Abstract

We have experimentally realized on-chip silica microspheres that feature excellent thermal coupling to the silicon wafer. The chip-based microspheres significantly reduce laser-induced heating and correspondingly exhibit much lower threshold optical power for heating-induced optical bistability. We also show that the chip-based microspheres have optical and especially optomechanical properties that are similar to those of traditional fiber-stem-attached silica microspheres, making the chip-based microspheres suitable for optomechanical studies in a vacuum environment.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Observation of high-Q optomechanical modes in the mounted silica microspheres

Zhen Shen, Zhong-Hao Zhou, Chang-Ling Zou, Fang-Wen Sun, Guo-Ping Guo, Chun-Hua Dong, and Guang-Can Guo
Photon. Res. 3(5) 243-247 (2015)

Frequency tuning of the whispering-gallery modes of silica microspheres for cavity quantum electrodynamics and spectroscopy

Wolf von Klitzing, Romain Long, Vladimir S. Ilchenko, Jean Hare, and Valérie Lefèvre-Seguin
Opt. Lett. 26(3) 166-168 (2001)

Coherent optomechanical oscillation of a silica microsphere in an aqueous environment

Wenyan Yu, Wei C. Jiang, Qiang Lin, and Tao Lu
Opt. Express 22(18) 21421-21426 (2014)

References

  • View by:
  • |
  • |
  • |

  1. K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
    [Crossref] [PubMed]
  2. F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5(7), 591–596 (2008).
    [Crossref] [PubMed]
  3. J. Zhu, S. K. Ozdemir, Y. F. Xiao, L. Li, L. He, D. R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4(1), 46–49 (2010).
    [Crossref]
  4. L. Shao, X.-F. Jiang, X.-C. Yu, B.-B. Li, W. R. Clements, F. Vollmer, W. Wang, Y.-F. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25(39), 5616–5620 (2013).
    [Crossref] [PubMed]
  5. L. Yang, D. K. Armani, and K. J. Vahala, “Fiber-coupled erbium microlasers on a chip,” Appl. Phys. Lett. 83(5), 825–826 (2003).
    [Crossref]
  6. X.-F. Jiang, Y.-F. Xiao, C.-L. Zou, L. He, C.-H. Dong, B.-B. Li, Y. Li, F.-W. Sun, L. Yang, and Q. Gong, “Highly unidirectional emission and ultralow-threshold lasing from on-chip ultrahigh-Q microcavities,” Adv. Mater. 24(35), OP260–OP264 (2012).
    [Crossref] [PubMed]
  7. S. M. Spillane, T. J. Kippenberg, K. J. Vahala, K. W. Goh, E. Wilcut, and H. J. Kimble, “Ultrahigh-Q toroidal microresonators for cavity quantum electrodynamics,” Phys. Rev. A 71(1), 013817 (2005).
    [Crossref]
  8. Y.-S. Park, A. K. Cook, and H. Wang, “Cavity QED with diamond nanocrystals and silica microspheres,” Nano Lett. 6(9), 2075–2079 (2006).
    [Crossref] [PubMed]
  9. Y.-C. Liu, Y.-F. Xiao, B.-B. Li, X.-F. Jiang, Y. Li, and Q. Gong, “Coupling of a single diamond nanocrystal to a whispering-gallery microcavity: Photon transport benefitting from Rayleigh scattering,” Phys. Rev. A 84(1), 011805 (2011).
    [Crossref]
  10. M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86(4), 1391–1452 (2014).
    [Crossref]
  11. T. Carmon, H. Rokhsari, L. Yang, T. J. Kippenberg, and K. J. Vahala, “Temporal behavior of radiation-pressure-induced vibrations of an optical microcavity phonon mode,” Phys. Rev. Lett. 94(22), 223902 (2005).
    [Crossref] [PubMed]
  12. T. J. Kippenberg, H. Rokhsari, T. Carmon, A. Scherer, and K. J. Vahala, “Analysis of radiation-pressure induced mechanical oscillation of an optical microcavity,” Phys. Rev. Lett. 95(3), 033901 (2005).
    [Crossref] [PubMed]
  13. R. Ma, A. Schliesser, P. Del’haye, A. Dabirian, G. Anetsberger, and T. J. Kippenberg, “Radiation-pressure-driven vibrational modes in ultrahigh-Q silica microspheres,” Opt. Lett. 32(15), 2200–2202 (2007).
    [Crossref] [PubMed]
  14. E. Verhagen, S. Deléglise, S. Weis, A. Schliesser, and T. J. Kippenberg, “Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode,” Nature 482(7383), 63–67 (2012).
    [Crossref] [PubMed]
  15. V. Fiore, Y. Yang, M. C. Kuzyk, R. Barbour, L. Tian, and H. Wang, “Storing optical information as a mechanical excitation in a silica optomechanical resonator,” Phys. Rev. Lett. 107(13), 133601 (2011).
    [Crossref] [PubMed]
  16. V. Fiore, C. Dong, M. C. Kuzyk, and H. Wang, “Optomechanical light storage in a silica microresonator,” Phys. Rev. A 87(2), 023812 (2013).
    [Crossref]
  17. C. Dong, V. Fiore, M. C. Kuzyk, and H. Wang, “Optomechanical dark mode,” Science 338(6114), 1609–1613 (2012).
    [Crossref] [PubMed]
  18. C. Dong, V. Fiore, M. C. Kuzyk, and H. Wang, “Transient optomechanically induced transparency in a silica microsphere,” Phys. Rev. A 87(5), 055802 (2013).
    [Crossref]
  19. G. Anetsberger, O. Arcizet, Q. P. Unterreithmeier, R. Rivière, A. Schliesser, E. M. Weig, J. P. Kotthaus, and T. J. Kippenberg, “Near-field cavity optomechanics with nanomechanical oscillators,” Nat. Phys. 5(12), 909–914 (2009).
    [Crossref]
  20. T. Oo, C. Dong, V. Fiore, and H. Wang, “Evanescently coupled optomechanical system with SiN nanomechanical oscillator and deformed silica microsphere,” Appl. Phys. Lett. 103(3), 031116 (2013).
    [Crossref]
  21. G. Anetsberger, R. Rivière, A. Schliesser, O. Arcizet, and T. J. Kippenberg, “Ultralow-dissipation optomechanical resonators on a chip,” Nat. Photonics 2(10), 627–633 (2008).
    [Crossref]
  22. T. Kato, W. Yoshiki, R. Suzuki, and T. Tanabe, “Octagonal silica toroidal microcavity for controlled optical coupling,” Appl. Phys. Lett. 101(12), 121101 (2012).
    [Crossref]
  23. T. Carmon and K. J. Vahala, “Modal spectroscopy of optoexcited vibrations of a micron-scale on-chip resonator at greater than 1 GHz frequency,” Phys. Rev. Lett. 98(12), 123901 (2007).
    [Crossref] [PubMed]
  24. H. Fan, S. Hua, X. Jiang, and M. Xiao, “Demonstration of an erbium-doped microsphere laser on a silicon chip,” Laser Phys. Lett. 10(10), 105809 (2013).
    [Crossref]
  25. B.-B. Li, Y.-F. Xiao, M.-Y. Yan, W. R. Clements, and Q. Gong, “Low-threshold Raman laser from an on-chip, high-Q, polymer-coated microcavity,” Opt. Lett. 38(11), 1802–1804 (2013).
    [Crossref] [PubMed]
  26. T. Carmon, L. Yang, and K. Vahala, “Dynamical thermal behavior and thermal self-stability of microcavities,” Opt. Express 12(20), 4742–4750 (2004).
    [Crossref] [PubMed]
  27. C. J. Glassbrenner and G. A. Slack, “Thermal conductivity of silicon and germanium from 3 K to the melting point,” Phys. Rev. 134(4A), A1058–A1069 (1964).
    [Crossref]
  28. R. O. Pohl, X. Liu, and E. Thompson, “Low-temperature thermal conductivity and acoustic attenuation in amorphous solids,” Rev. Mod. Phys. 74(4), 991–1013 (2002).
    [Crossref]
  29. D. B. Leviton and B. J. Frey, “Temperature-dependent absolute refractive index measurements of synthetic fused silica,” Proc. SPIE 6273, 62732K (2006).

