Abstract

A terahertz (THz) tube waveguide with grating structure has been designed, fabricated and characterized as a microstructure waveguide sensor. The resonance and polarization properties of this microstructured tube have been experimentally and theoretically investigated, which indicates that the grating etched on the tube surface has a remarkable modulation effect on the tube resonance and polarization dependence for THz waves. Moreover, a real-time quantitative sensing has been realized based on this tube waveguide in the THz time-domain spectroscopy system. Compared with the bare tube without grating, the grating structure strongly enhances the interaction between THz evanescent field on the tube surface and analytes, improving the sensitivity. This microstructured PMMA THz tube reveals a high sensitivity of 50GHz/μl and precision of larger than 0.125μl with a good linear relationship for THz sensing applications.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Subwavelength film sensing based on terahertz anti-resonant reflecting hollow waveguides

Borwen You, Ja-Yu Lu, Jia-Hong Liou, Chin-Ping Yu, Hao-Zai Chen, Tze-An Liu, and Jin-Long Peng
Opt. Express 18(18) 19353-19360 (2010)

3D printed hollow core terahertz Bragg waveguides with defect layers for surface sensing applications

Jingwen Li, Kathirvel Nallappan, Hichem Guerboukha, and Maksim Skorobogatiy
Opt. Express 25(4) 4126-4144 (2017)

Hybrid terahertz plasmonic waveguide for sensing applications

Borwen You, Ja-Yu Lu, Tze-An Liu, and Jin-Long Peng
Opt. Express 21(18) 21087-21096 (2013)

References

  • View by:
  • |
  • |
  • |

  1. F. Fan, S. Chen, X. H. Wang, P. F. Wu, and S. J. Chang, “Terahertz refractive index sensing based on photonic column array,” IEEE Photonics Technol. Lett. 27(5), 478–481 (2015).
    [Crossref]
  2. F. Fan, W. H. Gu, X. H. Wang, and S. J. Chang, “Real-time quantitative terahertz microfluidic sensing based on photonic crystal pillar array,” Appl. Phys. Lett. 102(12), 121113 (2013).
    [Crossref]
  3. J. F. O. Hara, W. Withayachumnankul, and I. Al-Naib, “A review on thin-film sensing with terahertz waves,” J. Infrared Millim. Terahertz Waves 33(3), 245–291 (2012).
    [Crossref]
  4. Y. Sun, X. Xia, H. Feng, H. Yang, C. Gu, and L. Wang, “Modulated terahertz responses of split ring resonators by nanometer thick liquid layers,” Appl. Phys. Lett. 92(22), 221101 (2008).
    [Crossref]
  5. B. Reinhard, K. M. Schmitt, V. Wollrab, J. Neu, R. Beigang, and M. Rahm, “Metamaterial near-field sensor for deep-subwavelength thickness measurements and sensitive refractometry in the terahertz frequency range,” Appl. Phys. Lett. 100(22), 221101 (2012).
    [Crossref]
  6. F. Miyamaru, S. Hayashi, C. Otani, K. Kawase, Y. Ogawa, H. Yoshida, and E. Kato, “Terahertz surface-wave resonant sensor with a metal hole array,” Opt. Lett. 31(8), 1118–1120 (2006).
    [Crossref] [PubMed]
  7. L. Liu, R. Pathak, L. Cheng, and T. Wang, “Real-time frequency-domain terahertz sensing and imaging of isopropyl alcohol–water mixtures on a microfluidic chip,” Sens. Actuators B Chem. 184, 228–234 (2013).
    [Crossref]
  8. X. Wu, E. Yiwen, X. Xu, and L. Wang, “Label-free monitoring of interaction between DNA and oxaliplatin in aqueous solution by terahertz spectroscopy,” Appl. Phys. Lett. 101(3), 033704 (2012).
    [Crossref]
  9. J. Li, Z. Tian, Y. Chen, W. Cao, and Z. Zeng, “Distinguishing octane grades in gasoline using terahertz metamaterials,” Appl. Opt. 51(16), 3258–3262 (2012).
    [Crossref] [PubMed]
  10. Y. Yang, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “All-dielectric metasurface analogue of electromagnetically induced transparency,” Nat. Commun. 5, 5753 (2014).
    [Crossref] [PubMed]
  11. R. Singh, W. Cao, I. Al-Naib, L. Cong, W. Withayachumnankul, and W. Zhang, “Ultrasensitive terahertz sensing with high-Q Fano resonances in metasurfaces,” Appl. Phys. Lett. 105(17), 171101 (2014).
    [Crossref]
  12. L. Cong, S. Tan, R. Yahiaoui, F. Yan, W. Zhang, and R. Singh, “Experimental demonstration of ultrasensitive sensing with terahertz metamaterial absorbers: a comparison with the metasurfaces,” Appl. Phys. Lett. 106(3), 031107 (2015).
    [Crossref]
  13. W. Withayachumnankul, J. F. O’Hara, W. Cao, I. Al-Naib, and W. Zhang, “Limitation in thin-film sensing with transmission-mode terahertz time-domain spectroscopy,” Opt. Express 22(1), 972–986 (2014).
    [Crossref] [PubMed]
  14. J. F. O’Hara, R. Singh, I. Brener, E. Smirnova, J. Han, A. J. Taylor, and W. Zhang, “Thin-film sensing with planar terahertz metamaterials: sensitivity and limitations,” Opt. Express 16(3), 1786–1795 (2008).
    [Crossref] [PubMed]
  15. R. Mendis, V. Astley, J. Liu, and D. M. Mittleman, “Terahertz microfluidic sensor based on a parallel-plate waveguide resonant cavity,” Appl. Phys. Lett. 95(17), 171113 (2009).
    [Crossref]
  16. V. Astley, K. S. Reichel, J. Jones, R. Mendis, and D. M. Mittleman, “Terahertz multichannel microfluidic sensor based on parallel-plate waveguide resonant cavities,” Appl. Phys. Lett. 100(23), 231108 (2012).
    [Crossref]
  17. H. Kurt and D. S. Citrin, “Photonic crystals for biochemical sensing in the terahertz region,” Appl. Phys. Lett. 87(4), 041108 (2005).
    [Crossref]
  18. A. Benz, C. Deutsch, M. Brandstetter, A. M. Andrews, P. Klang, H. Detz, W. Schrenk, G. Strasser, and K. Unterrainer, “Terahertz active photonic crystals for condensed gas sensing,” Sensors (Basel) 11(12), 6003–6014 (2011).
    [Crossref] [PubMed]
  19. G. An, S. Li, W. Qin, W. Zhang, Z. Fan, and Y. Bao, “High-sensitivity refractive index sensor based on D-Shaped photonic crystal fiber with rectangular lattice and nanoscale gold film,” Plasmonics 9(6), 1355–1360 (2014).
    [Crossref]
  20. B. You, J. Y. Lu, J. H. Liou, C. P. Yu, H. Z. Chen, T. A. Liu, and J. L. Peng, “Subwavelength film sensing based on terahertz anti-resonant reflecting hollow waveguides,” Opt. Express 18(18), 19353–19360 (2010).
    [Crossref] [PubMed]
  21. C. H. Lai, Y. C. Hsueh, H. W. Chen, Y. J. Huang, H. C. Chang, and C. K. Sun, “Low-index terahertz pipe waveguides,” Opt. Lett. 34(21), 3457–3459 (2009).
    [Crossref] [PubMed]
  22. C. H. Lai, T. Chang, and Y. S. Yeh, “Characteristics of bent terahertz antiresonant reflecting pipe waveguides,” Opt. Express 22(7), 8460–8472 (2014).
    [Crossref] [PubMed]
  23. H. Bao, K. Nielsen, O. Bang, and P. U. Jepsen, “Dielectric tube waveguides with absorptive cladding for broadband, low-dispersion and low loss THz guiding,” Sci. Rep. 5, 7620 (2015).
    [Crossref] [PubMed]
  24. B. You, J. Y. Lu, C. P. Yu, T. A. Liu, and J. L. Peng, “Terahertz refractive index sensors using dielectric pipe waveguides,” Opt. Express 20(6), 5858–5866 (2012).
    [Crossref] [PubMed]
  25. S. F. Zhou, L. Reekie, H. P. Chan, Y. T. Chow, P. S. Chung, and K. M. Luk, “Characterization and modeling of Bragg gratings written in polymer fiber for use as filters in the THz region,” Opt. Express 20(9), 9564–9571 (2012).
    [Crossref] [PubMed]
  26. S. F. Zhou, L. Reekie, H. P. Chan, K. M. Luk, and Y. T. Chow, “Terahertz filter with tailored passband using multiple phase shifted fiber Bragg gratings,” Opt. Lett. 38(3), 260–262 (2013).
    [Crossref] [PubMed]
  27. G. Yan, A. Markov, Y. Chinifooroshan, S. M. Tripathi, W. J. Bock, and M. Skorobogatiy, “Resonant THz sensor for paper quality monitoring using THz fiber Bragg gratings,” Opt. Lett. 38(13), 2200–2202 (2013).
    [Crossref] [PubMed]
  28. F. Fan, S. Chen, W. Lin, Y. P. Miao, S. J. Chang, B. Liu, X. H. Wang, and L. Lin, “Magnetically tunable terahertz magnetoplasmons in ferrofluid-filled photonic crystals,” Appl. Phys. Lett. 103(16), 161115 (2013).
    [Crossref]
  29. F. Fan, W. H. Gu, S. Chen, X. H. Wang, and S. J. Chang, “State conversion based on terahertz plasmonics with vanadium dioxide coating controlled by optical pumping,” Opt. Lett. 38(9), 1582–1584 (2013).
    [Crossref] [PubMed]

