Abstract

Among all the 3D optical flow diagnostic techniques, digital inline holographic particle tracking velocimetry (DIH-PTV) provides the highest spatial resolution with low cost, simple and compact optical setups. Despite these advantages, DIH-PTV suffers from major limitations including poor longitudinal resolution, human intervention (i.e. requirement for manually determined tuning parameters during tracer field reconstruction and extraction), limited tracer concentration, and expensive computations. These limitations prevent this technique from being widely used for high resolution 3D flow measurements. In this study, we present a novel holographic particle extraction method with the goal of overcoming all the major limitations of DIH-PTV. The proposed method consists of multiple steps involving 3D deconvolution, automatic signal-to-noise ratio enhancement and thresholding, and inverse iterative particle extraction. The entire method is implemented using GPU-based algorithm to increase the computational speed significantly. Validated with synthetic particle holograms, the proposed method can achieve particle extraction rate above 95% with fake particles less than 3% and maximum position error below 1.6 particle diameter for holograms with particle concentration above 3000 particles/mm3. The applicability of the proposed method for DIH-PTV has been further validated using the experiment of laminar flow in a microchannel and the synthetic tracer flow fields generated using a DNS turbulent channel flow database. Such improvements will substantially enhance the implementation of DIH-PTV for 3D flow measurements and enable the potential commercialization of this technique.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Regularized inverse holographic volume reconstruction for 3D particle tracking

Kevin Mallery and Jiarong Hong
Opt. Express 27(13) 18069-18084 (2019)

Spiral phase mask shadow-imaging for 3D-measurement of flow fields

Martin Teich, Michael Mattern, Jeremy Sturm, Lars Büttner, and Jürgen W. Czarske
Opt. Express 24(24) 27371-27381 (2016)

Recent advances in holographic 3D particle tracking

Pasquale Memmolo, Lisa Miccio, Melania Paturzo, Giuseppe Di Caprio, Giuseppe Coppola, Paolo A. Netti, and Pietro Ferraro
Adv. Opt. Photon. 7(4) 713-755 (2015)