2014 (1)

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86(4), 1391–1452 (2014).
[Crossref]

2013 (6)

V. Fiore, C. Dong, M. C. Kuzyk, and H. Wang, “Optomechanical light storage in a silica microresonator,” Phys. Rev. A 87(2), 023812 (2013).
[Crossref]

L. Shao, X.-F. Jiang, X.-C. Yu, B.-B. Li, W. R. Clements, F. Vollmer, W. Wang, Y.-F. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25(39), 5616–5620 (2013).
[Crossref] [PubMed]

C. Dong, V. Fiore, M. C. Kuzyk, and H. Wang, “Transient optomechanically induced transparency in a silica microsphere,” Phys. Rev. A 87(5), 055802 (2013).
[Crossref]

T. Oo, C. Dong, V. Fiore, and H. Wang, “Evanescently coupled optomechanical system with SiN nanomechanical oscillator and deformed silica microsphere,” Appl. Phys. Lett. 103(3), 031116 (2013).
[Crossref]

H. Fan, S. Hua, X. Jiang, and M. Xiao, “Demonstration of an erbium-doped microsphere laser on a silicon chip,” Laser Phys. Lett. 10(10), 105809 (2013).
[Crossref]

B.-B. Li, Y.-F. Xiao, M.-Y. Yan, W. R. Clements, and Q. Gong, “Low-threshold Raman laser from an on-chip, high-Q, polymer-coated microcavity,” Opt. Lett. 38(11), 1802–1804 (2013).
[Crossref] [PubMed]

2012 (4)

T. Kato, W. Yoshiki, R. Suzuki, and T. Tanabe, “Octagonal silica toroidal microcavity for controlled optical coupling,” Appl. Phys. Lett. 101(12), 121101 (2012).
[Crossref]

X.-F. Jiang, Y.-F. Xiao, C.-L. Zou, L. He, C.-H. Dong, B.-B. Li, Y. Li, F.-W. Sun, L. Yang, and Q. Gong, “Highly unidirectional emission and ultralow-threshold lasing from on-chip ultrahigh-Q microcavities,” Adv. Mater. 24(35), OP260–OP264 (2012).
[Crossref] [PubMed]

C. Dong, V. Fiore, M. C. Kuzyk, and H. Wang, “Optomechanical dark mode,” Science 338(6114), 1609–1613 (2012).
[Crossref] [PubMed]

E. Verhagen, S. Deléglise, S. Weis, A. Schliesser, and T. J. Kippenberg, “Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode,” Nature 482(7383), 63–67 (2012).
[Crossref] [PubMed]

2011 (2)

V. Fiore, Y. Yang, M. C. Kuzyk, R. Barbour, L. Tian, and H. Wang, “Storing optical information as a mechanical excitation in a silica optomechanical resonator,” Phys. Rev. Lett. 107(13), 133601 (2011).
[Crossref] [PubMed]

Y.-C. Liu, Y.-F. Xiao, B.-B. Li, X.-F. Jiang, Y. Li, and Q. Gong, “Coupling of a single diamond nanocrystal to a whispering-gallery microcavity: Photon transport benefitting from Rayleigh scattering,” Phys. Rev. A 84(1), 011805 (2011).
[Crossref]

2010 (1)

J. Zhu, S. K. Ozdemir, Y. F. Xiao, L. Li, L. He, D. R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4(1), 46–49 (2010).
[Crossref]

2009 (1)

G. Anetsberger, O. Arcizet, Q. P. Unterreithmeier, R. Rivière, A. Schliesser, E. M. Weig, J. P. Kotthaus, and T. J. Kippenberg, “Near-field cavity optomechanics with nanomechanical oscillators,” Nat. Phys. 5(12), 909–914 (2009).
[Crossref]

2008 (2)

G. Anetsberger, R. Rivière, A. Schliesser, O. Arcizet, and T. J. Kippenberg, “Ultralow-dissipation optomechanical resonators on a chip,” Nat. Photonics 2(10), 627–633 (2008).
[Crossref]

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5(7), 591–596 (2008).
[Crossref] [PubMed]

2007 (2)

R. Ma, A. Schliesser, P. Del’haye, A. Dabirian, G. Anetsberger, and T. J. Kippenberg, “Radiation-pressure-driven vibrational modes in ultrahigh-Q silica microspheres,” Opt. Lett. 32(15), 2200–2202 (2007).
[Crossref] [PubMed]

T. Carmon and K. J. Vahala, “Modal spectroscopy of optoexcited vibrations of a micron-scale on-chip resonator at greater than 1 GHz frequency,” Phys. Rev. Lett. 98(12), 123901 (2007).
[Crossref] [PubMed]

2006 (2)

D. B. Leviton and B. J. Frey, “Temperature-dependent absolute refractive index measurements of synthetic fused silica,” Proc. SPIE 6273, 62732K (2006).

Y.-S. Park, A. K. Cook, and H. Wang, “Cavity QED with diamond nanocrystals and silica microspheres,” Nano Lett. 6(9), 2075–2079 (2006).
[Crossref] [PubMed]

2005 (3)

S. M. Spillane, T. J. Kippenberg, K. J. Vahala, K. W. Goh, E. Wilcut, and H. J. Kimble, “Ultrahigh-Q toroidal microresonators for cavity quantum electrodynamics,” Phys. Rev. A 71(1), 013817 (2005).
[Crossref]

T. Carmon, H. Rokhsari, L. Yang, T. J. Kippenberg, and K. J. Vahala, “Temporal behavior of radiation-pressure-induced vibrations of an optical microcavity phonon mode,” Phys. Rev. Lett. 94(22), 223902 (2005).
[Crossref] [PubMed]

T. J. Kippenberg, H. Rokhsari, T. Carmon, A. Scherer, and K. J. Vahala, “Analysis of radiation-pressure induced mechanical oscillation of an optical microcavity,” Phys. Rev. Lett. 95(3), 033901 (2005).
[Crossref] [PubMed]

2004 (1)

2003 (2)

K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
[Crossref] [PubMed]

L. Yang, D. K. Armani, and K. J. Vahala, “Fiber-coupled erbium microlasers on a chip,” Appl. Phys. Lett. 83(5), 825–826 (2003).
[Crossref]

2002 (1)

R. O. Pohl, X. Liu, and E. Thompson, “Low-temperature thermal conductivity and acoustic attenuation in amorphous solids,” Rev. Mod. Phys. 74(4), 991–1013 (2002).
[Crossref]

1964 (1)

C. J. Glassbrenner and G. A. Slack, “Thermal conductivity of silicon and germanium from 3 K to the melting point,” Phys. Rev. 134(4A), A1058–A1069 (1964).
[Crossref]

Anetsberger, G.

