lasing frequency in dye-doped cholesteric liquid crystal,” Opt. Lett. 39(22), 6490–6493 (2014).
[Crossref] [PubMed]

L. J. Chen, J. D. Lin, and C. R. Lee, “An optically stable and tunable quantum dot nanocrystal-embedded cholesteric liquid cristal composite laser,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(22), 4388–4394 (2014).
[Crossref]

2012 (2)

L. Penninck, J. Beeckman, P. De Visschere, and K. Neyts, “Light emission from dye-doped cholesteric liquid crystals at oblique angles: Simulation and experiment,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 85(4), 041702 (2012).
[Crossref] [PubMed]

J. Schmidtke, G. Jünnemann, S. Keuker-Baumann, and H.-S. Kitzerow, “Electrical fine tuning of liquid cristal lasers,” Appl. Phys. Lett. 101(5), 051117 (2012).
[Crossref]

2010 (2)

Y. Zhong, Z. Yue, G. K. L. Wong, Y. Y. Xi, Y. F. Hsu, A. B. Djurišić, J. Dong, W. Chen, and K. S. Wong, “Enhancement of spontaneous emission rate and reduction in amplified spontaneous emission threshold in electrodeposited three-dimensional ZnO photonic crystal,” Appl. Phys. Lett. 97(19), 191102 (2010).
[Crossref]

H. Coles and S. Morris, “Liquid-crystal lasers,” Nat. Photonics 4(10), 676–685 (2010).
[Crossref]

2009 (4)

S. S. Choi, S. M. Morris, W. T. S. Huck, and H. J. Coles, “Electrically tuneable liquid crystal photonic bandgaps,” Adv. Mater. 21(38–39), 3915–3918 (2009).
[Crossref]

B. Park, M. Kim, S. W. Kim, W. Jang, H. Takezoe, Y. Kim, E. H. Choi, Y. H. Seo, G. S. Cho, and S. O. Kang, “Electrically controllable omnidirectional laser emission from a helical-polymer network composite film,” Adv. Mater. 21(7), 771–775 (2009).
[Crossref]

V. A. Belyakov and S. V. Semenov, “Optical edge modes in photonic liquid crystals,” J. Exp. Theor. Phys. 109(4), 687–699 (2009).
[Crossref]

L. M. Blinov, “Lasers on cholesteric liquid crystals: Mode density and lasing threshold,” JETP Lett. 90(3), 166–171 (2009).
[Crossref]

2008 (1)

L. M. Blinov, “Scattering and Amplification of Light in a Layer of a Nematic Liquid Crystal,” JETP Lett. 88(3), 160–163 (2008).
[Crossref]

2006 (2)

Y. Huang, Y. Zhou, C. Doyle, and S. T. Wu, “Tuning the photonic band gap in cholesteric liquid crystals by temperature-dependent dopant solubility,” Opt. Express 14(3), 1236–1242 (2006).
[Crossref] [PubMed]

G. S. Chilaya, “Light-controlled change in the helical pitch and broadband tunable cholesteric liquid-crystal lasers,” Crystallogr. Rep. 51(S1), S108–S118 (2006).
[Crossref]

2005 (4)

J. Lub, W. P. M. Nijssen, R. T. Wegh, I. De Francisco, M. P. Ezquerro, and B. Malo, “Photoisomerizable chiral compounds derived from isosorbide and cinnamic acid,” Liq. Cryst. 32(8), 1031–1044 (2005).
[Crossref]

W. Cao, P. Palffy-Muhoray, B. Taheri, A. Marino, and G. Abbate, “Lasing Thresholds of Cholesteric Liquid Crystals Lasers,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 429(1), 101–110 (2005).
[Crossref]

H. Yu, B. Tang, J. Li, and L. Li, “Electrically tunable lasers made from electro-optically active photonics band gap materials,” Opt. Express 13(18), 7243–7249 (2005).
[Crossref] [PubMed]

H. Yu, B. Tang, J. Li, and L. Li, “Electrically tunable lasers made from electro-optically active photonics band gap materials,” Opt. Express 13(18), 7243–7249 (2005).
[Crossref] [PubMed]

2003 (2)

V. I. Kopp, Z.-Q. Zhang, and A. Z. Genack, “Lasing in chiral photonic structures,” Prog. Quantum Electron. 27(6), 369–416 (2003).
[Crossref]

J. Schmidtke and W. Stille, “Fluorescence of a dye-doped cholesteric liquid crystal film in the region of the stop band: theory and experiment,” Eur. Phys. J. B 31(2), 179–194 (2003).
[Crossref]

2001 (1)

H. Finkelmann, S. T. Kim, A. Muñoz, P. Palffy-Muhoray, and B. Taheri, “Tunable mirrorless lasing in cholesteric liquid crystalline elastomers,” Adv. Mater. 13(14), 1069–1072 (2001).
[Crossref]