References

  • View by:
  • |
  • |
  • |

  1. T. Hori and J. Sakakibara, “High-speed scanning stereoscopic PIV for 3D vorticity measurement in liquids,” Meas. Sci. Technol. 15(6), 1067–1078 (2004).
    [Crossref]
  2. C. E. Willert and M. Gharib, “Three-dimensional particle imaging with a single camera,” Exp. Fluids 12(6), 353–358 (1992).
    [Crossref]
  3. G. E. Elsinga, F. Scarano, B. Wieneke, and B. W. Van Oudheusden, “Tomographic particle image velocimetry,” Exp. Fluids 41(6), 933–947 (2006).
    [Crossref]
  4. J. Katz and J. Sheng, “Applications of holography in fluid mechanics and particle dynamics,” Annu. Rev. Fluid Mech. 42(1), 531–555 (2010).
    [Crossref]
  5. J. Sheng, E. Malkiel, and J. Katz, “Using digital holographic microscopy for simultaneous measurements of 3D near wall velocity and wall shear stress in a turbulent boundary layer,” Exp. Fluids 45(6), 1023–1035 (2008).
    [Crossref]
  6. S. Talapatra and J. Katz, “Three-dimensional velocity measurements in a roughness sublayer using microscopic digital in-line holography and optical index matching,” Meas. Sci. Technol. 24(2), 024004 (2013).
    [Crossref]
  7. L. Tian, N. Loomis, J. A. Domínguez-Caballero, and G. Barbastathis, “Quantitative measurement of size and three-dimensional position of fast-moving bubbles in air-water mixture flows using digital holography,” Appl. Opt. 49(9), 1549–1554 (2010).
    [Crossref] [PubMed]
  8. D.R. Guildenbecher, J. Gao, P.L. Reu, and J. Chen, “Digital holography reconstruction algorithms to estimate the morphology and depth of nonspherical absorbing particles,” in SPIE Optical Engineering and Applications (ISOP, 2012), paper 849303.
    [Crossref]
  9. F. Soulez, L. Denis, C. Fournier, E. Thiébaut, and C. Goepfert, “Inverse-problem approach for particle digital holography: accurate location based on local optimization,” J. Opt. Soc. Am. A 24(4), 1164–1171 (2007).
    [Crossref] [PubMed]
  10. H. Meng, G. Pan, Y. Pu, and S. H. Woodward, “Holographic particle image velocimetry: from film to digital recording,” Meas. Sci. Technol. 15(4), 673–685 (2004).
    [Crossref]
  11. J. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1968).
  12. D. A. Agard, “Optical sectioning microscopy: cellular architecture in three dimensions,” Annu. Rev. Biophys. Bioeng. 13(1), 191–219 (1984).
    [Crossref] [PubMed]
  13. T. Latychevskaia, F. Gehri, and H.-W. Fink, “Depth-resolved holographic reconstructions by three-dimensional deconvolution,” Opt. Express 18(21), 22527–22544 (2010).
    [Crossref] [PubMed]
  14. L. Dixon, F. C. Cheong, and D. G. Grier, “Holographic deconvolution microscopy for high-resolution particle tracking,” Opt. Express 19(17), 16410–16417 (2011).
    [Crossref] [PubMed]
  15. T. Latychevskaia and H. W. Fink, “Holographic time-resolved particle tracking by means of three-dimensional volumetric deconvolution,” Opt. Express 22(17), 20994–21003 (2014).
    [Crossref] [PubMed]
  16. D. K. Singh and P. K. Panigrahi, “Three-dimensional investigation of liquid slug Taylor flow inside a micro-capillary using holographic velocimetry,” Exp. Fluids 56(1), 6–15 (2015).
    [Crossref]
  17. J. Sheng, E. Malkiel, and J. Katz, “Digital holographic microscope for measuring three-dimensional particle distributions and motions,” Appl. Opt. 45(16), 3893–3901 (2006).
    [Crossref] [PubMed]
  18. G. E. Elsinga, “Complete removal of ghost particles in Tomographic-PIV,” in 10th International Symposium on Particle Image Velocimetry (KSOV, 2013), pp. 1–3.
  19. H. Meng, W. L. Anderson, F. Hussain, and D. D. Liu, “Intrinsic speckle noise in in-line particle holography,” J. Opt. Soc. Am. A 10(9), 2046–2058 (1993).
    [Crossref]
  20. M. Malek, D. Allano, S. Coëtmellec, and D. Lebrun, “Digital in-line holography: influence of the shadow density on particle field extraction,” Opt. Express 12(10), 2270–2279 (2004).
    [Crossref] [PubMed]
  21. Y. Zhang, G. Shen, A. Schrder, and J. Kompenhans, “Influence of some recording parameters on digital holographic particle image velocimetry,” Opt. Eng. 45(7), 075801 (2006).
    [Crossref]
  22. F. Soulez, L. Denis, C. Fournier, E. Thiébaut, and C. Goepfert, “Inverse-problem approach for particle digital holography: accurate location based on local optimization,” J. Opt. Soc. Am. A 24(4), 1164–1171 (2007).
    [Crossref] [PubMed]
  23. J. Gao, “Development and applications of digital holography to particle field measurement and in vivo biological imaging,” PhD diss. Purdue University (2014).
  24. H. Royer, “An application of high-speed microholography: the metrology of fogs,” Nouv. Rev. Opt. 5(2), 87–93 (1974).
    [Crossref]
  25. J. C. Crocker and D. G. Grier, “Methods of digital video microscopy for colloidal studies,” J. Colloid Interface Sci. 179(1), 298–310 (1996).
    [Crossref]
  26. Y. Li, E. Perlman, M. Wan, Y. Yang, R. Burns, C. Meneveau, R. Burns, S. Chen, A. Szalay, and G. Eyink, “A public turbulence database cluster and applications to study Lagrangian evolution of velocity increments in turbulence,” J. Turbul. 9(31), 1–30 (2008).
  27. J. Graham, K. Kanov, X. I. A. Yang, M. K. Lee, N. Malaya, C. C. Lalescu, R. Burns, G. Eyink, A. Szalay, R. D. Moser, and C. Meneveau, “A Web Services-accessible database of turbulent channel flow and its use for testing a new integral wall model for LES,” J. Turbul.in press.