2015 (3)

F. Fan, S. Chen, X. H. Wang, P. F. Wu, and S. J. Chang, “Terahertz refractive index sensing based on photonic column array,” IEEE Photonics Technol. Lett. 27(5), 478–481 (2015).
[Crossref]

L. Cong, S. Tan, R. Yahiaoui, F. Yan, W. Zhang, and R. Singh, “Experimental demonstration of ultrasensitive sensing with terahertz metamaterial absorbers: a comparison with the metasurfaces,” Appl. Phys. Lett. 106(3), 031107 (2015).
[Crossref]

H. Bao, K. Nielsen, O. Bang, and P. U. Jepsen, “Dielectric tube waveguides with absorptive cladding for broadband, low-dispersion and low loss THz guiding,” Sci. Rep. 5, 7620 (2015).
[Crossref] [PubMed]

2014 (5)

G. An, S. Li, W. Qin, W. Zhang, Z. Fan, and Y. Bao, “High-sensitivity refractive index sensor based on D-Shaped photonic crystal fiber with rectangular lattice and nanoscale gold film,” Plasmonics 9(6), 1355–1360 (2014).
[Crossref]

C. H. Lai, T. Chang, and Y. S. Yeh, “Characteristics of bent terahertz antiresonant reflecting pipe waveguides,” Opt. Express 22(7), 8460–8472 (2014).
[Crossref] [PubMed]

W. Withayachumnankul, J. F. O’Hara, W. Cao, I. Al-Naib, and W. Zhang, “Limitation in thin-film sensing with transmission-mode terahertz time-domain spectroscopy,” Opt. Express 22(1), 972–986 (2014).
[Crossref] [PubMed]

Y. Yang, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “All-dielectric metasurface analogue of electromagnetically induced transparency,” Nat. Commun. 5, 5753 (2014).
[Crossref] [PubMed]

R. Singh, W. Cao, I. Al-Naib, L. Cong, W. Withayachumnankul, and W. Zhang, “Ultrasensitive terahertz sensing with high-Q Fano resonances in metasurfaces,” Appl. Phys. Lett. 105(17), 171101 (2014).
[Crossref]

2013 (6)

F. Fan, W. H. Gu, X. H. Wang, and S. J. Chang, “Real-time quantitative terahertz microfluidic sensing based on photonic crystal pillar array,” Appl. Phys. Lett. 102(12), 121113 (2013).
[Crossref]

L. Liu, R. Pathak, L. Cheng, and T. Wang, “Real-time frequency-domain terahertz sensing and imaging of isopropyl alcohol–water mixtures on a microfluidic chip,” Sens. Actuators B Chem. 184, 228–234 (2013).
[Crossref]

S. F. Zhou, L. Reekie, H. P. Chan, K. M. Luk, and Y. T. Chow, “Terahertz filter with tailored passband using multiple phase shifted fiber Bragg gratings,” Opt. Lett. 38(3), 260–262 (2013).
[Crossref] [PubMed]

G. Yan, A. Markov, Y. Chinifooroshan, S. M. Tripathi, W. J. Bock, and M. Skorobogatiy, “Resonant THz sensor for paper quality monitoring using THz fiber Bragg gratings,” Opt. Lett. 38(13), 2200–2202 (2013).
[Crossref] [PubMed]