2000 (1)

J. Zhou, Y. Zhou, S. Buddhudu, S. L. Ng, Y. L. Lam, and C. H. Kam, “Photoluminescence of ZnS:Mn embedded in three-dimensional photonic crystals of submicron polymer spheres,” Appl. Phys. Lett. 76(24), 3513–3515 (2000).
[Crossref]

1998 (1)

E. P. Petrov, V. N. Bogomolov, I. I. Kalosha, and S. V. Gaponenko, “Spontaneous Emission of Organic Molecules Embedded in a Photonic Crystal,” Phys. Rev. Lett. 81(1), 77–80 (1998).
[Crossref]

1996 (1)

J. M. Bendickson, J. P. Dowling, and M. Scalora, “Analytic expressions for the electromagnetic mode density in finite, one-dimensional, photonic band-gap structures,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 53(4), 4107–4121 (1996).
[Crossref] [PubMed]

1987 (1)

Abbate, G.

W. Cao, P. Palffy-Muhoray, B. Taheri, A. Marino, and G. Abbate, “Lasing Thresholds of Cholesteric Liquid Crystals Lasers,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 429(1), 101–110 (2005).
[Crossref]

Aramburu, I.

Beeckman, J.

L. Penninck, J. Beeckman, P. De Visschere, and K. Neyts, “Light emission from dye-doped cholesteric liquid crystals at oblique angles: Simulation and experiment,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 85(4), 041702 (2012).
[Crossref] [PubMed]

Belyakov, V. A.

V. A. Belyakov and S. V. Semenov, “Optical edge modes in photonic liquid crystals,” J. Exp. Theor. Phys. 109(4), 687–699 (2009).
[Crossref]

Bendickson, J. M.

J. M. Bendickson, J. P. Dowling, and M. Scalora, “Analytic expressions for the electromagnetic mode density in finite, one-dimensional, photonic band-gap structures,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 53(4), 4107–4121 (1996).
[Crossref] [PubMed]

Blinov, L. M.

L. M. Blinov, “Lasers on cholesteric liquid crystals: Mode density and lasing threshold,” JETP Lett. 90(3), 166–171 (2009).
[Crossref]

L. M. Blinov, “Scattering and Amplification of Light in a Layer of a Nematic Liquid Crystal,” JETP Lett. 88(3), 160–163 (2008).
[Crossref]

Bogomolov, V. N.

E. P. Petrov, V. N. Bogomolov, I. I. Kalosha, and S. V. Gaponenko, “Spontaneous Emission of Organic Molecules Embedded in a Photonic Crystal,” Phys. Rev. Lett. 81(1), 77–80 (1998).
[Crossref]

Buddhudu, S.

J. Zhou, Y. Zhou, S. Buddhudu, S. L. Ng, Y. L. Lam, and C. H. Kam, “Photoluminescence of ZnS:Mn embedded in three-dimensional photonic crystals of submicron polymer spheres,” Appl. Phys. Lett. 76(24), 3513–3515 (2000).
[Crossref]

Cao, W.

W. Cao, P. Palffy-Muhoray, B. Taheri, A. Marino, and G. Abbate, “Lasing Thresholds of Cholesteric Liquid Crystals Lasers,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 429(1), 101–110 (2005).
[Crossref]

Chen, L. J.

L. J. Chen, J. D. Lin, and C. R. Lee, “An optically stable and tunable quantum dot nanocrystal-embedded cholesteric liquid cristal composite laser,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(22), 4388–4394 (2014).
[Crossref]

Chen, W.

Y. Zhong, Z. Yue, G. K. L. Wong, Y. Y. Xi, Y. F. Hsu, A. B. Djurišić, J. Dong, W. Chen, and K. S. Wong, “Enhancement of spontaneous emission rate and reduction in amplified spontaneous emission threshold in electrodeposited three-dimensional ZnO photonic crystal,” Appl. Phys. Lett. 97(19), 191102 (2010).
[Crossref]

Chilaya, G. S.

G. S. Chilaya, “Light-controlled change in the helical pitch and broadband tunable cholesteric liquid-crystal lasers,” Crystallogr. Rep. 51(S1), S108–S118 (2006).
[Crossref]

Cho, G. S.

B. Park, M. Kim, S. W. Kim, W. Jang, H. Takezoe, Y. Kim, E. H. Choi, Y. H. Seo, G. S. Cho, and S. O. Kang, “Electrically controllable omnidirectional laser emission from a helical-polymer network composite film,” Adv. Mater. 21(7), 771–775 (2009).
[Crossref]

Choi, E. H.

B. Park, M. Kim, S. W. Kim, W. Jang, H. Takezoe, Y. Kim, E. H. Choi, Y. H. Seo, G. S. Cho, and S. O. Kang, “Electrically controllable omnidirectional laser emission from a helical-polymer network composite film,” Adv. Mater. 21(7), 771–775 (2009).
[Crossref]

Choi, S. S.