2015 (1)

D. K. Singh and P. K. Panigrahi, “Three-dimensional investigation of liquid slug Taylor flow inside a micro-capillary using holographic velocimetry,” Exp. Fluids 56(1), 6–15 (2015).
[Crossref]

2014 (1)

2013 (1)

S. Talapatra and J. Katz, “Three-dimensional velocity measurements in a roughness sublayer using microscopic digital in-line holography and optical index matching,” Meas. Sci. Technol. 24(2), 024004 (2013).
[Crossref]

2011 (1)

2010 (3)

2008 (2)

J. Sheng, E. Malkiel, and J. Katz, “Using digital holographic microscopy for simultaneous measurements of 3D near wall velocity and wall shear stress in a turbulent boundary layer,” Exp. Fluids 45(6), 1023–1035 (2008).
[Crossref]

Y. Li, E. Perlman, M. Wan, Y. Yang, R. Burns, C. Meneveau, R. Burns, S. Chen, A. Szalay, and G. Eyink, “A public turbulence database cluster and applications to study Lagrangian evolution of velocity increments in turbulence,” J. Turbul. 9(31), 1–30 (2008).

2007 (2)

2006 (3)

J. Sheng, E. Malkiel, and J. Katz, “Digital holographic microscope for measuring three-dimensional particle distributions and motions,” Appl. Opt. 45(16), 3893–3901 (2006).
[Crossref] [PubMed]

G. E. Elsinga, F. Scarano, B. Wieneke, and B. W. Van Oudheusden, “Tomographic particle image velocimetry,” Exp. Fluids 41(6), 933–947 (2006).
[Crossref]

Y. Zhang, G. Shen, A. Schrder, and J. Kompenhans, “Influence of some recording parameters on digital holographic particle image velocimetry,” Opt. Eng. 45(7), 075801 (2006).
[Crossref]

2004 (3)

H. Meng, G. Pan, Y. Pu, and S. H. Woodward, “Holographic particle image velocimetry: from film to digital recording,” Meas. Sci. Technol. 15(4), 673–685 (2004).
[Crossref]

T. Hori and J. Sakakibara, “High-speed scanning stereoscopic PIV for 3D vorticity measurement in liquids,” Meas. Sci. Technol. 15(6), 1067–1078 (2004).
[Crossref]

M. Malek, D. Allano, S. Coëtmellec, and D. Lebrun, “Digital in-line holography: influence of the shadow density on particle field extraction,” Opt. Express 12(10), 2270–2279 (2004).
[Crossref] [PubMed]

1996 (1)

J. C. Crocker and D. G. Grier, “Methods of digital video microscopy for colloidal studies,” J. Colloid Interface Sci. 179(1), 298–310 (1996).
[Crossref]

1993 (1)

1992 (1)

C. E. Willert and M. Gharib, “Three-dimensional particle imaging with a single camera,” Exp. Fluids 12(6), 353–358 (1992).
[Crossref]

1984 (1)

D. A. Agard, “Optical sectioning microscopy: cellular architecture in three dimensions,” Annu. Rev. Biophys. Bioeng. 13(1), 191–219 (1984).
[Crossref] [PubMed]

1974 (1)

H. Royer, “An application of high-speed microholography: the metrology of fogs,” Nouv. Rev. Opt. 5(2), 87–93 (1974).
[Crossref]

Agard, D. A.

D. A. Agard, “Optical sectioning microscopy: cellular architecture in three dimensions,” Annu. Rev. Biophys. Bioeng. 13(1), 191–219 (1984).
[Crossref] [PubMed]

Allano, D.

Anderson, W. L.

Barbastathis, G.

Burns, R.

Y. Li, E. Perlman, M. Wan, Y. Yang, R. Burns, C. Meneveau, R. Burns, S. Chen, A. Szalay, and G. Eyink, “A public turbulence database cluster and applications to study Lagrangian evolution of velocity increments in turbulence,” J. Turbul. 9(31), 1–30 (2008).

Y. Li, E. Perlman, M. Wan, Y. Yang, R. Burns, C. Meneveau, R. Burns, S. Chen, A. Szalay, and G. Eyink, “A public turbulence database cluster and applications to study Lagrangian evolution of velocity increments in turbulence,” J. Turbul. 9(31), 1–30 (2008).

J. Graham, K. Kanov, X. I. A. Yang, M. K. Lee, N. Malaya, C. C. Lalescu, R. Burns, G. Eyink, A. Szalay, R. D. Moser, and C. Meneveau, “A Web Services-accessible database of turbulent channel flow and its use for testing a new integral wall model for LES,” J. Turbul.in press.

Chen, S.

Y. Li, E. Perlman, M. Wan, Y. Yang, R. Burns, C. Meneveau, R. Burns, S. Chen, A. Szalay, and G. Eyink, “A public turbulence database cluster and applications to study Lagrangian evolution of velocity increments in turbulence,” J. Turbul. 9(31), 1–30 (2008).