F. Fan, S. Chen, W. Lin, Y. P. Miao, S. J. Chang, B. Liu, X. H. Wang, and L. Lin, “Magnetically tunable terahertz magnetoplasmons in ferrofluid-filled photonic crystals,” Appl. Phys. Lett. 103(16), 161115 (2013).
[Crossref]

F. Fan, W. H. Gu, S. Chen, X. H. Wang, and S. J. Chang, “State conversion based on terahertz plasmonics with vanadium dioxide coating controlled by optical pumping,” Opt. Lett. 38(9), 1582–1584 (2013).
[Crossref] [PubMed]

2012 (7)

B. You, J. Y. Lu, C. P. Yu, T. A. Liu, and J. L. Peng, “Terahertz refractive index sensors using dielectric pipe waveguides,” Opt. Express 20(6), 5858–5866 (2012).
[Crossref] [PubMed]

S. F. Zhou, L. Reekie, H. P. Chan, Y. T. Chow, P. S. Chung, and K. M. Luk, “Characterization and modeling of Bragg gratings written in polymer fiber for use as filters in the THz region,” Opt. Express 20(9), 9564–9571 (2012).
[Crossref] [PubMed]

X. Wu, E. Yiwen, X. Xu, and L. Wang, “Label-free monitoring of interaction between DNA and oxaliplatin in aqueous solution by terahertz spectroscopy,” Appl. Phys. Lett. 101(3), 033704 (2012).
[Crossref]

J. Li, Z. Tian, Y. Chen, W. Cao, and Z. Zeng, “Distinguishing octane grades in gasoline using terahertz metamaterials,” Appl. Opt. 51(16), 3258–3262 (2012).
[Crossref] [PubMed]

B. Reinhard, K. M. Schmitt, V. Wollrab, J. Neu, R. Beigang, and M. Rahm, “Metamaterial near-field sensor for deep-subwavelength thickness measurements and sensitive refractometry in the terahertz frequency range,” Appl. Phys. Lett. 100(22), 221101 (2012).
[Crossref]

J. F. O. Hara, W. Withayachumnankul, and I. Al-Naib, “A review on thin-film sensing with terahertz waves,” J. Infrared Millim. Terahertz Waves 33(3), 245–291 (2012).
[Crossref]

V. Astley, K. S. Reichel, J. Jones, R. Mendis, and D. M. Mittleman, “Terahertz multichannel microfluidic sensor based on parallel-plate waveguide resonant cavities,” Appl. Phys. Lett. 100(23), 231108 (2012).
[Crossref]

2011 (1)

A. Benz, C. Deutsch, M. Brandstetter, A. M. Andrews, P. Klang, H. Detz, W. Schrenk, G. Strasser, and K. Unterrainer, “Terahertz active photonic crystals for condensed gas sensing,” Sensors (Basel) 11(12), 6003–6014 (2011).
[Crossref] [PubMed]

2010 (1)

2009 (2)

C. H. Lai, Y. C. Hsueh, H. W. Chen, Y. J. Huang, H. C. Chang, and C. K. Sun, “Low-index terahertz pipe waveguides,” Opt. Lett. 34(21), 3457–3459 (2009).
[Crossref] [PubMed]

R. Mendis, V. Astley, J. Liu, and D. M. Mittleman, “Terahertz microfluidic sensor based on a parallel-plate waveguide resonant cavity,” Appl. Phys. Lett. 95(17), 171113 (2009).
[Crossref]

2008 (2)

J. F. O’Hara, R. Singh, I. Brener, E. Smirnova, J. Han, A. J. Taylor, and W. Zhang, “Thin-film sensing with planar terahertz metamaterials: sensitivity and limitations,” Opt. Express 16(3), 1786–1795 (2008).
[Crossref] [PubMed]

Y. Sun, X. Xia, H. Feng, H. Yang, C. Gu, and L. Wang, “Modulated terahertz responses of split ring resonators by nanometer thick liquid layers,” Appl. Phys. Lett. 92(22), 221101 (2008).
[Crossref]

2006 (1)

2005 (1)

H. Kurt and D. S. Citrin, “Photonic crystals for biochemical sensing in the terahertz region,” Appl. Phys. Lett. 87(4), 041108 (2005).
[Crossref]

Al-Naib, I.

R. Singh, W. Cao, I. Al-Naib, L. Cong, W. Withayachumnankul, and W. Zhang, “Ultrasensitive terahertz sensing with high-Q Fano resonances in metasurfaces,” Appl. Phys. Lett. 105(17), 171101 (2014).
[Crossref]

W. Withayachumnankul, J. F. O’Hara, W. Cao, I. Al-Naib, and W. Zhang, “Limitation in thin-film sensing with transmission-mode terahertz time-domain spectroscopy,” Opt. Express 22(1), 972–986 (2014).
[Crossref] [PubMed]

J. F. O. Hara, W. Withayachumnankul, and I. Al-Naib, “A review on thin-film sensing with terahertz waves,” J. Infrared Millim. Terahertz Waves 33(3), 245–291 (2012).
[Crossref]

An, G.

G. An, S. Li, W. Qin, W. Zhang, Z. Fan, and Y. Bao, “High-sensitivity refractive index sensor based on D-Shaped photonic crystal fiber with rectangular lattice and nanoscale gold film,” Plasmonics 9(6), 1355–1360 (2014).
[Crossref]

Andrews, A. M.

A. Benz, C. Deutsch, M. Brandstetter, A. M. Andrews, P. Klang, H. Detz, W. Schrenk, G. Strasser, and K. Unterrainer, “Terahertz active photonic crystals for condensed gas sensing,” Sensors (Basel) 11(12), 6003–6014 (2011).
[Crossref] [PubMed]

Astley, V.

V. Astley, K. S. Reichel, J. Jones, R. Mendis, and D. M. Mittleman, “Terahertz multichannel microfluidic sensor based on parallel-plate waveguide resonant cavities,” Appl. Phys. Lett. 100(23), 231108 (2012).
[Crossref]

R. Mendis, V. Astley, J. Liu, and D. M. Mittleman, “Terahertz microfluidic sensor based on a parallel-plate waveguide resonant cavity,” Appl. Phys. Lett. 95(17), 171113 (2009).
[Crossref]

Bang, O.

H. Bao, K. Nielsen, O. Bang, and P. U. Jepsen, “Dielectric tube waveguides with absorptive cladding for broadband, low-dispersion and low loss THz guiding,” Sci. Rep. 5, 7620 (2015).
[Crossref] [PubMed]

Bao, H.