S. S. Choi, S. M. Morris, W. T. S. Huck, and H. J. Coles, “Electrically tuneable liquid crystal photonic bandgaps,” Adv. Mater. 21(38–39), 3915–3918 (2009).
[Crossref]

Coles, H.

H. Coles and S. Morris, “Liquid-crystal lasers,” Nat. Photonics 4(10), 676–685 (2010).
[Crossref]

Coles, H. J.

S. S. Choi, S. M. Morris, W. T. S. Huck, and H. J. Coles, “Electrically tuneable liquid crystal photonic bandgaps,” Adv. Mater. 21(38–39), 3915–3918 (2009).
[Crossref]

De Francisco, I.

J. Lub, W. P. M. Nijssen, R. T. Wegh, I. De Francisco, M. P. Ezquerro, and B. Malo, “Photoisomerizable chiral compounds derived from isosorbide and cinnamic acid,” Liq. Cryst. 32(8), 1031–1044 (2005).
[Crossref]

De Visschere, P.

L. Penninck, J. Beeckman, P. De Visschere, and K. Neyts, “Light emission from dye-doped cholesteric liquid crystals at oblique angles: Simulation and experiment,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 85(4), 041702 (2012).
[Crossref] [PubMed]

Djurišic, A. B.

Y. Zhong, Z. Yue, G. K. L. Wong, Y. Y. Xi, Y. F. Hsu, A. B. Djurišić, J. Dong, W. Chen, and K. S. Wong, “Enhancement of spontaneous emission rate and reduction in amplified spontaneous emission threshold in electrodeposited three-dimensional ZnO photonic crystal,” Appl. Phys. Lett. 97(19), 191102 (2010).
[Crossref]

Dong, J.

Y. Zhong, Z. Yue, G. K. L. Wong, Y. Y. Xi, Y. F. Hsu, A. B. Djurišić, J. Dong, W. Chen, and K. S. Wong, “Enhancement of spontaneous emission rate and reduction in amplified spontaneous emission threshold in electrodeposited three-dimensional ZnO photonic crystal,” Appl. Phys. Lett. 97(19), 191102 (2010).
[Crossref]

Dowling, J. P.

J. M. Bendickson, J. P. Dowling, and M. Scalora, “Analytic expressions for the electromagnetic mode density in finite, one-dimensional, photonic band-gap structures,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 53(4), 4107–4121 (1996).
[Crossref] [PubMed]

Doyle, C.

Etxebarria, J.

Ezquerro, M. P.

J. Lub, W. P. M. Nijssen, R. T. Wegh, I. De Francisco, M. P. Ezquerro, and B. Malo, “Photoisomerizable chiral compounds derived from isosorbide and cinnamic acid,” Liq. Cryst. 32(8), 1031–1044 (2005).
[Crossref]

Finkelmann, H.

H. Finkelmann, S. T. Kim, A. Muñoz, P. Palffy-Muhoray, and B. Taheri, “Tunable mirrorless lasing in cholesteric liquid crystalline elastomers,” Adv. Mater. 13(14), 1069–1072 (2001).
[Crossref]

Folcia, C. L.

Gaponenko, S. V.

E. P. Petrov, V. N. Bogomolov, I. I. Kalosha, and S. V. Gaponenko, “Spontaneous Emission of Organic Molecules Embedded in a Photonic Crystal,” Phys. Rev. Lett. 81(1), 77–80 (1998).
[Crossref]

Genack, A. Z.

V. I. Kopp, Z.-Q. Zhang, and A. Z. Genack, “Lasing in chiral photonic structures,” Prog. Quantum Electron. 27(6), 369–416 (2003).
[Crossref]

Hsu, Y. F.

Y. Zhong, Z. Yue, G. K. L. Wong, Y. Y. Xi, Y. F. Hsu, A. B. Djurišić, J. Dong, W. Chen, and K. S. Wong, “Enhancement of spontaneous emission rate and reduction in amplified spontaneous emission threshold in electrodeposited three-dimensional ZnO photonic crystal,” Appl. Phys. Lett. 97(19), 191102 (2010).
[Crossref]

Huang, Y.

Huck, W. T. S.

S. S. Choi, S. M. Morris, W. T. S. Huck, and H. J. Coles, “Electrically tuneable liquid crystal photonic bandgaps,” Adv. Mater. 21(38–39), 3915–3918 (2009).
[Crossref]

Ilchishin, I. P.

I. P. Ilchishin and E. A. Tikhonov, “Dye-doped cholesteric lasers:Distributed feedback and photonic bandgap lasing models,” Prog. Quantum Electron. 41, 1–22 (2015).
[Crossref]

T. V. Mykytiuk, I. P. Ilchishin, O. V. Yaroshchuk, R. M. Kravchuk, Y. Li, and Q. Li, “Rapid reversible phototuning of lasing frequency in dye-doped cholesteric liquid crystal,” Opt. Lett. 39(22), 6490–6493 (2014).
[Crossref] [PubMed]

Jang, W.