Cheong, F. C.

Coëtmellec, S.

Crocker, J. C.

J. C. Crocker and D. G. Grier, “Methods of digital video microscopy for colloidal studies,” J. Colloid Interface Sci. 179(1), 298–310 (1996).
[Crossref]

Denis, L.

Dixon, L.

Domínguez-Caballero, J. A.

Elsinga, G. E.

G. E. Elsinga, F. Scarano, B. Wieneke, and B. W. Van Oudheusden, “Tomographic particle image velocimetry,” Exp. Fluids 41(6), 933–947 (2006).
[Crossref]

Eyink, G.

Y. Li, E. Perlman, M. Wan, Y. Yang, R. Burns, C. Meneveau, R. Burns, S. Chen, A. Szalay, and G. Eyink, “A public turbulence database cluster and applications to study Lagrangian evolution of velocity increments in turbulence,” J. Turbul. 9(31), 1–30 (2008).

J. Graham, K. Kanov, X. I. A. Yang, M. K. Lee, N. Malaya, C. C. Lalescu, R. Burns, G. Eyink, A. Szalay, R. D. Moser, and C. Meneveau, “A Web Services-accessible database of turbulent channel flow and its use for testing a new integral wall model for LES,” J. Turbul.in press.

Fink, H. W.

Fink, H.-W.

Fournier, C.

Gehri, F.

Gharib, M.

C. E. Willert and M. Gharib, “Three-dimensional particle imaging with a single camera,” Exp. Fluids 12(6), 353–358 (1992).
[Crossref]

Goepfert, C.

Graham, J.

J. Graham, K. Kanov, X. I. A. Yang, M. K. Lee, N. Malaya, C. C. Lalescu, R. Burns, G. Eyink, A. Szalay, R. D. Moser, and C. Meneveau, “A Web Services-accessible database of turbulent channel flow and its use for testing a new integral wall model for LES,” J. Turbul.in press.

Grier, D. G.

L. Dixon, F. C. Cheong, and D. G. Grier, “Holographic deconvolution microscopy for high-resolution particle tracking,” Opt. Express 19(17), 16410–16417 (2011).
[Crossref] [PubMed]

J. C. Crocker and D. G. Grier, “Methods of digital video microscopy for colloidal studies,” J. Colloid Interface Sci. 179(1), 298–310 (1996).
[Crossref]

Hori, T.

T. Hori and J. Sakakibara, “High-speed scanning stereoscopic PIV for 3D vorticity measurement in liquids,” Meas. Sci. Technol. 15(6), 1067–1078 (2004).
[Crossref]

Hussain, F.

Kanov, K.

J. Graham, K. Kanov, X. I. A. Yang, M. K. Lee, N. Malaya, C. C. Lalescu, R. Burns, G. Eyink, A. Szalay, R. D. Moser, and C. Meneveau, “A Web Services-accessible database of turbulent channel flow and its use for testing a new integral wall model for LES,” J. Turbul.in press.

Katz, J.

S. Talapatra and J. Katz, “Three-dimensional velocity measurements in a roughness sublayer using microscopic digital in-line holography and optical index matching,” Meas. Sci. Technol. 24(2), 024004 (2013).
[Crossref]

J. Katz and J. Sheng, “Applications of holography in fluid mechanics and particle dynamics,” Annu. Rev. Fluid Mech. 42(1), 531–555 (2010).
[Crossref]

J. Sheng, E. Malkiel, and J. Katz, “Using digital holographic microscopy for simultaneous measurements of 3D near wall velocity and wall shear stress in a turbulent boundary layer,” Exp. Fluids 45(6), 1023–1035 (2008).
[Crossref]

J. Sheng, E. Malkiel, and J. Katz, “Digital holographic microscope for measuring three-dimensional particle distributions and motions,” Appl. Opt. 45(16), 3893–3901 (2006).
[Crossref] [PubMed]

Kompenhans, J.

Y. Zhang, G. Shen, A. Schrder, and J. Kompenhans, “Influence of some recording parameters on digital holographic particle image velocimetry,” Opt. Eng. 45(7), 075801 (2006).
[Crossref]

Lalescu, C. C.

J. Graham, K. Kanov, X. I. A. Yang, M. K. Lee, N. Malaya, C. C. Lalescu, R. Burns, G. Eyink, A. Szalay, R. D. Moser, and C. Meneveau, “A Web Services-accessible database of turbulent channel flow and its use for testing a new integral wall model for LES,” J. Turbul.in press.