H. Bao, K. Nielsen, O. Bang, and P. U. Jepsen, “Dielectric tube waveguides with absorptive cladding for broadband, low-dispersion and low loss THz guiding,” Sci. Rep. 5, 7620 (2015).
[Crossref] [PubMed]

Bao, Y.

G. An, S. Li, W. Qin, W. Zhang, Z. Fan, and Y. Bao, “High-sensitivity refractive index sensor based on D-Shaped photonic crystal fiber with rectangular lattice and nanoscale gold film,” Plasmonics 9(6), 1355–1360 (2014).
[Crossref]

Beigang, R.

B. Reinhard, K. M. Schmitt, V. Wollrab, J. Neu, R. Beigang, and M. Rahm, “Metamaterial near-field sensor for deep-subwavelength thickness measurements and sensitive refractometry in the terahertz frequency range,” Appl. Phys. Lett. 100(22), 221101 (2012).
[Crossref]

Benz, A.

A. Benz, C. Deutsch, M. Brandstetter, A. M. Andrews, P. Klang, H. Detz, W. Schrenk, G. Strasser, and K. Unterrainer, “Terahertz active photonic crystals for condensed gas sensing,” Sensors (Basel) 11(12), 6003–6014 (2011).
[Crossref] [PubMed]

Bock, W. J.

Brandstetter, M.

A. Benz, C. Deutsch, M. Brandstetter, A. M. Andrews, P. Klang, H. Detz, W. Schrenk, G. Strasser, and K. Unterrainer, “Terahertz active photonic crystals for condensed gas sensing,” Sensors (Basel) 11(12), 6003–6014 (2011).
[Crossref] [PubMed]

Brener, I.

Briggs, D. P.

Y. Yang, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “All-dielectric metasurface analogue of electromagnetically induced transparency,” Nat. Commun. 5, 5753 (2014).
[Crossref] [PubMed]

Cao, W.

Chan, H. P.

Chang, H. C.

Chang, S. J.

F. Fan, S. Chen, X. H. Wang, P. F. Wu, and S. J. Chang, “Terahertz refractive index sensing based on photonic column array,” IEEE Photonics Technol. Lett. 27(5), 478–481 (2015).
[Crossref]

F. Fan, W. H. Gu, X. H. Wang, and S. J. Chang, “Real-time quantitative terahertz microfluidic sensing based on photonic crystal pillar array,” Appl. Phys. Lett. 102(12), 121113 (2013).
[Crossref]

F. Fan, S. Chen, W. Lin, Y. P. Miao, S. J. Chang, B. Liu, X. H. Wang, and L. Lin, “Magnetically tunable terahertz magnetoplasmons in ferrofluid-filled photonic crystals,” Appl. Phys. Lett. 103(16), 161115 (2013).
[Crossref]

F. Fan, W. H. Gu, S. Chen, X. H. Wang, and S. J. Chang, “State conversion based on terahertz plasmonics with vanadium dioxide coating controlled by optical pumping,” Opt. Lett. 38(9), 1582–1584 (2013).
[Crossref] [PubMed]

Chang, T.

Chen, H. W.

Chen, H. Z.

Chen, S.

F. Fan, S. Chen, X. H. Wang, P. F. Wu, and S. J. Chang, “Terahertz refractive index sensing based on photonic column array,” IEEE Photonics Technol. Lett. 27(5), 478–481 (2015).
[Crossref]

F. Fan, S. Chen, W. Lin, Y. P. Miao, S. J. Chang, B. Liu, X. H. Wang, and L. Lin, “Magnetically tunable terahertz magnetoplasmons in ferrofluid-filled photonic crystals,” Appl. Phys. Lett. 103(16), 161115 (2013).
[Crossref]

F. Fan, W. H. Gu, S. Chen, X. H. Wang, and S. J. Chang, “State conversion based on terahertz plasmonics with vanadium dioxide coating controlled by optical pumping,” Opt. Lett. 38(9), 1582–1584 (2013).
[Crossref] [PubMed]

Chen, Y.

Cheng, L.

L. Liu, R. Pathak, L. Cheng, and T. Wang, “Real-time frequency-domain terahertz sensing and imaging of isopropyl alcohol–water mixtures on a microfluidic chip,” Sens. Actuators B Chem. 184, 228–234 (2013).
[Crossref]

Chinifooroshan, Y.

Chow, Y. T.

Chung, P. S.

Citrin, D. S.

H. Kurt and D. S. Citrin, “Photonic crystals for biochemical sensing in the terahertz region,” Appl. Phys. Lett. 87(4), 041108 (2005).
[Crossref]

Cong, L.

L. Cong, S. Tan, R. Yahiaoui, F. Yan, W. Zhang, and R. Singh, “Experimental demonstration of ultrasensitive sensing with terahertz metamaterial absorbers: a comparison with the metasurfaces,” Appl. Phys. Lett. 106(3), 031107 (2015).
[Crossref]

R. Singh, W. Cao, I. Al-Naib, L. Cong, W. Withayachumnankul, and W. Zhang, “Ultrasensitive terahertz sensing with high-Q Fano resonances in metasurfaces,” Appl. Phys. Lett. 105(17), 171101 (2014).
[Crossref]

Detz, H.

A. Benz, C. Deutsch, M. Brandstetter, A. M. Andrews, P. Klang, H. Detz, W. Schrenk, G. Strasser, and K. Unterrainer, “Terahertz active photonic crystals for condensed gas sensing,” Sensors (Basel) 11(12), 6003–6014 (2011).
[Crossref] [PubMed]

Deutsch, C.

A. Benz, C. Deutsch, M. Brandstetter, A. M. Andrews, P. Klang, H. Detz, W. Schrenk, G. Strasser, and K. Unterrainer, “Terahertz active photonic crystals for condensed gas sensing,” Sensors (Basel) 11(12), 6003–6014 (2011).
[Crossref] [PubMed]

Fan, F.

F. Fan, S. Chen, X. H. Wang, P. F. Wu, and S. J. Chang, “Terahertz refractive index sensing based on photonic column array,” IEEE Photonics Technol. Lett. 27(5), 478–481 (2015).
[Crossref]

F. Fan, W. H. Gu, X. H. Wang, and S. J. Chang, “Real-time quantitative terahertz microfluidic sensing based on photonic crystal pillar array,” Appl. Phys. Lett. 102(12), 121113 (2013).
[Crossref]

F. Fan, W. H. Gu, S. Chen, X. H. Wang, and S. J. Chang, “State conversion based on terahertz plasmonics with vanadium dioxide coating controlled by optical pumping,” Opt. Lett. 38(9), 1582–1584 (2013).
[Crossref] [PubMed]

F. Fan, S. Chen, W. Lin, Y. P. Miao, S. J. Chang, B. Liu, X. H. Wang, and L. Lin, “Magnetically tunable terahertz magnetoplasmons in ferrofluid-filled photonic crystals,” Appl. Phys. Lett. 103(16), 161115 (2013).
[Crossref]

Fan, Z.