B. Park, M. Kim, S. W. Kim, W. Jang, H. Takezoe, Y. Kim, E. H. Choi, Y. H. Seo, G. S. Cho, and S. O. Kang, “Electrically controllable omnidirectional laser emission from a helical-polymer network composite film,” Adv. Mater. 21(7), 771–775 (2009).
[Crossref]

Jünnemann, G.

J. Schmidtke, G. Jünnemann, S. Keuker-Baumann, and H.-S. Kitzerow, “Electrical fine tuning of liquid cristal lasers,” Appl. Phys. Lett. 101(5), 051117 (2012).
[Crossref]

Kalosha, I. I.

E. P. Petrov, V. N. Bogomolov, I. I. Kalosha, and S. V. Gaponenko, “Spontaneous Emission of Organic Molecules Embedded in a Photonic Crystal,” Phys. Rev. Lett. 81(1), 77–80 (1998).
[Crossref]

Kam, C. H.

J. Zhou, Y. Zhou, S. Buddhudu, S. L. Ng, Y. L. Lam, and C. H. Kam, “Photoluminescence of ZnS:Mn embedded in three-dimensional photonic crystals of submicron polymer spheres,” Appl. Phys. Lett. 76(24), 3513–3515 (2000).
[Crossref]

Kang, S. O.

B. Park, M. Kim, S. W. Kim, W. Jang, H. Takezoe, Y. Kim, E. H. Choi, Y. H. Seo, G. S. Cho, and S. O. Kang, “Electrically controllable omnidirectional laser emission from a helical-polymer network composite film,” Adv. Mater. 21(7), 771–775 (2009).
[Crossref]

Keuker-Baumann, S.

J. Schmidtke, G. Jünnemann, S. Keuker-Baumann, and H.-S. Kitzerow, “Electrical fine tuning of liquid cristal lasers,” Appl. Phys. Lett. 101(5), 051117 (2012).
[Crossref]

Kim, M.

B. Park, M. Kim, S. W. Kim, W. Jang, H. Takezoe, Y. Kim, E. H. Choi, Y. H. Seo, G. S. Cho, and S. O. Kang, “Electrically controllable omnidirectional laser emission from a helical-polymer network composite film,” Adv. Mater. 21(7), 771–775 (2009).
[Crossref]

Kim, S. T.

H. Finkelmann, S. T. Kim, A. Muñoz, P. Palffy-Muhoray, and B. Taheri, “Tunable mirrorless lasing in cholesteric liquid crystalline elastomers,” Adv. Mater. 13(14), 1069–1072 (2001).
[Crossref]

Kim, S. W.

B. Park, M. Kim, S. W. Kim, W. Jang, H. Takezoe, Y. Kim, E. H. Choi, Y. H. Seo, G. S. Cho, and S. O. Kang, “Electrically controllable omnidirectional laser emission from a helical-polymer network composite film,” Adv. Mater. 21(7), 771–775 (2009).
[Crossref]

Kim, Y.

B. Park, M. Kim, S. W. Kim, W. Jang, H. Takezoe, Y. Kim, E. H. Choi, Y. H. Seo, G. S. Cho, and S. O. Kang, “Electrically controllable omnidirectional laser emission from a helical-polymer network composite film,” Adv. Mater. 21(7), 771–775 (2009).
[Crossref]

Kitzerow, H.-S.

J. Schmidtke, G. Jünnemann, S. Keuker-Baumann, and H.-S. Kitzerow, “Electrical fine tuning of liquid cristal lasers,” Appl. Phys. Lett. 101(5), 051117 (2012).
[Crossref]

Kopp, V. I.

V. I. Kopp, Z.-Q. Zhang, and A. Z. Genack, “Lasing in chiral photonic structures,” Prog. Quantum Electron. 27(6), 369–416 (2003).
[Crossref]

Kravchuk, R. M.

Lam, Y. L.

J. Zhou, Y. Zhou, S. Buddhudu, S. L. Ng, Y. L. Lam, and C. H. Kam, “Photoluminescence of ZnS:Mn embedded in three-dimensional photonic crystals of submicron polymer spheres,” Appl. Phys. Lett. 76(24), 3513–3515 (2000).
[Crossref]

Lee, C. R.

L. J. Chen, J. D. Lin, and C. R. Lee, “An optically stable and tunable quantum dot nanocrystal-embedded cholesteric liquid cristal composite laser,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(22), 4388–4394 (2014).
[Crossref]

Li, J.

Li, L.

Li, Q.

Li, Y.

Lim, K. C.

Lin, J. D.

L. J. Chen, J. D. Lin, and C. R. Lee, “An optically stable and tunable quantum dot nanocrystal-embedded cholesteric liquid cristal composite laser,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(22), 4388–4394 (2014).
[Crossref]

Lub, J.