Latychevskaia, T.

Lebrun, D.

Lee, M. K.

J. Graham, K. Kanov, X. I. A. Yang, M. K. Lee, N. Malaya, C. C. Lalescu, R. Burns, G. Eyink, A. Szalay, R. D. Moser, and C. Meneveau, “A Web Services-accessible database of turbulent channel flow and its use for testing a new integral wall model for LES,” J. Turbul.in press.

Li, Y.

Y. Li, E. Perlman, M. Wan, Y. Yang, R. Burns, C. Meneveau, R. Burns, S. Chen, A. Szalay, and G. Eyink, “A public turbulence database cluster and applications to study Lagrangian evolution of velocity increments in turbulence,” J. Turbul. 9(31), 1–30 (2008).

Liu, D. D.

Loomis, N.

Malaya, N.

J. Graham, K. Kanov, X. I. A. Yang, M. K. Lee, N. Malaya, C. C. Lalescu, R. Burns, G. Eyink, A. Szalay, R. D. Moser, and C. Meneveau, “A Web Services-accessible database of turbulent channel flow and its use for testing a new integral wall model for LES,” J. Turbul.in press.

Malek, M.

Malkiel, E.

J. Sheng, E. Malkiel, and J. Katz, “Using digital holographic microscopy for simultaneous measurements of 3D near wall velocity and wall shear stress in a turbulent boundary layer,” Exp. Fluids 45(6), 1023–1035 (2008).
[Crossref]

J. Sheng, E. Malkiel, and J. Katz, “Digital holographic microscope for measuring three-dimensional particle distributions and motions,” Appl. Opt. 45(16), 3893–3901 (2006).
[Crossref] [PubMed]

Meneveau, C.

Y. Li, E. Perlman, M. Wan, Y. Yang, R. Burns, C. Meneveau, R. Burns, S. Chen, A. Szalay, and G. Eyink, “A public turbulence database cluster and applications to study Lagrangian evolution of velocity increments in turbulence,” J. Turbul. 9(31), 1–30 (2008).

J. Graham, K. Kanov, X. I. A. Yang, M. K. Lee, N. Malaya, C. C. Lalescu, R. Burns, G. Eyink, A. Szalay, R. D. Moser, and C. Meneveau, “A Web Services-accessible database of turbulent channel flow and its use for testing a new integral wall model for LES,” J. Turbul.in press.

Meng, H.

H. Meng, G. Pan, Y. Pu, and S. H. Woodward, “Holographic particle image velocimetry: from film to digital recording,” Meas. Sci. Technol. 15(4), 673–685 (2004).
[Crossref]

H. Meng, W. L. Anderson, F. Hussain, and D. D. Liu, “Intrinsic speckle noise in in-line particle holography,” J. Opt. Soc. Am. A 10(9), 2046–2058 (1993).
[Crossref]

Moser, R. D.

J. Graham, K. Kanov, X. I. A. Yang, M. K. Lee, N. Malaya, C. C. Lalescu, R. Burns, G. Eyink, A. Szalay, R. D. Moser, and C. Meneveau, “A Web Services-accessible database of turbulent channel flow and its use for testing a new integral wall model for LES,” J. Turbul.in press.

Pan, G.

H. Meng, G. Pan, Y. Pu, and S. H. Woodward, “Holographic particle image velocimetry: from film to digital recording,” Meas. Sci. Technol. 15(4), 673–685 (2004).
[Crossref]

Panigrahi, P. K.

D. K. Singh and P. K. Panigrahi, “Three-dimensional investigation of liquid slug Taylor flow inside a micro-capillary using holographic velocimetry,” Exp. Fluids 56(1), 6–15 (2015).
[Crossref]

Perlman, E.

Y. Li, E. Perlman, M. Wan, Y. Yang, R. Burns, C. Meneveau, R. Burns, S. Chen, A. Szalay, and G. Eyink, “A public turbulence database cluster and applications to study Lagrangian evolution of velocity increments in turbulence,” J. Turbul. 9(31), 1–30 (2008).

Pu, Y.

H. Meng, G. Pan, Y. Pu, and S. H. Woodward, “Holographic particle image velocimetry: from film to digital recording,” Meas. Sci. Technol. 15(4), 673–685 (2004).
[Crossref]

Royer, H.

H. Royer, “An application of high-speed microholography: the metrology of fogs,” Nouv. Rev. Opt. 5(2), 87–93 (1974).
[Crossref]

Sakakibara, J.