G. Anetsberger, O. Arcizet, Q. P. Unterreithmeier, R. Rivière, A. Schliesser, E. M. Weig, J. P. Kotthaus, and T. J. Kippenberg, “Near-field cavity optomechanics with nanomechanical oscillators,” Nat. Phys. 5(12), 909–914 (2009).
[Crossref]

G. Anetsberger, R. Rivière, A. Schliesser, O. Arcizet, and T. J. Kippenberg, “Ultralow-dissipation optomechanical resonators on a chip,” Nat. Photonics 2(10), 627–633 (2008).
[Crossref]

R. Ma, A. Schliesser, P. Del’haye, A. Dabirian, G. Anetsberger, and T. J. Kippenberg, “Radiation-pressure-driven vibrational modes in ultrahigh-Q silica microspheres,” Opt. Lett. 32(15), 2200–2202 (2007).
[Crossref] [PubMed]

Arcizet, O.

G. Anetsberger, O. Arcizet, Q. P. Unterreithmeier, R. Rivière, A. Schliesser, E. M. Weig, J. P. Kotthaus, and T. J. Kippenberg, “Near-field cavity optomechanics with nanomechanical oscillators,” Nat. Phys. 5(12), 909–914 (2009).
[Crossref]

G. Anetsberger, R. Rivière, A. Schliesser, O. Arcizet, and T. J. Kippenberg, “Ultralow-dissipation optomechanical resonators on a chip,” Nat. Photonics 2(10), 627–633 (2008).
[Crossref]

Armani, D. K.

L. Yang, D. K. Armani, and K. J. Vahala, “Fiber-coupled erbium microlasers on a chip,” Appl. Phys. Lett. 83(5), 825–826 (2003).
[Crossref]

Arnold, S.

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5(7), 591–596 (2008).
[Crossref] [PubMed]

Aspelmeyer, M.

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86(4), 1391–1452 (2014).
[Crossref]

Barbour, R.

V. Fiore, Y. Yang, M. C. Kuzyk, R. Barbour, L. Tian, and H. Wang, “Storing optical information as a mechanical excitation in a silica optomechanical resonator,” Phys. Rev. Lett. 107(13), 133601 (2011).
[Crossref] [PubMed]

Carmon, T.

T. Carmon and K. J. Vahala, “Modal spectroscopy of optoexcited vibrations of a micron-scale on-chip resonator at greater than 1 GHz frequency,” Phys. Rev. Lett. 98(12), 123901 (2007).
[Crossref] [PubMed]

T. Carmon, H. Rokhsari, L. Yang, T. J. Kippenberg, and K. J. Vahala, “Temporal behavior of radiation-pressure-induced vibrations of an optical microcavity phonon mode,” Phys. Rev. Lett. 94(22), 223902 (2005).
[Crossref] [PubMed]

T. J. Kippenberg, H. Rokhsari, T. Carmon, A. Scherer, and K. J. Vahala, “Analysis of radiation-pressure induced mechanical oscillation of an optical microcavity,” Phys. Rev. Lett. 95(3), 033901 (2005).
[Crossref] [PubMed]

T. Carmon, L. Yang, and K. Vahala, “Dynamical thermal behavior and thermal self-stability of microcavities,” Opt. Express 12(20), 4742–4750 (2004).
[Crossref] [PubMed]

Chen, D. R.

J. Zhu, S. K. Ozdemir, Y. F. Xiao, L. Li, L. He, D. R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4(1), 46–49 (2010).
[Crossref]

Clements, W. R.

L. Shao, X.-F. Jiang, X.-C. Yu, B.-B. Li, W. R. Clements, F. Vollmer, W. Wang, Y.-F. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25(39), 5616–5620 (2013).
[Crossref] [PubMed]

B.-B. Li, Y.-F. Xiao, M.-Y. Yan, W. R. Clements, and Q. Gong, “Low-threshold Raman laser from an on-chip, high-Q, polymer-coated microcavity,” Opt. Lett. 38(11), 1802–1804 (2013).
[Crossref] [PubMed]

Cook, A. K.

Y.-S. Park, A. K. Cook, and H. Wang, “Cavity QED with diamond nanocrystals and silica microspheres,” Nano Lett. 6(9), 2075–2079 (2006).
[Crossref] [PubMed]

Dabirian, A.

Del’haye, P.

Deléglise, S.

E. Verhagen, S. Deléglise, S. Weis, A. Schliesser, and T. J. Kippenberg, “Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode,” Nature 482(7383), 63–67 (2012).
[Crossref] [PubMed]

Dong, C.

T. Oo, C. Dong, V. Fiore, and H. Wang, “Evanescently coupled optomechanical system with SiN nanomechanical oscillator and deformed silica microsphere,” Appl. Phys. Lett. 103(3), 031116 (2013).
[Crossref]

V. Fiore, C. Dong, M. C. Kuzyk, and H. Wang, “Optomechanical light storage in a silica microresonator,” Phys. Rev. A 87(2), 023812 (2013).
[Crossref]

C. Dong, V. Fiore, M. C. Kuzyk, and H. Wang, “Transient optomechanically induced transparency in a silica microsphere,” Phys. Rev. A 87(5), 055802 (2013).
[Crossref]

C. Dong, V. Fiore, M. C. Kuzyk, and H. Wang, “Optomechanical dark mode,” Science 338(6114), 1609–1613 (2012).
[Crossref] [PubMed]

Dong, C.-H.

X.-F. Jiang, Y.-F. Xiao, C.-L. Zou, L. He, C.-H. Dong, B.-B. Li, Y. Li, F.-W. Sun, L. Yang, and Q. Gong, “Highly unidirectional emission and ultralow-threshold lasing from on-chip ultrahigh-Q microcavities,” Adv. Mater. 24(35), OP260–OP264 (2012).
[Crossref] [PubMed]

Fan, H.

H. Fan, S. Hua, X. Jiang, and M. Xiao, “Demonstration of an erbium-doped microsphere laser on a silicon chip,” Laser Phys. Lett. 10(10), 105809 (2013).
[Crossref]

Fiore, V.