G. An, S. Li, W. Qin, W. Zhang, Z. Fan, and Y. Bao, “High-sensitivity refractive index sensor based on D-Shaped photonic crystal fiber with rectangular lattice and nanoscale gold film,” Plasmonics 9(6), 1355–1360 (2014).
[Crossref]

Feng, H.

Y. Sun, X. Xia, H. Feng, H. Yang, C. Gu, and L. Wang, “Modulated terahertz responses of split ring resonators by nanometer thick liquid layers,” Appl. Phys. Lett. 92(22), 221101 (2008).
[Crossref]

Gu, C.

Y. Sun, X. Xia, H. Feng, H. Yang, C. Gu, and L. Wang, “Modulated terahertz responses of split ring resonators by nanometer thick liquid layers,” Appl. Phys. Lett. 92(22), 221101 (2008).
[Crossref]

Gu, W. H.

F. Fan, W. H. Gu, X. H. Wang, and S. J. Chang, “Real-time quantitative terahertz microfluidic sensing based on photonic crystal pillar array,” Appl. Phys. Lett. 102(12), 121113 (2013).
[Crossref]

F. Fan, W. H. Gu, S. Chen, X. H. Wang, and S. J. Chang, “State conversion based on terahertz plasmonics with vanadium dioxide coating controlled by optical pumping,” Opt. Lett. 38(9), 1582–1584 (2013).
[Crossref] [PubMed]

Han, J.

Hara, J. F. O.

J. F. O. Hara, W. Withayachumnankul, and I. Al-Naib, “A review on thin-film sensing with terahertz waves,” J. Infrared Millim. Terahertz Waves 33(3), 245–291 (2012).
[Crossref]

Hayashi, S.

Hsueh, Y. C.

Huang, Y. J.

Jepsen, P. U.

H. Bao, K. Nielsen, O. Bang, and P. U. Jepsen, “Dielectric tube waveguides with absorptive cladding for broadband, low-dispersion and low loss THz guiding,” Sci. Rep. 5, 7620 (2015).
[Crossref] [PubMed]

Jones, J.

V. Astley, K. S. Reichel, J. Jones, R. Mendis, and D. M. Mittleman, “Terahertz multichannel microfluidic sensor based on parallel-plate waveguide resonant cavities,” Appl. Phys. Lett. 100(23), 231108 (2012).
[Crossref]

Kato, E.

Kawase, K.

Klang, P.

A. Benz, C. Deutsch, M. Brandstetter, A. M. Andrews, P. Klang, H. Detz, W. Schrenk, G. Strasser, and K. Unterrainer, “Terahertz active photonic crystals for condensed gas sensing,” Sensors (Basel) 11(12), 6003–6014 (2011).
[Crossref] [PubMed]

Kravchenko, I. I.

Y. Yang, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “All-dielectric metasurface analogue of electromagnetically induced transparency,” Nat. Commun. 5, 5753 (2014).
[Crossref] [PubMed]

Kurt, H.

H. Kurt and D. S. Citrin, “Photonic crystals for biochemical sensing in the terahertz region,” Appl. Phys. Lett. 87(4), 041108 (2005).
[Crossref]

Lai, C. H.

Li, J.

Li, S.

G. An, S. Li, W. Qin, W. Zhang, Z. Fan, and Y. Bao, “High-sensitivity refractive index sensor based on D-Shaped photonic crystal fiber with rectangular lattice and nanoscale gold film,” Plasmonics 9(6), 1355–1360 (2014).
[Crossref]

Lin, L.

F. Fan, S. Chen, W. Lin, Y. P. Miao, S. J. Chang, B. Liu, X. H. Wang, and L. Lin, “Magnetically tunable terahertz magnetoplasmons in ferrofluid-filled photonic crystals,” Appl. Phys. Lett. 103(16), 161115 (2013).
[Crossref]

Lin, W.

F. Fan, S. Chen, W. Lin, Y. P. Miao, S. J. Chang, B. Liu, X. H. Wang, and L. Lin, “Magnetically tunable terahertz magnetoplasmons in ferrofluid-filled photonic crystals,” Appl. Phys. Lett. 103(16), 161115 (2013).
[Crossref]

Liou, J. H.

Liu, B.

F. Fan, S. Chen, W. Lin, Y. P. Miao, S. J. Chang, B. Liu, X. H. Wang, and L. Lin, “Magnetically tunable terahertz magnetoplasmons in ferrofluid-filled photonic crystals,” Appl. Phys. Lett. 103(16), 161115 (2013).
[Crossref]

Liu, J.

R. Mendis, V. Astley, J. Liu, and D. M. Mittleman, “Terahertz microfluidic sensor based on a parallel-plate waveguide resonant cavity,” Appl. Phys. Lett. 95(17), 171113 (2009).
[Crossref]

Liu, L.

L. Liu, R. Pathak, L. Cheng, and T. Wang, “Real-time frequency-domain terahertz sensing and imaging of isopropyl alcohol–water mixtures on a microfluidic chip,” Sens. Actuators B Chem. 184, 228–234 (2013).
[Crossref]

Liu, T. A.

Lu, J. Y.

Luk, K. M.

Markov, A.

Mendis, R.

V. Astley, K. S. Reichel, J. Jones, R. Mendis, and D. M. Mittleman, “Terahertz multichannel microfluidic sensor based on parallel-plate waveguide resonant cavities,” Appl. Phys. Lett. 100(23), 231108 (2012).
[Crossref]

R. Mendis, V. Astley, J. Liu, and D. M. Mittleman, “Terahertz microfluidic sensor based on a parallel-plate waveguide resonant cavity,” Appl. Phys. Lett. 95(17), 171113 (2009).
[Crossref]

Miao, Y. P.

F. Fan, S. Chen, W. Lin, Y. P. Miao, S. J. Chang, B. Liu, X. H. Wang, and L. Lin, “Magnetically tunable terahertz magnetoplasmons in ferrofluid-filled photonic crystals,” Appl. Phys. Lett. 103(16), 161115 (2013).
[Crossref]

Mittleman, D. M.