J. Lub, W. P. M. Nijssen, R. T. Wegh, I. De Francisco, M. P. Ezquerro, and B. Malo, “Photoisomerizable chiral compounds derived from isosorbide and cinnamic acid,” Liq. Cryst. 32(8), 1031–1044 (2005).
[Crossref]

Malo, B.

J. Lub, W. P. M. Nijssen, R. T. Wegh, I. De Francisco, M. P. Ezquerro, and B. Malo, “Photoisomerizable chiral compounds derived from isosorbide and cinnamic acid,” Liq. Cryst. 32(8), 1031–1044 (2005).
[Crossref]

Marino, A.

W. Cao, P. Palffy-Muhoray, B. Taheri, A. Marino, and G. Abbate, “Lasing Thresholds of Cholesteric Liquid Crystals Lasers,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 429(1), 101–110 (2005).
[Crossref]

Morris, S.

H. Coles and S. Morris, “Liquid-crystal lasers,” Nat. Photonics 4(10), 676–685 (2010).
[Crossref]

Morris, S. M.

S. S. Choi, S. M. Morris, W. T. S. Huck, and H. J. Coles, “Electrically tuneable liquid crystal photonic bandgaps,” Adv. Mater. 21(38–39), 3915–3918 (2009).
[Crossref]

Muñoz, A.

H. Finkelmann, S. T. Kim, A. Muñoz, P. Palffy-Muhoray, and B. Taheri, “Tunable mirrorless lasing in cholesteric liquid crystalline elastomers,” Adv. Mater. 13(14), 1069–1072 (2001).
[Crossref]

Mykytiuk, T. V.

Neyts, K.

L. Penninck, J. Beeckman, P. De Visschere, and K. Neyts, “Light emission from dye-doped cholesteric liquid crystals at oblique angles: Simulation and experiment,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 85(4), 041702 (2012).
[Crossref] [PubMed]

Ng, S. L.

J. Zhou, Y. Zhou, S. Buddhudu, S. L. Ng, Y. L. Lam, and C. H. Kam, “Photoluminescence of ZnS:Mn embedded in three-dimensional photonic crystals of submicron polymer spheres,” Appl. Phys. Lett. 76(24), 3513–3515 (2000).
[Crossref]

Nijssen, W. P. M.

J. Lub, W. P. M. Nijssen, R. T. Wegh, I. De Francisco, M. P. Ezquerro, and B. Malo, “Photoisomerizable chiral compounds derived from isosorbide and cinnamic acid,” Liq. Cryst. 32(8), 1031–1044 (2005).
[Crossref]

Ortega, J.

Palffy-Muhoray, P.

W. Cao, P. Palffy-Muhoray, B. Taheri, A. Marino, and G. Abbate, “Lasing Thresholds of Cholesteric Liquid Crystals Lasers,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 429(1), 101–110 (2005).
[Crossref]

H. Finkelmann, S. T. Kim, A. Muñoz, P. Palffy-Muhoray, and B. Taheri, “Tunable mirrorless lasing in cholesteric liquid crystalline elastomers,” Adv. Mater. 13(14), 1069–1072 (2001).
[Crossref]

Palto, S. P.

N. M. Shtykov and S. P. Palto, “Modeling laser generation in cholesteric liquid crystals using kinetic equations,” J. Exp. Theor. Phys. 118(5), 822–830 (2014).
[Crossref]

Park, B.

B. Park, M. Kim, S. W. Kim, W. Jang, H. Takezoe, Y. Kim, E. H. Choi, Y. H. Seo, G. S. Cho, and S. O. Kang, “Electrically controllable omnidirectional laser emission from a helical-polymer network composite film,” Adv. Mater. 21(7), 771–775 (2009).
[Crossref]

Penninck, L.

L. Penninck, J. Beeckman, P. De Visschere, and K. Neyts, “Light emission from dye-doped cholesteric liquid crystals at oblique angles: Simulation and experiment,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 85(4), 041702 (2012).
[Crossref] [PubMed]

Petrov, E. P.

E. P. Petrov, V. N. Bogomolov, I. I. Kalosha, and S. V. Gaponenko, “Spontaneous Emission of Organic Molecules Embedded in a Photonic Crystal,” Phys. Rev. Lett. 81(1), 77–80 (1998).
[Crossref]

Sanz-Enguita, G.

Scalora, M.

J. M. Bendickson, J. P. Dowling, and M. Scalora, “Analytic expressions for the electromagnetic mode density in finite, one-dimensional, photonic band-gap structures,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 53(4), 4107–4121 (1996).
[Crossref] [PubMed]

Schmidtke, J.