T. Hori and J. Sakakibara, “High-speed scanning stereoscopic PIV for 3D vorticity measurement in liquids,” Meas. Sci. Technol. 15(6), 1067–1078 (2004).
[Crossref]

Scarano, F.

G. E. Elsinga, F. Scarano, B. Wieneke, and B. W. Van Oudheusden, “Tomographic particle image velocimetry,” Exp. Fluids 41(6), 933–947 (2006).
[Crossref]

Schrder, A.

Y. Zhang, G. Shen, A. Schrder, and J. Kompenhans, “Influence of some recording parameters on digital holographic particle image velocimetry,” Opt. Eng. 45(7), 075801 (2006).
[Crossref]

Shen, G.

Y. Zhang, G. Shen, A. Schrder, and J. Kompenhans, “Influence of some recording parameters on digital holographic particle image velocimetry,” Opt. Eng. 45(7), 075801 (2006).
[Crossref]

Sheng, J.

J. Katz and J. Sheng, “Applications of holography in fluid mechanics and particle dynamics,” Annu. Rev. Fluid Mech. 42(1), 531–555 (2010).
[Crossref]

J. Sheng, E. Malkiel, and J. Katz, “Using digital holographic microscopy for simultaneous measurements of 3D near wall velocity and wall shear stress in a turbulent boundary layer,” Exp. Fluids 45(6), 1023–1035 (2008).
[Crossref]

J. Sheng, E. Malkiel, and J. Katz, “Digital holographic microscope for measuring three-dimensional particle distributions and motions,” Appl. Opt. 45(16), 3893–3901 (2006).
[Crossref] [PubMed]

Singh, D. K.

D. K. Singh and P. K. Panigrahi, “Three-dimensional investigation of liquid slug Taylor flow inside a micro-capillary using holographic velocimetry,” Exp. Fluids 56(1), 6–15 (2015).
[Crossref]

Soulez, F.

Szalay, A.

Y. Li, E. Perlman, M. Wan, Y. Yang, R. Burns, C. Meneveau, R. Burns, S. Chen, A. Szalay, and G. Eyink, “A public turbulence database cluster and applications to study Lagrangian evolution of velocity increments in turbulence,” J. Turbul. 9(31), 1–30 (2008).

J. Graham, K. Kanov, X. I. A. Yang, M. K. Lee, N. Malaya, C. C. Lalescu, R. Burns, G. Eyink, A. Szalay, R. D. Moser, and C. Meneveau, “A Web Services-accessible database of turbulent channel flow and its use for testing a new integral wall model for LES,” J. Turbul.in press.

Talapatra, S.

S. Talapatra and J. Katz, “Three-dimensional velocity measurements in a roughness sublayer using microscopic digital in-line holography and optical index matching,” Meas. Sci. Technol. 24(2), 024004 (2013).
[Crossref]

Thiébaut, E.

Tian, L.

Van Oudheusden, B. W.

G. E. Elsinga, F. Scarano, B. Wieneke, and B. W. Van Oudheusden, “Tomographic particle image velocimetry,” Exp. Fluids 41(6), 933–947 (2006).
[Crossref]

Wan, M.

Y. Li, E. Perlman, M. Wan, Y. Yang, R. Burns, C. Meneveau, R. Burns, S. Chen, A. Szalay, and G. Eyink, “A public turbulence database cluster and applications to study Lagrangian evolution of velocity increments in turbulence,” J. Turbul. 9(31), 1–30 (2008).

Wieneke, B.

G. E. Elsinga, F. Scarano, B. Wieneke, and B. W. Van Oudheusden, “Tomographic particle image velocimetry,” Exp. Fluids 41(6), 933–947 (2006).
[Crossref]

Willert, C. E.

C. E. Willert and M. Gharib, “Three-dimensional particle imaging with a single camera,” Exp. Fluids 12(6), 353–358 (1992).
[Crossref]

Woodward, S. H.

H. Meng, G. Pan, Y. Pu, and S. H. Woodward, “Holographic particle image velocimetry: from film to digital recording,” Meas. Sci. Technol. 15(4), 673–685 (2004).
[Crossref]

Yang, X. I. A.

J. Graham, K. Kanov, X. I. A. Yang, M. K. Lee, N. Malaya, C. C. Lalescu, R. Burns, G. Eyink, A. Szalay, R. D. Moser, and C. Meneveau, “A Web Services-accessible database of turbulent channel flow and its use for testing a new integral wall model for LES,” J. Turbul.in press.