V. Astley, K. S. Reichel, J. Jones, R. Mendis, and D. M. Mittleman, “Terahertz multichannel microfluidic sensor based on parallel-plate waveguide resonant cavities,” Appl. Phys. Lett. 100(23), 231108 (2012).
[Crossref]

R. Mendis, V. Astley, J. Liu, and D. M. Mittleman, “Terahertz microfluidic sensor based on a parallel-plate waveguide resonant cavity,” Appl. Phys. Lett. 95(17), 171113 (2009).
[Crossref]

Miyamaru, F.

Neu, J.

B. Reinhard, K. M. Schmitt, V. Wollrab, J. Neu, R. Beigang, and M. Rahm, “Metamaterial near-field sensor for deep-subwavelength thickness measurements and sensitive refractometry in the terahertz frequency range,” Appl. Phys. Lett. 100(22), 221101 (2012).
[Crossref]

Nielsen, K.

H. Bao, K. Nielsen, O. Bang, and P. U. Jepsen, “Dielectric tube waveguides with absorptive cladding for broadband, low-dispersion and low loss THz guiding,” Sci. Rep. 5, 7620 (2015).
[Crossref] [PubMed]

O’Hara, J. F.

Ogawa, Y.

Otani, C.

Pathak, R.

L. Liu, R. Pathak, L. Cheng, and T. Wang, “Real-time frequency-domain terahertz sensing and imaging of isopropyl alcohol–water mixtures on a microfluidic chip,” Sens. Actuators B Chem. 184, 228–234 (2013).
[Crossref]

Peng, J. L.

Qin, W.

G. An, S. Li, W. Qin, W. Zhang, Z. Fan, and Y. Bao, “High-sensitivity refractive index sensor based on D-Shaped photonic crystal fiber with rectangular lattice and nanoscale gold film,” Plasmonics 9(6), 1355–1360 (2014).
[Crossref]

Rahm, M.

B. Reinhard, K. M. Schmitt, V. Wollrab, J. Neu, R. Beigang, and M. Rahm, “Metamaterial near-field sensor for deep-subwavelength thickness measurements and sensitive refractometry in the terahertz frequency range,” Appl. Phys. Lett. 100(22), 221101 (2012).
[Crossref]

Reekie, L.

Reichel, K. S.

V. Astley, K. S. Reichel, J. Jones, R. Mendis, and D. M. Mittleman, “Terahertz multichannel microfluidic sensor based on parallel-plate waveguide resonant cavities,” Appl. Phys. Lett. 100(23), 231108 (2012).
[Crossref]

Reinhard, B.

B. Reinhard, K. M. Schmitt, V. Wollrab, J. Neu, R. Beigang, and M. Rahm, “Metamaterial near-field sensor for deep-subwavelength thickness measurements and sensitive refractometry in the terahertz frequency range,” Appl. Phys. Lett. 100(22), 221101 (2012).
[Crossref]

Schmitt, K. M.

B. Reinhard, K. M. Schmitt, V. Wollrab, J. Neu, R. Beigang, and M. Rahm, “Metamaterial near-field sensor for deep-subwavelength thickness measurements and sensitive refractometry in the terahertz frequency range,” Appl. Phys. Lett. 100(22), 221101 (2012).
[Crossref]

Schrenk, W.

A. Benz, C. Deutsch, M. Brandstetter, A. M. Andrews, P. Klang, H. Detz, W. Schrenk, G. Strasser, and K. Unterrainer, “Terahertz active photonic crystals for condensed gas sensing,” Sensors (Basel) 11(12), 6003–6014 (2011).
[Crossref] [PubMed]

Singh, R.

L. Cong, S. Tan, R. Yahiaoui, F. Yan, W. Zhang, and R. Singh, “Experimental demonstration of ultrasensitive sensing with terahertz metamaterial absorbers: a comparison with the metasurfaces,” Appl. Phys. Lett. 106(3), 031107 (2015).
[Crossref]

R. Singh, W. Cao, I. Al-Naib, L. Cong, W. Withayachumnankul, and W. Zhang, “Ultrasensitive terahertz sensing with high-Q Fano resonances in metasurfaces,” Appl. Phys. Lett. 105(17), 171101 (2014).
[Crossref]

J. F. O’Hara, R. Singh, I. Brener, E. Smirnova, J. Han, A. J. Taylor, and W. Zhang, “Thin-film sensing with planar terahertz metamaterials: sensitivity and limitations,” Opt. Express 16(3), 1786–1795 (2008).
[Crossref] [PubMed]

Skorobogatiy, M.

Smirnova, E.

Strasser, G.

A. Benz, C. Deutsch, M. Brandstetter, A. M. Andrews, P. Klang, H. Detz, W. Schrenk, G. Strasser, and K. Unterrainer, “Terahertz active photonic crystals for condensed gas sensing,” Sensors (Basel) 11(12), 6003–6014 (2011).
[Crossref] [PubMed]

Sun, C. K.

Sun, Y.

Y. Sun, X. Xia, H. Feng, H. Yang, C. Gu, and L. Wang, “Modulated terahertz responses of split ring resonators by nanometer thick liquid layers,” Appl. Phys. Lett. 92(22), 221101 (2008).
[Crossref]

Tan, S.

L. Cong, S. Tan, R. Yahiaoui, F. Yan, W. Zhang, and R. Singh, “Experimental demonstration of ultrasensitive sensing with terahertz metamaterial absorbers: a comparison with the metasurfaces,” Appl. Phys. Lett. 106(3), 031107 (2015).
[Crossref]

Taylor, A. J.

Tian, Z.

Tripathi, S. M.

Unterrainer, K.

A. Benz, C. Deutsch, M. Brandstetter, A. M. Andrews, P. Klang, H. Detz, W. Schrenk, G. Strasser, and K. Unterrainer, “Terahertz active photonic crystals for condensed gas sensing,” Sensors (Basel) 11(12), 6003–6014 (2011).
[Crossref] [PubMed]

Valentine, J.

Y. Yang, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “All-dielectric metasurface analogue of electromagnetically induced transparency,” Nat. Commun. 5, 5753 (2014).
[Crossref] [PubMed]

Wang, L.

X. Wu, E. Yiwen, X. Xu, and L. Wang, “Label-free monitoring of interaction between DNA and oxaliplatin in aqueous solution by terahertz spectroscopy,” Appl. Phys. Lett. 101(3), 033704 (2012).
[Crossref]

Y. Sun, X. Xia, H. Feng, H. Yang, C. Gu, and L. Wang, “Modulated terahertz responses of split ring resonators by nanometer thick liquid layers,” Appl. Phys. Lett. 92(22), 221101 (2008).
[Crossref]

Wang, T.