C. Dong, V. Fiore, M. C. Kuzyk, and H. Wang, “Transient optomechanically induced transparency in a silica microsphere,” Phys. Rev. A 87(5), 055802 (2013).
[Crossref]

T. Oo, C. Dong, V. Fiore, and H. Wang, “Evanescently coupled optomechanical system with SiN nanomechanical oscillator and deformed silica microsphere,” Appl. Phys. Lett. 103(3), 031116 (2013).
[Crossref]

V. Fiore, C. Dong, M. C. Kuzyk, and H. Wang, “Optomechanical light storage in a silica microresonator,” Phys. Rev. A 87(2), 023812 (2013).
[Crossref]

C. Dong, V. Fiore, M. C. Kuzyk, and H. Wang, “Optomechanical dark mode,” Science 338(6114), 1609–1613 (2012).
[Crossref] [PubMed]

V. Fiore, Y. Yang, M. C. Kuzyk, R. Barbour, L. Tian, and H. Wang, “Storing optical information as a mechanical excitation in a silica optomechanical resonator,” Phys. Rev. Lett. 107(13), 133601 (2011).
[Crossref] [PubMed]

Frey, B. J.

D. B. Leviton and B. J. Frey, “Temperature-dependent absolute refractive index measurements of synthetic fused silica,” Proc. SPIE 6273, 62732K (2006).

Glassbrenner, C. J.

C. J. Glassbrenner and G. A. Slack, “Thermal conductivity of silicon and germanium from 3 K to the melting point,” Phys. Rev. 134(4A), A1058–A1069 (1964).
[Crossref]

Goh, K. W.

S. M. Spillane, T. J. Kippenberg, K. J. Vahala, K. W. Goh, E. Wilcut, and H. J. Kimble, “Ultrahigh-Q toroidal microresonators for cavity quantum electrodynamics,” Phys. Rev. A 71(1), 013817 (2005).
[Crossref]

Gong, Q.

L. Shao, X.-F. Jiang, X.-C. Yu, B.-B. Li, W. R. Clements, F. Vollmer, W. Wang, Y.-F. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25(39), 5616–5620 (2013).
[Crossref] [PubMed]

B.-B. Li, Y.-F. Xiao, M.-Y. Yan, W. R. Clements, and Q. Gong, “Low-threshold Raman laser from an on-chip, high-Q, polymer-coated microcavity,” Opt. Lett. 38(11), 1802–1804 (2013).
[Crossref] [PubMed]

X.-F. Jiang, Y.-F. Xiao, C.-L. Zou, L. He, C.-H. Dong, B.-B. Li, Y. Li, F.-W. Sun, L. Yang, and Q. Gong, “Highly unidirectional emission and ultralow-threshold lasing from on-chip ultrahigh-Q microcavities,” Adv. Mater. 24(35), OP260–OP264 (2012).
[Crossref] [PubMed]

Y.-C. Liu, Y.-F. Xiao, B.-B. Li, X.-F. Jiang, Y. Li, and Q. Gong, “Coupling of a single diamond nanocrystal to a whispering-gallery microcavity: Photon transport benefitting from Rayleigh scattering,” Phys. Rev. A 84(1), 011805 (2011).
[Crossref]

He, L.

X.-F. Jiang, Y.-F. Xiao, C.-L. Zou, L. He, C.-H. Dong, B.-B. Li, Y. Li, F.-W. Sun, L. Yang, and Q. Gong, “Highly unidirectional emission and ultralow-threshold lasing from on-chip ultrahigh-Q microcavities,” Adv. Mater. 24(35), OP260–OP264 (2012).
[Crossref] [PubMed]

J. Zhu, S. K. Ozdemir, Y. F. Xiao, L. Li, L. He, D. R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4(1), 46–49 (2010).
[Crossref]

Hua, S.

H. Fan, S. Hua, X. Jiang, and M. Xiao, “Demonstration of an erbium-doped microsphere laser on a silicon chip,” Laser Phys. Lett. 10(10), 105809 (2013).
[Crossref]

Jiang, X.

H. Fan, S. Hua, X. Jiang, and M. Xiao, “Demonstration of an erbium-doped microsphere laser on a silicon chip,” Laser Phys. Lett. 10(10), 105809 (2013).
[Crossref]

Jiang, X.-F.

L. Shao, X.-F. Jiang, X.-C. Yu, B.-B. Li, W. R. Clements, F. Vollmer, W. Wang, Y.-F. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25(39), 5616–5620 (2013).
[Crossref] [PubMed]

X.-F. Jiang, Y.-F. Xiao, C.-L. Zou, L. He, C.-H. Dong, B.-B. Li, Y. Li, F.-W. Sun, L. Yang, and Q. Gong, “Highly unidirectional emission and ultralow-threshold lasing from on-chip ultrahigh-Q microcavities,” Adv. Mater. 24(35), OP260–OP264 (2012).
[Crossref] [PubMed]

Y.-C. Liu, Y.-F. Xiao, B.-B. Li, X.-F. Jiang, Y. Li, and Q. Gong, “Coupling of a single diamond nanocrystal to a whispering-gallery microcavity: Photon transport benefitting from Rayleigh scattering,” Phys. Rev. A 84(1), 011805 (2011).
[Crossref]

Kato, T.

T. Kato, W. Yoshiki, R. Suzuki, and T. Tanabe, “Octagonal silica toroidal microcavity for controlled optical coupling,” Appl. Phys. Lett. 101(12), 121101 (2012).
[Crossref]

Kimble, H. J.

S. M. Spillane, T. J. Kippenberg, K. J. Vahala, K. W. Goh, E. Wilcut, and H. J. Kimble, “Ultrahigh-Q toroidal microresonators for cavity quantum electrodynamics,” Phys. Rev. A 71(1), 013817 (2005).
[Crossref]

Kippenberg, T. J.

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86(4), 1391–1452 (2014).
[Crossref]

E. Verhagen, S. Deléglise, S. Weis, A. Schliesser, and T. J. Kippenberg, “Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode,” Nature 482(7383), 63–67 (2012).
[Crossref] [PubMed]

G. Anetsberger, O. Arcizet, Q. P. Unterreithmeier, R. Rivière, A. Schliesser, E. M. Weig, J. P. Kotthaus, and T. J. Kippenberg, “Near-field cavity optomechanics with nanomechanical oscillators,” Nat. Phys. 5(12), 909–914 (2009).
[Crossref]

G. Anetsberger, R. Rivière, A. Schliesser, O. Arcizet, and T. J. Kippenberg, “Ultralow-dissipation optomechanical resonators on a chip,” Nat. Photonics 2(10), 627–633 (2008).
[Crossref]

R. Ma, A. Schliesser, P. Del’haye, A. Dabirian, G. Anetsberger, and T. J. Kippenberg, “Radiation-pressure-driven vibrational modes in ultrahigh-Q silica microspheres,” Opt. Lett. 32(15), 2200–2202 (2007).
[Crossref] [PubMed]

T. Carmon, H. Rokhsari, L. Yang, T. J. Kippenberg, and K. J. Vahala, “Temporal behavior of radiation-pressure-induced vibrations of an optical microcavity phonon mode,” Phys. Rev. Lett. 94(22), 223902 (2005).
[Crossref] [PubMed]

T. J. Kippenberg, H. Rokhsari, T. Carmon, A. Scherer, and K. J. Vahala, “Analysis of radiation-pressure induced mechanical oscillation of an optical microcavity,” Phys. Rev. Lett. 95(3), 033901 (2005).
[Crossref] [PubMed]

S. M. Spillane, T. J. Kippenberg, K. J. Vahala, K. W. Goh, E. Wilcut, and H. J. Kimble, “Ultrahigh-Q toroidal microresonators for cavity quantum electrodynamics,” Phys. Rev. A 71(1), 013817 (2005).
[Crossref]

Kotthaus, J. P.