Yang, Y.

Y. Li, E. Perlman, M. Wan, Y. Yang, R. Burns, C. Meneveau, R. Burns, S. Chen, A. Szalay, and G. Eyink, “A public turbulence database cluster and applications to study Lagrangian evolution of velocity increments in turbulence,” J. Turbul. 9(31), 1–30 (2008).

Zhang, Y.

Y. Zhang, G. Shen, A. Schrder, and J. Kompenhans, “Influence of some recording parameters on digital holographic particle image velocimetry,” Opt. Eng. 45(7), 075801 (2006).
[Crossref]

Annu. Rev. Biophys. Bioeng. (1)

D. A. Agard, “Optical sectioning microscopy: cellular architecture in three dimensions,” Annu. Rev. Biophys. Bioeng. 13(1), 191–219 (1984).
[Crossref] [PubMed]

Annu. Rev. Fluid Mech. (1)

J. Katz and J. Sheng, “Applications of holography in fluid mechanics and particle dynamics,” Annu. Rev. Fluid Mech. 42(1), 531–555 (2010).
[Crossref]

Appl. Opt. (2)

Exp. Fluids (4)

J. Sheng, E. Malkiel, and J. Katz, “Using digital holographic microscopy for simultaneous measurements of 3D near wall velocity and wall shear stress in a turbulent boundary layer,” Exp. Fluids 45(6), 1023–1035 (2008).
[Crossref]

C. E. Willert and M. Gharib, “Three-dimensional particle imaging with a single camera,” Exp. Fluids 12(6), 353–358 (1992).
[Crossref]

G. E. Elsinga, F. Scarano, B. Wieneke, and B. W. Van Oudheusden, “Tomographic particle image velocimetry,” Exp. Fluids 41(6), 933–947 (2006).
[Crossref]

D. K. Singh and P. K. Panigrahi, “Three-dimensional investigation of liquid slug Taylor flow inside a micro-capillary using holographic velocimetry,” Exp. Fluids 56(1), 6–15 (2015).
[Crossref]

J. Colloid Interface Sci. (1)

J. C. Crocker and D. G. Grier, “Methods of digital video microscopy for colloidal studies,” J. Colloid Interface Sci. 179(1), 298–310 (1996).
[Crossref]

J. Opt. Soc. Am. A (3)

J. Turbul. (1)

Y. Li, E. Perlman, M. Wan, Y. Yang, R. Burns, C. Meneveau, R. Burns, S. Chen, A. Szalay, and G. Eyink, “A public turbulence database cluster and applications to study Lagrangian evolution of velocity increments in turbulence,” J. Turbul. 9(31), 1–30 (2008).

Meas. Sci. Technol. (3)

T. Hori and J. Sakakibara, “High-speed scanning stereoscopic PIV for 3D vorticity measurement in liquids,” Meas. Sci. Technol. 15(6), 1067–1078 (2004).
[Crossref]

S. Talapatra and J. Katz, “Three-dimensional velocity measurements in a roughness sublayer using microscopic digital in-line holography and optical index matching,” Meas. Sci. Technol. 24(2), 024004 (2013).
[Crossref]

H. Meng, G. Pan, Y. Pu, and S. H. Woodward, “Holographic particle image velocimetry: from film to digital recording,” Meas. Sci. Technol. 15(4), 673–685 (2004).
[Crossref]

Nouv. Rev. Opt. (1)

H. Royer, “An application of high-speed microholography: the metrology of fogs,” Nouv. Rev. Opt. 5(2), 87–93 (1974).
[Crossref]

Opt. Eng. (1)

Y. Zhang, G. Shen, A. Schrder, and J. Kompenhans, “Influence of some recording parameters on digital holographic particle image velocimetry,” Opt. Eng. 45(7), 075801 (2006).
[Crossref]

Opt. Express (4)

Other (5)

J. Gao, “Development and applications of digital holography to particle field measurement and in vivo biological imaging,” PhD diss. Purdue University (2014).

G. E. Elsinga, “Complete removal of ghost particles in Tomographic-PIV,” in 10th International Symposium on Particle Image Velocimetry (KSOV, 2013), pp. 1–3.

J. Graham, K. Kanov, X. I. A. Yang, M. K. Lee, N. Malaya, C. C. Lalescu, R. Burns, G. Eyink, A. Szalay, R. D. Moser, and C. Meneveau, “A Web Services-accessible database of turbulent channel flow and its use for testing a new integral wall model for LES,” J. Turbul.in press.

J. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1968).

D.R. Guildenbecher, J. Gao, P.L. Reu, and J. Chen, “Digital holography reconstruction algorithms to estimate the morphology and depth of nonspherical absorbing particles,” in SPIE Optical Engineering and Applications (ISOP, 2012), paper 849303.
[Crossref]

Supplementary Material (1)

NameDescription
» Visualization 1: AVI (579 KB)      Iterative inverse particle extraction

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 The optical setup of digital in-line holography.
Fig. 2
Fig. 2 The flow chart of our DIH-PTV particle extraction procedure.
Fig. 3
Fig. 3 (a) Original and (b) deconvolved 3D reconstruction of a sample hologram of 2 µm-diameter silver coated silica tracer particles. (c) The xy and xz plane minimum intensity maps of (c) the original and (d) the deconvolved 3D optical fields. (e) A normalized longitudinal intensity profile of a sample particle before and after deconvolution at the location pointed by the arrow. Note that the intensity values at different longitudinal locations presented here are the mean values averaged over the lateral cross-sections of the particle.
Fig. 4
Fig. 4 The xy and xz plane minimum intensity maps of the deconvolved 3D reconstruction (a) before and (b) after 3D local SNR enhancement, for Cp ≈3000 particles/mm3. (c) The intensity distribution profiles of minimum intensity images after and before 3D local SNR enhancement for (d) corresponding thresholded and 3D segmented particle field.
Fig. 5
Fig. 5 (a) The IIPE algorithm flowchart. (b) Iterative particle-removal (for hologram Cp = 1800 particles/mm3): recorded and the corresponding particle-removed holograms after different iterations. To provide examples of the particle removal, the letter symbols without prime are used to mark a few particles with high SNR that are extracted in the first iteration. The particles marked using letter symbols with prime indicate the particles whose fringe patterns are recovered/enhanced after removing those high SNR particles in the first iteration (e.g. After removing the particle A in the first iteration, the fringes of particle A’ which is laterally-close to A but at different longitudinal location appears). The corresponding results for Cp ≈3000 particles/mm3 can be observed in Visualization 1. (c) The cross-correlation between successive particle-removed holograms for both cases of Cp ≈1800 and 3000 particles/mm3.
Fig. 6
Fig. 6 The variation of (a) particle extraction rate and (b) positioning error with particle concentration, diameter and measurement volume obtained from the hologram simulation using synthetic particle fields.
Fig. 7
Fig. 7 (a) A sample hologram captured from a microchannel flow seeded with 2 µm tracer particles of up to 3000 particles/mm3 concentration. (b) A sample of instantaneous velocity vector field measured using our DIH-PTV and (c) the corresponding structured vector field superimposed with the contours of the streamwise velocity magnitude. (d) A comparison of a sample of instantaneous streamwise velocity profile measured from DIH-PTV and Poiseuille profile in the channel. The instantaneous profile is spatially averaged over a region of 50 µm thick and 100 µm in length around the xz-middle plane and (e) the distribution of corresponding longitudinal velocity component (w).
Fig. 8
Fig. 8 (a) A sample of instantaneous 3D displacement vector field from JHUDNS database superimposed with its displacement magnitude contour, (b) corresponding 3D displacement vector field calculated through our DIH-PTV similarly superimposed with its displacement magnitude contour.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

u p (x,y,z)= I h (x,y)h(x,y,z)
h(x,y,z)= 1 jλ x 2 + y 2 + z 2 exp[jk( x 2 + y 2 + z 2 )]
u p (x,y,z)=FF T 1 {FFT[ I h (x,y)]×FFT[h(x,y,z)]}
u ' p (x,y,z)=FF T 1 { FFT [ I PSF (x,y,z)] * ×FFT[ I P (x,y,z)] FFT[ I PSF (x,y,z)]×FFT [ I PSF (x,y,z)] * +β }
I Thr0 =Avg( I min )Avg( I σ )σ( I σ )
I'(x,y,z)= I(x,y,z)Min( I ) Max( I )Min( I )
u p (x,y, z i ) n =I ' h | n (x,y)h(x,y, z i )
u p ( A pi ( x i , y i ), z i ) n =Avg( u p (x,y, z i ) n )
I ' h | n (x,y)=| u p (x,y, z i ) n h(x,y, z i ) | 2 &i=i+1

Metrics