J. Schmidtke, G. Jünnemann, S. Keuker-Baumann, and H.-S. Kitzerow, “Electrical fine tuning of liquid cristal lasers,” Appl. Phys. Lett. 101(5), 051117 (2012).
[Crossref]

J. Schmidtke and W. Stille, “Fluorescence of a dye-doped cholesteric liquid crystal film in the region of the stop band: theory and experiment,” Eur. Phys. J. B 31(2), 179–194 (2003).
[Crossref]

Semenov, S. V.

V. A. Belyakov and S. V. Semenov, “Optical edge modes in photonic liquid crystals,” J. Exp. Theor. Phys. 109(4), 687–699 (2009).
[Crossref]

Seo, Y. H.

B. Park, M. Kim, S. W. Kim, W. Jang, H. Takezoe, Y. Kim, E. H. Choi, Y. H. Seo, G. S. Cho, and S. O. Kang, “Electrically controllable omnidirectional laser emission from a helical-polymer network composite film,” Adv. Mater. 21(7), 771–775 (2009).
[Crossref]

Shtykov, N. M.

N. M. Shtykov and S. P. Palto, “Modeling laser generation in cholesteric liquid crystals using kinetic equations,” J. Exp. Theor. Phys. 118(5), 822–830 (2014).
[Crossref]

Stille, W.

J. Schmidtke and W. Stille, “Fluorescence of a dye-doped cholesteric liquid crystal film in the region of the stop band: theory and experiment,” Eur. Phys. J. B 31(2), 179–194 (2003).
[Crossref]

Taheri, B.

W. Cao, P. Palffy-Muhoray, B. Taheri, A. Marino, and G. Abbate, “Lasing Thresholds of Cholesteric Liquid Crystals Lasers,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 429(1), 101–110 (2005).
[Crossref]

H. Finkelmann, S. T. Kim, A. Muñoz, P. Palffy-Muhoray, and B. Taheri, “Tunable mirrorless lasing in cholesteric liquid crystalline elastomers,” Adv. Mater. 13(14), 1069–1072 (2001).
[Crossref]

Takezoe, H.

B. Park, M. Kim, S. W. Kim, W. Jang, H. Takezoe, Y. Kim, E. H. Choi, Y. H. Seo, G. S. Cho, and S. O. Kang, “Electrically controllable omnidirectional laser emission from a helical-polymer network composite film,” Adv. Mater. 21(7), 771–775 (2009).
[Crossref]

Tang, B.

Tikhonov, E. A.

I. P. Ilchishin and E. A. Tikhonov, “Dye-doped cholesteric lasers:Distributed feedback and photonic bandgap lasing models,” Prog. Quantum Electron. 41, 1–22 (2015).
[Crossref]

Wegh, R. T.

J. Lub, W. P. M. Nijssen, R. T. Wegh, I. De Francisco, M. P. Ezquerro, and B. Malo, “Photoisomerizable chiral compounds derived from isosorbide and cinnamic acid,” Liq. Cryst. 32(8), 1031–1044 (2005).
[Crossref]

Wong, G. K. L.

Y. Zhong, Z. Yue, G. K. L. Wong, Y. Y. Xi, Y. F. Hsu, A. B. Djurišić, J. Dong, W. Chen, and K. S. Wong, “Enhancement of spontaneous emission rate and reduction in amplified spontaneous emission threshold in electrodeposited three-dimensional ZnO photonic crystal,” Appl. Phys. Lett. 97(19), 191102 (2010).
[Crossref]

Wong, K. S.

Y. Zhong, Z. Yue, G. K. L. Wong, Y. Y. Xi, Y. F. Hsu, A. B. Djurišić, J. Dong, W. Chen, and K. S. Wong, “Enhancement of spontaneous emission rate and reduction in amplified spontaneous emission threshold in electrodeposited three-dimensional ZnO photonic crystal,” Appl. Phys. Lett. 97(19), 191102 (2010).
[Crossref]

Wu, S. T.

Xi, Y. Y.

Y. Zhong, Z. Yue, G. K. L. Wong, Y. Y. Xi, Y. F. Hsu, A. B. Djurišić, J. Dong, W. Chen, and K. S. Wong, “Enhancement of spontaneous emission rate and reduction in amplified spontaneous emission threshold in electrodeposited three-dimensional ZnO photonic crystal,” Appl. Phys. Lett. 97(19), 191102 (2010).
[Crossref]

Yaroshchuk, O. V.

Yu, H.

Yue, Z.

Y. Zhong, Z. Yue, G. K. L. Wong, Y. Y. Xi, Y. F. Hsu, A. B. Djurišić, J. Dong, W. Chen, and K. S. Wong, “Enhancement of spontaneous emission rate and reduction in amplified spontaneous emission threshold in electrodeposited three-dimensional ZnO photonic crystal,” Appl. Phys. Lett. 97(19), 191102 (2010).
[Crossref]

Zhang, Z.-Q.