G. Anetsberger, O. Arcizet, Q. P. Unterreithmeier, R. Rivière, A. Schliesser, E. M. Weig, J. P. Kotthaus, and T. J. Kippenberg, “Near-field cavity optomechanics with nanomechanical oscillators,” Nat. Phys. 5(12), 909–914 (2009).
[Crossref]

Kuzyk, M. C.

V. Fiore, C. Dong, M. C. Kuzyk, and H. Wang, “Optomechanical light storage in a silica microresonator,” Phys. Rev. A 87(2), 023812 (2013).
[Crossref]

C. Dong, V. Fiore, M. C. Kuzyk, and H. Wang, “Transient optomechanically induced transparency in a silica microsphere,” Phys. Rev. A 87(5), 055802 (2013).
[Crossref]

C. Dong, V. Fiore, M. C. Kuzyk, and H. Wang, “Optomechanical dark mode,” Science 338(6114), 1609–1613 (2012).
[Crossref] [PubMed]

V. Fiore, Y. Yang, M. C. Kuzyk, R. Barbour, L. Tian, and H. Wang, “Storing optical information as a mechanical excitation in a silica optomechanical resonator,” Phys. Rev. Lett. 107(13), 133601 (2011).
[Crossref] [PubMed]

Leviton, D. B.

D. B. Leviton and B. J. Frey, “Temperature-dependent absolute refractive index measurements of synthetic fused silica,” Proc. SPIE 6273, 62732K (2006).

Li, B.-B.

B.-B. Li, Y.-F. Xiao, M.-Y. Yan, W. R. Clements, and Q. Gong, “Low-threshold Raman laser from an on-chip, high-Q, polymer-coated microcavity,” Opt. Lett. 38(11), 1802–1804 (2013).
[Crossref] [PubMed]

L. Shao, X.-F. Jiang, X.-C. Yu, B.-B. Li, W. R. Clements, F. Vollmer, W. Wang, Y.-F. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25(39), 5616–5620 (2013).
[Crossref] [PubMed]

X.-F. Jiang, Y.-F. Xiao, C.-L. Zou, L. He, C.-H. Dong, B.-B. Li, Y. Li, F.-W. Sun, L. Yang, and Q. Gong, “Highly unidirectional emission and ultralow-threshold lasing from on-chip ultrahigh-Q microcavities,” Adv. Mater. 24(35), OP260–OP264 (2012).
[Crossref] [PubMed]

Y.-C. Liu, Y.-F. Xiao, B.-B. Li, X.-F. Jiang, Y. Li, and Q. Gong, “Coupling of a single diamond nanocrystal to a whispering-gallery microcavity: Photon transport benefitting from Rayleigh scattering,” Phys. Rev. A 84(1), 011805 (2011).
[Crossref]

Li, L.

J. Zhu, S. K. Ozdemir, Y. F. Xiao, L. Li, L. He, D. R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4(1), 46–49 (2010).
[Crossref]

Li, Y.

X.-F. Jiang, Y.-F. Xiao, C.-L. Zou, L. He, C.-H. Dong, B.-B. Li, Y. Li, F.-W. Sun, L. Yang, and Q. Gong, “Highly unidirectional emission and ultralow-threshold lasing from on-chip ultrahigh-Q microcavities,” Adv. Mater. 24(35), OP260–OP264 (2012).
[Crossref] [PubMed]

Y.-C. Liu, Y.-F. Xiao, B.-B. Li, X.-F. Jiang, Y. Li, and Q. Gong, “Coupling of a single diamond nanocrystal to a whispering-gallery microcavity: Photon transport benefitting from Rayleigh scattering,” Phys. Rev. A 84(1), 011805 (2011).
[Crossref]

Liu, X.

R. O. Pohl, X. Liu, and E. Thompson, “Low-temperature thermal conductivity and acoustic attenuation in amorphous solids,” Rev. Mod. Phys. 74(4), 991–1013 (2002).
[Crossref]

Liu, Y.-C.

Y.-C. Liu, Y.-F. Xiao, B.-B. Li, X.-F. Jiang, Y. Li, and Q. Gong, “Coupling of a single diamond nanocrystal to a whispering-gallery microcavity: Photon transport benefitting from Rayleigh scattering,” Phys. Rev. A 84(1), 011805 (2011).
[Crossref]

Ma, R.

Marquardt, F.

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86(4), 1391–1452 (2014).
[Crossref]

Oo, T.

T. Oo, C. Dong, V. Fiore, and H. Wang, “Evanescently coupled optomechanical system with SiN nanomechanical oscillator and deformed silica microsphere,” Appl. Phys. Lett. 103(3), 031116 (2013).
[Crossref]

Ozdemir, S. K.

J. Zhu, S. K. Ozdemir, Y. F. Xiao, L. Li, L. He, D. R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4(1), 46–49 (2010).
[Crossref]

Park, Y.-S.

Y.-S. Park, A. K. Cook, and H. Wang, “Cavity QED with diamond nanocrystals and silica microspheres,” Nano Lett. 6(9), 2075–2079 (2006).
[Crossref] [PubMed]

Pohl, R. O.

R. O. Pohl, X. Liu, and E. Thompson, “Low-temperature thermal conductivity and acoustic attenuation in amorphous solids,” Rev. Mod. Phys. 74(4), 991–1013 (2002).
[Crossref]

Rivière, R.

G. Anetsberger, O. Arcizet, Q. P. Unterreithmeier, R. Rivière, A. Schliesser, E. M. Weig, J. P. Kotthaus, and T. J. Kippenberg, “Near-field cavity optomechanics with nanomechanical oscillators,” Nat. Phys. 5(12), 909–914 (2009).
[Crossref]

G. Anetsberger, R. Rivière, A. Schliesser, O. Arcizet, and T. J. Kippenberg, “Ultralow-dissipation optomechanical resonators on a chip,” Nat. Photonics 2(10), 627–633 (2008).
[Crossref]

Rokhsari, H.

T. Carmon, H. Rokhsari, L. Yang, T. J. Kippenberg, and K. J. Vahala, “Temporal behavior of radiation-pressure-induced vibrations of an optical microcavity phonon mode,” Phys. Rev. Lett. 94(22), 223902 (2005).
[Crossref] [PubMed]

T. J. Kippenberg, H. Rokhsari, T. Carmon, A. Scherer, and K. J. Vahala, “Analysis of radiation-pressure induced mechanical oscillation of an optical microcavity,” Phys. Rev. Lett. 95(3), 033901 (2005).
[Crossref] [PubMed]

Scherer, A.