L. Liu, R. Pathak, L. Cheng, and T. Wang, “Real-time frequency-domain terahertz sensing and imaging of isopropyl alcohol–water mixtures on a microfluidic chip,” Sens. Actuators B Chem. 184, 228–234 (2013).
[Crossref]

Wang, X. H.

F. Fan, S. Chen, X. H. Wang, P. F. Wu, and S. J. Chang, “Terahertz refractive index sensing based on photonic column array,” IEEE Photonics Technol. Lett. 27(5), 478–481 (2015).
[Crossref]

F. Fan, W. H. Gu, X. H. Wang, and S. J. Chang, “Real-time quantitative terahertz microfluidic sensing based on photonic crystal pillar array,” Appl. Phys. Lett. 102(12), 121113 (2013).
[Crossref]

F. Fan, S. Chen, W. Lin, Y. P. Miao, S. J. Chang, B. Liu, X. H. Wang, and L. Lin, “Magnetically tunable terahertz magnetoplasmons in ferrofluid-filled photonic crystals,” Appl. Phys. Lett. 103(16), 161115 (2013).
[Crossref]

F. Fan, W. H. Gu, S. Chen, X. H. Wang, and S. J. Chang, “State conversion based on terahertz plasmonics with vanadium dioxide coating controlled by optical pumping,” Opt. Lett. 38(9), 1582–1584 (2013).
[Crossref] [PubMed]

Withayachumnankul, W.

W. Withayachumnankul, J. F. O’Hara, W. Cao, I. Al-Naib, and W. Zhang, “Limitation in thin-film sensing with transmission-mode terahertz time-domain spectroscopy,” Opt. Express 22(1), 972–986 (2014).
[Crossref] [PubMed]

R. Singh, W. Cao, I. Al-Naib, L. Cong, W. Withayachumnankul, and W. Zhang, “Ultrasensitive terahertz sensing with high-Q Fano resonances in metasurfaces,” Appl. Phys. Lett. 105(17), 171101 (2014).
[Crossref]

J. F. O. Hara, W. Withayachumnankul, and I. Al-Naib, “A review on thin-film sensing with terahertz waves,” J. Infrared Millim. Terahertz Waves 33(3), 245–291 (2012).
[Crossref]

Wollrab, V.

B. Reinhard, K. M. Schmitt, V. Wollrab, J. Neu, R. Beigang, and M. Rahm, “Metamaterial near-field sensor for deep-subwavelength thickness measurements and sensitive refractometry in the terahertz frequency range,” Appl. Phys. Lett. 100(22), 221101 (2012).
[Crossref]

Wu, P. F.

F. Fan, S. Chen, X. H. Wang, P. F. Wu, and S. J. Chang, “Terahertz refractive index sensing based on photonic column array,” IEEE Photonics Technol. Lett. 27(5), 478–481 (2015).
[Crossref]

Wu, X.

X. Wu, E. Yiwen, X. Xu, and L. Wang, “Label-free monitoring of interaction between DNA and oxaliplatin in aqueous solution by terahertz spectroscopy,” Appl. Phys. Lett. 101(3), 033704 (2012).
[Crossref]

Xia, X.

Y. Sun, X. Xia, H. Feng, H. Yang, C. Gu, and L. Wang, “Modulated terahertz responses of split ring resonators by nanometer thick liquid layers,” Appl. Phys. Lett. 92(22), 221101 (2008).
[Crossref]

Xu, X.

X. Wu, E. Yiwen, X. Xu, and L. Wang, “Label-free monitoring of interaction between DNA and oxaliplatin in aqueous solution by terahertz spectroscopy,” Appl. Phys. Lett. 101(3), 033704 (2012).
[Crossref]

Yahiaoui, R.

L. Cong, S. Tan, R. Yahiaoui, F. Yan, W. Zhang, and R. Singh, “Experimental demonstration of ultrasensitive sensing with terahertz metamaterial absorbers: a comparison with the metasurfaces,” Appl. Phys. Lett. 106(3), 031107 (2015).
[Crossref]

Yan, F.

L. Cong, S. Tan, R. Yahiaoui, F. Yan, W. Zhang, and R. Singh, “Experimental demonstration of ultrasensitive sensing with terahertz metamaterial absorbers: a comparison with the metasurfaces,” Appl. Phys. Lett. 106(3), 031107 (2015).
[Crossref]

Yan, G.

Yang, H.

Y. Sun, X. Xia, H. Feng, H. Yang, C. Gu, and L. Wang, “Modulated terahertz responses of split ring resonators by nanometer thick liquid layers,” Appl. Phys. Lett. 92(22), 221101 (2008).
[Crossref]

Yang, Y.

Y. Yang, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “All-dielectric metasurface analogue of electromagnetically induced transparency,” Nat. Commun. 5, 5753 (2014).
[Crossref] [PubMed]

Yeh, Y. S.

Yiwen, E.

X. Wu, E. Yiwen, X. Xu, and L. Wang, “Label-free monitoring of interaction between DNA and oxaliplatin in aqueous solution by terahertz spectroscopy,” Appl. Phys. Lett. 101(3), 033704 (2012).
[Crossref]

Yoshida, H.

You, B.

Yu, C. P.

Zeng, Z.

Zhang, W.

L. Cong, S. Tan, R. Yahiaoui, F. Yan, W. Zhang, and R. Singh, “Experimental demonstration of ultrasensitive sensing with terahertz metamaterial absorbers: a comparison with the metasurfaces,” Appl. Phys. Lett. 106(3), 031107 (2015).
[Crossref]

R. Singh, W. Cao, I. Al-Naib, L. Cong, W. Withayachumnankul, and W. Zhang, “Ultrasensitive terahertz sensing with high-Q Fano resonances in metasurfaces,” Appl. Phys. Lett. 105(17), 171101 (2014).
[Crossref]

G. An, S. Li, W. Qin, W. Zhang, Z. Fan, and Y. Bao, “High-sensitivity refractive index sensor based on D-Shaped photonic crystal fiber with rectangular lattice and nanoscale gold film,” Plasmonics 9(6), 1355–1360 (2014).
[Crossref]

W. Withayachumnankul, J. F. O’Hara, W. Cao, I. Al-Naib, and W. Zhang, “Limitation in thin-film sensing with transmission-mode terahertz time-domain spectroscopy,” Opt. Express 22(1), 972–986 (2014).
[Crossref] [PubMed]

J. F. O’Hara, R. Singh, I. Brener, E. Smirnova, J. Han, A. J. Taylor, and W. Zhang, “Thin-film sensing with planar terahertz metamaterials: sensitivity and limitations,” Opt. Express 16(3), 1786–1795 (2008).
[Crossref] [PubMed]

Zhou, S. F.