V. I. Kopp, Z.-Q. Zhang, and A. Z. Genack, “Lasing in chiral photonic structures,” Prog. Quantum Electron. 27(6), 369–416 (2003).
[Crossref]

Zhong, Y.

Y. Zhong, Z. Yue, G. K. L. Wong, Y. Y. Xi, Y. F. Hsu, A. B. Djurišić, J. Dong, W. Chen, and K. S. Wong, “Enhancement of spontaneous emission rate and reduction in amplified spontaneous emission threshold in electrodeposited three-dimensional ZnO photonic crystal,” Appl. Phys. Lett. 97(19), 191102 (2010).
[Crossref]

Zhou, J.

J. Zhou, Y. Zhou, S. Buddhudu, S. L. Ng, Y. L. Lam, and C. H. Kam, “Photoluminescence of ZnS:Mn embedded in three-dimensional photonic crystals of submicron polymer spheres,” Appl. Phys. Lett. 76(24), 3513–3515 (2000).
[Crossref]

Zhou, Y.

Y. Huang, Y. Zhou, C. Doyle, and S. T. Wu, “Tuning the photonic band gap in cholesteric liquid crystals by temperature-dependent dopant solubility,” Opt. Express 14(3), 1236–1242 (2006).
[Crossref] [PubMed]

J. Zhou, Y. Zhou, S. Buddhudu, S. L. Ng, Y. L. Lam, and C. H. Kam, “Photoluminescence of ZnS:Mn embedded in three-dimensional photonic crystals of submicron polymer spheres,” Appl. Phys. Lett. 76(24), 3513–3515 (2000).
[Crossref]

Adv. Mater. (3)

H. Finkelmann, S. T. Kim, A. Muñoz, P. Palffy-Muhoray, and B. Taheri, “Tunable mirrorless lasing in cholesteric liquid crystalline elastomers,” Adv. Mater. 13(14), 1069–1072 (2001).
[Crossref]

S. S. Choi, S. M. Morris, W. T. S. Huck, and H. J. Coles, “Electrically tuneable liquid crystal photonic bandgaps,” Adv. Mater. 21(38–39), 3915–3918 (2009).
[Crossref]

B. Park, M. Kim, S. W. Kim, W. Jang, H. Takezoe, Y. Kim, E. H. Choi, Y. H. Seo, G. S. Cho, and S. O. Kang, “Electrically controllable omnidirectional laser emission from a helical-polymer network composite film,” Adv. Mater. 21(7), 771–775 (2009).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (3)

Y. Zhong, Z. Yue, G. K. L. Wong, Y. Y. Xi, Y. F. Hsu, A. B. Djurišić, J. Dong, W. Chen, and K. S. Wong, “Enhancement of spontaneous emission rate and reduction in amplified spontaneous emission threshold in electrodeposited three-dimensional ZnO photonic crystal,” Appl. Phys. Lett. 97(19), 191102 (2010).
[Crossref]

J. Zhou, Y. Zhou, S. Buddhudu, S. L. Ng, Y. L. Lam, and C. H. Kam, “Photoluminescence of ZnS:Mn embedded in three-dimensional photonic crystals of submicron polymer spheres,” Appl. Phys. Lett. 76(24), 3513–3515 (2000).
[Crossref]

J. Schmidtke, G. Jünnemann, S. Keuker-Baumann, and H.-S. Kitzerow, “Electrical fine tuning of liquid cristal lasers,” Appl. Phys. Lett. 101(5), 051117 (2012).
[Crossref]

Crystallogr. Rep. (1)

G. S. Chilaya, “Light-controlled change in the helical pitch and broadband tunable cholesteric liquid-crystal lasers,” Crystallogr. Rep. 51(S1), S108–S118 (2006).
[Crossref]

Eur. Phys. J. B (1)

J. Schmidtke and W. Stille, “Fluorescence of a dye-doped cholesteric liquid crystal film in the region of the stop band: theory and experiment,” Eur. Phys. J. B 31(2), 179–194 (2003).
[Crossref]

J. Exp. Theor. Phys. (2)

N. M. Shtykov and S. P. Palto, “Modeling laser generation in cholesteric liquid crystals using kinetic equations,” J. Exp. Theor. Phys. 118(5), 822–830 (2014).
[Crossref]

V. A. Belyakov and S. V. Semenov, “Optical edge modes in photonic liquid crystals,” J. Exp. Theor. Phys. 109(4), 687–699 (2009).
[Crossref]

J. Mater. Chem. C Mater. Opt. Electron. Devices (1)

L. J. Chen, J. D. Lin, and C. R. Lee, “An optically stable and tunable quantum dot nanocrystal-embedded cholesteric liquid cristal composite laser,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(22), 4388–4394 (2014).
[Crossref]

JETP Lett. (2)

L. M. Blinov, “Lasers on cholesteric liquid crystals: Mode density and lasing threshold,” JETP Lett. 90(3), 166–171 (2009).
[Crossref]