T. J. Kippenberg, H. Rokhsari, T. Carmon, A. Scherer, and K. J. Vahala, “Analysis of radiation-pressure induced mechanical oscillation of an optical microcavity,” Phys. Rev. Lett. 95(3), 033901 (2005).
[Crossref] [PubMed]

Schliesser, A.

E. Verhagen, S. Deléglise, S. Weis, A. Schliesser, and T. J. Kippenberg, “Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode,” Nature 482(7383), 63–67 (2012).
[Crossref] [PubMed]

G. Anetsberger, O. Arcizet, Q. P. Unterreithmeier, R. Rivière, A. Schliesser, E. M. Weig, J. P. Kotthaus, and T. J. Kippenberg, “Near-field cavity optomechanics with nanomechanical oscillators,” Nat. Phys. 5(12), 909–914 (2009).
[Crossref]

G. Anetsberger, R. Rivière, A. Schliesser, O. Arcizet, and T. J. Kippenberg, “Ultralow-dissipation optomechanical resonators on a chip,” Nat. Photonics 2(10), 627–633 (2008).
[Crossref]

R. Ma, A. Schliesser, P. Del’haye, A. Dabirian, G. Anetsberger, and T. J. Kippenberg, “Radiation-pressure-driven vibrational modes in ultrahigh-Q silica microspheres,” Opt. Lett. 32(15), 2200–2202 (2007).
[Crossref] [PubMed]

Shao, L.

L. Shao, X.-F. Jiang, X.-C. Yu, B.-B. Li, W. R. Clements, F. Vollmer, W. Wang, Y.-F. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25(39), 5616–5620 (2013).
[Crossref] [PubMed]

Slack, G. A.

C. J. Glassbrenner and G. A. Slack, “Thermal conductivity of silicon and germanium from 3 K to the melting point,” Phys. Rev. 134(4A), A1058–A1069 (1964).
[Crossref]

Spillane, S. M.

S. M. Spillane, T. J. Kippenberg, K. J. Vahala, K. W. Goh, E. Wilcut, and H. J. Kimble, “Ultrahigh-Q toroidal microresonators for cavity quantum electrodynamics,” Phys. Rev. A 71(1), 013817 (2005).
[Crossref]

Sun, F.-W.

X.-F. Jiang, Y.-F. Xiao, C.-L. Zou, L. He, C.-H. Dong, B.-B. Li, Y. Li, F.-W. Sun, L. Yang, and Q. Gong, “Highly unidirectional emission and ultralow-threshold lasing from on-chip ultrahigh-Q microcavities,” Adv. Mater. 24(35), OP260–OP264 (2012).
[Crossref] [PubMed]

Suzuki, R.

T. Kato, W. Yoshiki, R. Suzuki, and T. Tanabe, “Octagonal silica toroidal microcavity for controlled optical coupling,” Appl. Phys. Lett. 101(12), 121101 (2012).
[Crossref]

Tanabe, T.

T. Kato, W. Yoshiki, R. Suzuki, and T. Tanabe, “Octagonal silica toroidal microcavity for controlled optical coupling,” Appl. Phys. Lett. 101(12), 121101 (2012).
[Crossref]

Thompson, E.

R. O. Pohl, X. Liu, and E. Thompson, “Low-temperature thermal conductivity and acoustic attenuation in amorphous solids,” Rev. Mod. Phys. 74(4), 991–1013 (2002).
[Crossref]

Tian, L.

V. Fiore, Y. Yang, M. C. Kuzyk, R. Barbour, L. Tian, and H. Wang, “Storing optical information as a mechanical excitation in a silica optomechanical resonator,” Phys. Rev. Lett. 107(13), 133601 (2011).
[Crossref] [PubMed]

Unterreithmeier, Q. P.

G. Anetsberger, O. Arcizet, Q. P. Unterreithmeier, R. Rivière, A. Schliesser, E. M. Weig, J. P. Kotthaus, and T. J. Kippenberg, “Near-field cavity optomechanics with nanomechanical oscillators,” Nat. Phys. 5(12), 909–914 (2009).
[Crossref]

Vahala, K.

Vahala, K. J.

T. Carmon and K. J. Vahala, “Modal spectroscopy of optoexcited vibrations of a micron-scale on-chip resonator at greater than 1 GHz frequency,” Phys. Rev. Lett. 98(12), 123901 (2007).
[Crossref] [PubMed]

S. M. Spillane, T. J. Kippenberg, K. J. Vahala, K. W. Goh, E. Wilcut, and H. J. Kimble, “Ultrahigh-Q toroidal microresonators for cavity quantum electrodynamics,” Phys. Rev. A 71(1), 013817 (2005).
[Crossref]

T. J. Kippenberg, H. Rokhsari, T. Carmon, A. Scherer, and K. J. Vahala, “Analysis of radiation-pressure induced mechanical oscillation of an optical microcavity,” Phys. Rev. Lett. 95(3), 033901 (2005).
[Crossref] [PubMed]

T. Carmon, H. Rokhsari, L. Yang, T. J. Kippenberg, and K. J. Vahala, “Temporal behavior of radiation-pressure-induced vibrations of an optical microcavity phonon mode,” Phys. Rev. Lett. 94(22), 223902 (2005).
[Crossref] [PubMed]

L. Yang, D. K. Armani, and K. J. Vahala, “Fiber-coupled erbium microlasers on a chip,” Appl. Phys. Lett. 83(5), 825–826 (2003).
[Crossref]

K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
[Crossref] [PubMed]

Verhagen, E.

E. Verhagen, S. Deléglise, S. Weis, A. Schliesser, and T. J. Kippenberg, “Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode,” Nature 482(7383), 63–67 (2012).
[Crossref] [PubMed]

Vollmer, F.

L. Shao, X.-F. Jiang, X.-C. Yu, B.-B. Li, W. R. Clements, F. Vollmer, W. Wang, Y.-F. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25(39), 5616–5620 (2013).
[Crossref] [PubMed]

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5(7), 591–596 (2008).
[Crossref] [PubMed]

Wang, H.

T. Oo, C. Dong, V. Fiore, and H. Wang, “Evanescently coupled optomechanical system with SiN nanomechanical oscillator and deformed silica microsphere,” Appl. Phys. Lett. 103(3), 031116 (2013).
[Crossref]

C. Dong, V. Fiore, M. C. Kuzyk, and H. Wang, “Transient optomechanically induced transparency in a silica microsphere,” Phys. Rev. A 87(5), 055802 (2013).
[Crossref]

V. Fiore, C. Dong, M. C. Kuzyk, and H. Wang, “Optomechanical light storage in a silica microresonator,” Phys. Rev. A 87(2), 023812 (2013).
[Crossref]

C. Dong, V. Fiore, M. C. Kuzyk, and H. Wang, “Optomechanical dark mode,” Science 338(6114), 1609–1613 (2012).
[Crossref] [PubMed]

V. Fiore, Y. Yang, M. C. Kuzyk, R. Barbour, L. Tian, and H. Wang, “Storing optical information as a mechanical excitation in a silica optomechanical resonator,” Phys. Rev. Lett. 107(13), 133601 (2011).
[Crossref] [PubMed]

Y.-S. Park, A. K. Cook, and H. Wang, “Cavity QED with diamond nanocrystals and silica microspheres,” Nano Lett. 6(9), 2075–2079 (2006).
[Crossref] [PubMed]

Wang, W.