Appl. Opt. (1)

Appl. Phys. Lett. (10)

F. Fan, W. H. Gu, X. H. Wang, and S. J. Chang, “Real-time quantitative terahertz microfluidic sensing based on photonic crystal pillar array,” Appl. Phys. Lett. 102(12), 121113 (2013).
[Crossref]

Y. Sun, X. Xia, H. Feng, H. Yang, C. Gu, and L. Wang, “Modulated terahertz responses of split ring resonators by nanometer thick liquid layers,” Appl. Phys. Lett. 92(22), 221101 (2008).
[Crossref]

B. Reinhard, K. M. Schmitt, V. Wollrab, J. Neu, R. Beigang, and M. Rahm, “Metamaterial near-field sensor for deep-subwavelength thickness measurements and sensitive refractometry in the terahertz frequency range,” Appl. Phys. Lett. 100(22), 221101 (2012).
[Crossref]

R. Singh, W. Cao, I. Al-Naib, L. Cong, W. Withayachumnankul, and W. Zhang, “Ultrasensitive terahertz sensing with high-Q Fano resonances in metasurfaces,” Appl. Phys. Lett. 105(17), 171101 (2014).
[Crossref]

L. Cong, S. Tan, R. Yahiaoui, F. Yan, W. Zhang, and R. Singh, “Experimental demonstration of ultrasensitive sensing with terahertz metamaterial absorbers: a comparison with the metasurfaces,” Appl. Phys. Lett. 106(3), 031107 (2015).
[Crossref]

R. Mendis, V. Astley, J. Liu, and D. M. Mittleman, “Terahertz microfluidic sensor based on a parallel-plate waveguide resonant cavity,” Appl. Phys. Lett. 95(17), 171113 (2009).
[Crossref]

V. Astley, K. S. Reichel, J. Jones, R. Mendis, and D. M. Mittleman, “Terahertz multichannel microfluidic sensor based on parallel-plate waveguide resonant cavities,” Appl. Phys. Lett. 100(23), 231108 (2012).
[Crossref]

H. Kurt and D. S. Citrin, “Photonic crystals for biochemical sensing in the terahertz region,” Appl. Phys. Lett. 87(4), 041108 (2005).
[Crossref]

X. Wu, E. Yiwen, X. Xu, and L. Wang, “Label-free monitoring of interaction between DNA and oxaliplatin in aqueous solution by terahertz spectroscopy,” Appl. Phys. Lett. 101(3), 033704 (2012).
[Crossref]

F. Fan, S. Chen, W. Lin, Y. P. Miao, S. J. Chang, B. Liu, X. H. Wang, and L. Lin, “Magnetically tunable terahertz magnetoplasmons in ferrofluid-filled photonic crystals,” Appl. Phys. Lett. 103(16), 161115 (2013).
[Crossref]

IEEE Photonics Technol. Lett. (1)

F. Fan, S. Chen, X. H. Wang, P. F. Wu, and S. J. Chang, “Terahertz refractive index sensing based on photonic column array,” IEEE Photonics Technol. Lett. 27(5), 478–481 (2015).
[Crossref]

J. Infrared Millim. Terahertz Waves (1)

J. F. O. Hara, W. Withayachumnankul, and I. Al-Naib, “A review on thin-film sensing with terahertz waves,” J. Infrared Millim. Terahertz Waves 33(3), 245–291 (2012).
[Crossref]

Nat. Commun. (1)

Y. Yang, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “All-dielectric metasurface analogue of electromagnetically induced transparency,” Nat. Commun. 5, 5753 (2014).
[Crossref] [PubMed]

Opt. Express (6)

Opt. Lett. (5)

Plasmonics (1)

G. An, S. Li, W. Qin, W. Zhang, Z. Fan, and Y. Bao, “High-sensitivity refractive index sensor based on D-Shaped photonic crystal fiber with rectangular lattice and nanoscale gold film,” Plasmonics 9(6), 1355–1360 (2014).
[Crossref]

Sci. Rep. (1)

H. Bao, K. Nielsen, O. Bang, and P. U. Jepsen, “Dielectric tube waveguides with absorptive cladding for broadband, low-dispersion and low loss THz guiding,” Sci. Rep. 5, 7620 (2015).
[Crossref] [PubMed]

Sens. Actuators B Chem. (1)

L. Liu, R. Pathak, L. Cheng, and T. Wang, “Real-time frequency-domain terahertz sensing and imaging of isopropyl alcohol–water mixtures on a microfluidic chip,” Sens. Actuators B Chem. 184, 228–234 (2013).
[Crossref]

Sensors (Basel) (1)

A. Benz, C. Deutsch, M. Brandstetter, A. M. Andrews, P. Klang, H. Detz, W. Schrenk, G. Strasser, and K. Unterrainer, “Terahertz active photonic crystals for condensed gas sensing,” Sensors (Basel) 11(12), 6003–6014 (2011).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

THz grating tube and experimental system. (a) Photo of grating tube and experimental configuration of the grating tube in THz–TDS system; (b) image of grating tube by optical microscope; (c) axial cross section diagram of grating tube.

Fig. 2
Fig. 2

(a) Experimentally measured time domain signal of air reference, tube without grating and the grating tube with 0° and 90°; (b) Experimental power transmission spectra of tube without grating and with 0° grating.

Fig. 3
Fig. 3

(a) Experimental and (b) simulation power transmission spectra of grating tube with different polarization directions compared with that of tube without grating.

Fig. 4
Fig. 4

Simulated electric field distributions in cross section of the grating tube with 0° at (a) 0.65THz, (b) 0.8THz, and (c) 0.95THz.

Fig. 5
Fig. 5

Refractive index and absorption coefficient of ethanol in the THz regime.

Fig. 6
Fig. 6

The sensing spectral lines of grating tube with 0° for the different delay time Td = 0-250s after dropping the ethanol. (a) The second resonance near 0.6 THz; (b) the third resonance near 0.9 THz.

Fig. 7
Fig. 7

The relationship between the resonance frequency and measuring delay time. The soild lines are experimental data, and dotted lines are linear fitting.

Fig. 8
Fig. 8

Spectral lines of the tube without grating structure before dropping the ethanol and after dropping the ethanol delaying 0s and 120s. (a) The second resonance near 0.6 THz; (b) the third resonance near 0.9THz.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

f m = mc 2L( n eff 1) ,m=1, 3, 5
Δf= c 2d( n eff 1)
Δtc=( n eff 1)L

Metrics