L. M. Blinov, “Scattering and Amplification of Light in a Layer of a Nematic Liquid Crystal,” JETP Lett. 88(3), 160–163 (2008).
[Crossref]

Liq. Cryst. (1)

J. Lub, W. P. M. Nijssen, R. T. Wegh, I. De Francisco, M. P. Ezquerro, and B. Malo, “Photoisomerizable chiral compounds derived from isosorbide and cinnamic acid,” Liq. Cryst. 32(8), 1031–1044 (2005).
[Crossref]

Mol. Cryst. Liq. Cryst. (Phila. Pa.) (1)

W. Cao, P. Palffy-Muhoray, B. Taheri, A. Marino, and G. Abbate, “Lasing Thresholds of Cholesteric Liquid Crystals Lasers,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 429(1), 101–110 (2005).
[Crossref]

Nat. Photonics (1)

H. Coles and S. Morris, “Liquid-crystal lasers,” Nat. Photonics 4(10), 676–685 (2010).
[Crossref]

Opt. Express (3)

Opt. Lett. (2)

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

L. Penninck, J. Beeckman, P. De Visschere, and K. Neyts, “Light emission from dye-doped cholesteric liquid crystals at oblique angles: Simulation and experiment,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 85(4), 041702 (2012).
[Crossref] [PubMed]

Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics (1)

J. M. Bendickson, J. P. Dowling, and M. Scalora, “Analytic expressions for the electromagnetic mode density in finite, one-dimensional, photonic band-gap structures,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 53(4), 4107–4121 (1996).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

E. P. Petrov, V. N. Bogomolov, I. I. Kalosha, and S. V. Gaponenko, “Spontaneous Emission of Organic Molecules Embedded in a Photonic Crystal,” Phys. Rev. Lett. 81(1), 77–80 (1998).
[Crossref]

Prog. Quantum Electron. (2)

I. P. Ilchishin and E. A. Tikhonov, “Dye-doped cholesteric lasers:Distributed feedback and photonic bandgap lasing models,” Prog. Quantum Electron. 41, 1–22 (2015).
[Crossref]

V. I. Kopp, Z.-Q. Zhang, and A. Z. Genack, “Lasing in chiral photonic structures,” Prog. Quantum Electron. 27(6), 369–416 (2003).
[Crossref]

Other (4)

L. M. Blinov and R. Bartolino, eds., Liquid Crystal Microlasers, (Transworld Research Network, 2010).

H. Takezoe, “Liquid Crystal Lasers” in Q. Li, ed., Liquid Crystals Beyond Displays, (Wiley, 2012).

W. Cao, “Fluorescence and lasing in liquid crystalline bandgap materials,” PhD Thesis, Kent State University, 2005. Ch. 4. http://www.e-lc.org/dissertations/tmp/Wenyi__Cao_2006_02_09_00_14_38.pdf

W. Koechner, Solid-state laser engineering, (Springer-Verlag 1988), Chap. 3.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) Reflectance spectrum of the CLC sample (red) around the long wavelength edge and laser emission peak (black). (b) fluorescence spectrum for circularly polarized light with the same handedness as the CLC helix.
Fig. 2
Fig. 2 Experimental (black dots) and simulated (white dots) duration of the light emission pulses as a function of the pumping pulse energy. The pumping energy is given in units of the laser threshold energy. The experimental threshold was 1.9 μJ/pulse.
Fig. 3
Fig. 3 Normalized temporal profiles of laser emission pulses for different pumping energies. (a) Well below the threshold energy the pulse width is similar to the pumping pulse (red and black lines respectively), and at the threshold (blue line) the pulse is the narrowest. (b) Above the laser threshold the pulses widen slowly as the energy increases.
Fig. 4
Fig. 4 Calculated normalized temporal profiles of laser emission pulses for different pumping energies up to the threshold (a), and above this energy (b).

Tables (1)

Tables Icon

Table 1 Parameters used for the simulations. The pumping and laser emission wavelengths were 532 and 634 nm respectively

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

1 τ c = c n ( β+ 2 ρL ),
d n 2 dt =( σ e P e h ν e S + 1 τ f + σ a P a0 ( 1+ e σ a n 1 L ) 2h ν a S + P 23 ) n 2 σ a P a0 ( 1+ e σ a n 1 L ) 2h ν a S n 3 + N P a0 ( 1 e σ a n 1 L ) h ν a SL n 1 d n 3 dt = P 23 n 2 P 31 n 3 d P e dt = c n ( σ e P e +k h ν e S τ r ) n 2 P e τ c
n 2 = n 20 e t/ τ f ,
P e =kSh ν e ( c/n ) n 20 τ c τ f τ c τ f τ r ( e t/ τ f e t/ τ c ).
P e =kSh ν e τ c ( c/n ) n 20 e t/ τ f / τ r .
P out =kSh ν e L n 20 e t/ τ f / τ r .

Metrics