L. Shao, X.-F. Jiang, X.-C. Yu, B.-B. Li, W. R. Clements, F. Vollmer, W. Wang, Y.-F. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25(39), 5616–5620 (2013).
[Crossref] [PubMed]

Weig, E. M.

G. Anetsberger, O. Arcizet, Q. P. Unterreithmeier, R. Rivière, A. Schliesser, E. M. Weig, J. P. Kotthaus, and T. J. Kippenberg, “Near-field cavity optomechanics with nanomechanical oscillators,” Nat. Phys. 5(12), 909–914 (2009).
[Crossref]

Weis, S.

E. Verhagen, S. Deléglise, S. Weis, A. Schliesser, and T. J. Kippenberg, “Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode,” Nature 482(7383), 63–67 (2012).
[Crossref] [PubMed]

Wilcut, E.

S. M. Spillane, T. J. Kippenberg, K. J. Vahala, K. W. Goh, E. Wilcut, and H. J. Kimble, “Ultrahigh-Q toroidal microresonators for cavity quantum electrodynamics,” Phys. Rev. A 71(1), 013817 (2005).
[Crossref]

Xiao, M.

H. Fan, S. Hua, X. Jiang, and M. Xiao, “Demonstration of an erbium-doped microsphere laser on a silicon chip,” Laser Phys. Lett. 10(10), 105809 (2013).
[Crossref]

Xiao, Y. F.

J. Zhu, S. K. Ozdemir, Y. F. Xiao, L. Li, L. He, D. R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4(1), 46–49 (2010).
[Crossref]

Xiao, Y.-F.

L. Shao, X.-F. Jiang, X.-C. Yu, B.-B. Li, W. R. Clements, F. Vollmer, W. Wang, Y.-F. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25(39), 5616–5620 (2013).
[Crossref] [PubMed]

B.-B. Li, Y.-F. Xiao, M.-Y. Yan, W. R. Clements, and Q. Gong, “Low-threshold Raman laser from an on-chip, high-Q, polymer-coated microcavity,” Opt. Lett. 38(11), 1802–1804 (2013).
[Crossref] [PubMed]

X.-F. Jiang, Y.-F. Xiao, C.-L. Zou, L. He, C.-H. Dong, B.-B. Li, Y. Li, F.-W. Sun, L. Yang, and Q. Gong, “Highly unidirectional emission and ultralow-threshold lasing from on-chip ultrahigh-Q microcavities,” Adv. Mater. 24(35), OP260–OP264 (2012).
[Crossref] [PubMed]

Y.-C. Liu, Y.-F. Xiao, B.-B. Li, X.-F. Jiang, Y. Li, and Q. Gong, “Coupling of a single diamond nanocrystal to a whispering-gallery microcavity: Photon transport benefitting from Rayleigh scattering,” Phys. Rev. A 84(1), 011805 (2011).
[Crossref]

Yan, M.-Y.

Yang, L.

X.-F. Jiang, Y.-F. Xiao, C.-L. Zou, L. He, C.-H. Dong, B.-B. Li, Y. Li, F.-W. Sun, L. Yang, and Q. Gong, “Highly unidirectional emission and ultralow-threshold lasing from on-chip ultrahigh-Q microcavities,” Adv. Mater. 24(35), OP260–OP264 (2012).
[Crossref] [PubMed]

J. Zhu, S. K. Ozdemir, Y. F. Xiao, L. Li, L. He, D. R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4(1), 46–49 (2010).
[Crossref]

T. Carmon, H. Rokhsari, L. Yang, T. J. Kippenberg, and K. J. Vahala, “Temporal behavior of radiation-pressure-induced vibrations of an optical microcavity phonon mode,” Phys. Rev. Lett. 94(22), 223902 (2005).
[Crossref] [PubMed]

T. Carmon, L. Yang, and K. Vahala, “Dynamical thermal behavior and thermal self-stability of microcavities,” Opt. Express 12(20), 4742–4750 (2004).
[Crossref] [PubMed]

L. Yang, D. K. Armani, and K. J. Vahala, “Fiber-coupled erbium microlasers on a chip,” Appl. Phys. Lett. 83(5), 825–826 (2003).
[Crossref]

Yang, Y.

V. Fiore, Y. Yang, M. C. Kuzyk, R. Barbour, L. Tian, and H. Wang, “Storing optical information as a mechanical excitation in a silica optomechanical resonator,” Phys. Rev. Lett. 107(13), 133601 (2011).
[Crossref] [PubMed]

Yoshiki, W.

T. Kato, W. Yoshiki, R. Suzuki, and T. Tanabe, “Octagonal silica toroidal microcavity for controlled optical coupling,” Appl. Phys. Lett. 101(12), 121101 (2012).
[Crossref]

Yu, X.-C.

L. Shao, X.-F. Jiang, X.-C. Yu, B.-B. Li, W. R. Clements, F. Vollmer, W. Wang, Y.-F. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25(39), 5616–5620 (2013).
[Crossref] [PubMed]

Zhu, J.

J. Zhu, S. K. Ozdemir, Y. F. Xiao, L. Li, L. He, D. R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4(1), 46–49 (2010).
[Crossref]

Zou, C.-L.

X.-F. Jiang, Y.-F. Xiao, C.-L. Zou, L. He, C.-H. Dong, B.-B. Li, Y. Li, F.-W. Sun, L. Yang, and Q. Gong, “Highly unidirectional emission and ultralow-threshold lasing from on-chip ultrahigh-Q microcavities,” Adv. Mater. 24(35), OP260–OP264 (2012).
[Crossref] [PubMed]

Adv. Mater. (2)

L. Shao, X.-F. Jiang, X.-C. Yu, B.-B. Li, W. R. Clements, F. Vollmer, W. Wang, Y.-F. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25(39), 5616–5620 (2013).
[Crossref] [PubMed]

X.-F. Jiang, Y.-F. Xiao, C.-L. Zou, L. He, C.-H. Dong, B.-B. Li, Y. Li, F.-W. Sun, L. Yang, and Q. Gong, “Highly unidirectional emission and ultralow-threshold lasing from on-chip ultrahigh-Q microcavities,” Adv. Mater. 24(35), OP260–OP264 (2012).
[Crossref] [PubMed]

Appl. Phys. Lett. (3)

L. Yang, D. K. Armani, and K. J. Vahala, “Fiber-coupled erbium microlasers on a chip,” Appl. Phys. Lett. 83(5), 825–826 (2003).
[Crossref]

T. Oo, C. Dong, V. Fiore, and H. Wang, “Evanescently coupled optomechanical system with SiN nanomechanical oscillator and deformed silica microsphere,” Appl. Phys. Lett. 103(3), 031116 (2013).
[Crossref]

T. Kato, W. Yoshiki, R. Suzuki, and T. Tanabe, “Octagonal silica toroidal microcavity for controlled optical coupling,” Appl. Phys. Lett. 101(12), 121101 (2012).
[Crossref]

Laser Phys. Lett. (1)

H. Fan, S. Hua, X. Jiang, and M. Xiao, “Demonstration of an erbium-doped microsphere laser on a silicon chip,” Laser Phys. Lett. 10(10), 105809 (2013).
[Crossref]

Nano Lett. (1)

Y.-S. Park, A. K. Cook, and H. Wang, “Cavity QED with diamond nanocrystals and silica microspheres,” Nano Lett. 6(9), 2075–2079 (2006).
[Crossref] [PubMed]

Nat. Methods (1)

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5(7), 591–596 (2008).
[Crossref] [PubMed]

Nat. Photonics (2)

J. Zhu, S. K. Ozdemir, Y. F. Xiao, L. Li, L. He, D. R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4(1), 46–49 (2010).
[Crossref]

G. Anetsberger, R. Rivière, A. Schliesser, O. Arcizet, and T. J. Kippenberg, “Ultralow-dissipation optomechanical resonators on a chip,” Nat. Photonics 2(10), 627–633 (2008).
[Crossref]

Nat. Phys. (1)

G. Anetsberger, O. Arcizet, Q. P. Unterreithmeier, R. Rivière, A. Schliesser, E. M. Weig, J. P. Kotthaus, and T. J. Kippenberg, “Near-field cavity optomechanics with nanomechanical oscillators,” Nat. Phys. 5(12), 909–914 (2009).
[Crossref]

Nature (2)

K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
[Crossref] [PubMed]

E. Verhagen, S. Deléglise, S. Weis, A. Schliesser, and T. J. Kippenberg, “Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode,” Nature 482(7383), 63–67 (2012).
[Crossref] [PubMed]

Opt. Express (1)

Opt. Lett. (2)

Phys. Rev. (1)

C. J. Glassbrenner and G. A. Slack, “Thermal conductivity of silicon and germanium from 3 K to the melting point,” Phys. Rev. 134(4A), A1058–A1069 (1964).
[Crossref]

Phys. Rev. A (4)

C. Dong, V. Fiore, M. C. Kuzyk, and H. Wang, “Transient optomechanically induced transparency in a silica microsphere,” Phys. Rev. A 87(5), 055802 (2013).
[Crossref]

V. Fiore, C. Dong, M. C. Kuzyk, and H. Wang, “Optomechanical light storage in a silica microresonator,” Phys. Rev. A 87(2), 023812 (2013).
[Crossref]

Y.-C. Liu, Y.-F. Xiao, B.-B. Li, X.-F. Jiang, Y. Li, and Q. Gong, “Coupling of a single diamond nanocrystal to a whispering-gallery microcavity: Photon transport benefitting from Rayleigh scattering,” Phys. Rev. A 84(1), 011805 (2011).
[Crossref]

S. M. Spillane, T. J. Kippenberg, K. J. Vahala, K. W. Goh, E. Wilcut, and H. J. Kimble, “Ultrahigh-Q toroidal microresonators for cavity quantum electrodynamics,” Phys. Rev. A 71(1), 013817 (2005).
[Crossref]

Phys. Rev. Lett. (4)

V. Fiore, Y. Yang, M. C. Kuzyk, R. Barbour, L. Tian, and H. Wang, “Storing optical information as a mechanical excitation in a silica optomechanical resonator,” Phys. Rev. Lett. 107(13), 133601 (2011).
[Crossref] [PubMed]

T. Carmon, H. Rokhsari, L. Yang, T. J. Kippenberg, and K. J. Vahala, “Temporal behavior of radiation-pressure-induced vibrations of an optical microcavity phonon mode,” Phys. Rev. Lett. 94(22), 223902 (2005).
[Crossref] [PubMed]

T. J. Kippenberg, H. Rokhsari, T. Carmon, A. Scherer, and K. J. Vahala, “Analysis of radiation-pressure induced mechanical oscillation of an optical microcavity,” Phys. Rev. Lett. 95(3), 033901 (2005).
[Crossref] [PubMed]

T. Carmon and K. J. Vahala, “Modal spectroscopy of optoexcited vibrations of a micron-scale on-chip resonator at greater than 1 GHz frequency,” Phys. Rev. Lett. 98(12), 123901 (2007).
[Crossref] [PubMed]

Proc. SPIE (1)

D. B. Leviton and B. J. Frey, “Temperature-dependent absolute refractive index measurements of synthetic fused silica,” Proc. SPIE 6273, 62732K (2006).

Rev. Mod. Phys. (2)

R. O. Pohl, X. Liu, and E. Thompson, “Low-temperature thermal conductivity and acoustic attenuation in amorphous solids,” Rev. Mod. Phys. 74(4), 991–1013 (2002).
[Crossref]

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86(4), 1391–1452 (2014).
[Crossref]

Science (1)

C. Dong, V. Fiore, M. C. Kuzyk, and H. Wang, “Optomechanical dark mode,” Science 338(6114), 1609–1613 (2012).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a),(b) Side-view and top-view scanning electron micrographs of a silica microsphere on a silicon chip. (c) Full width at half maximum (FWHM) of an optical WGM resonance for a chip-based microsphere and for a comparable microsphere attached to a fiber stem as a function of the input laser power, in either vacuum or nitrogen atmosphere. The inset shows a transmission spectrum, for which the strong asymmetry and the large linewidth broadening are characteristic of laser-heating induced optical bistability.

Fig. 2
Fig. 2

(a),(b) Temperature changes, derived from experiments, of fiber-attached microsphere (a) and chip-based microsphere (b) in vacuum for different probe powers. (c) Maximum temperature change of the two types of microspheres as a function of the probe power. (d) The ratio (η) of the temperature change between comparable and chip-based sphere as a function of the probe power.

Fig. 3
Fig. 3

(a) Mechanical displacement power spectrum of the (1, 2) radial breathing mode of a chip-based microsphere with a diameter of 34 μm. The top diameter of the silicon pedestal is about 6.0 μm. (b) Optomechanically induced transparency (OMIT) spectrum obtained with a pump power of 6.7 mW. Top inset: schematics of the timing for the detection gate and the pump/probe pulse. Bottom inset: Schematics of the spectral position of the pump and probe pulses. (c) Pump power dependence of the measured effective linewidth of the OMIT dip and the corresponding cooperativity.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

ω 0 (t)= ω 00 1+αΔT(t) .
C p Δ T ˙ (t)=I 1 ( Δω(t) ( χ 0 + χ ex )/2 ) 2 +1 KΔT(t).
a ˙ (t)+[ χ 0 + χ ex 2 iΔω(t)]a(t)=i χ ex s 0 .

Metrics