Abstract

In situ bio-sensing system based on microwave photonics filter (MPF) interrogation method with improved resolution is proposed and experimentally demonstrated. A microfiber Bragg grating (mFBG) is used as sensing probe for DNA hybridization detection. Different from the traditional wavelength monitoring technique, we use the frequency interrogation scheme for resolution-improved bio-sensing detection. Experimental results show that the frequency shift of MPF notch presents a linear response to the surrounding refractive index (SRI) change over the range of 1.33 to 1.38, with a SRI resolution up to 2.6 × 10−5 RIU, which has been increased for almost two orders of magnitude compared with the traditional fundamental mode monitoring technique (~3.6 × 10−3 RIU). Due to the high Q value (about 27), the whole process of DNA hybridization can be in situ monitored. The proposed MPF-based bio-sensing system provides a new interrogation method over the frequency domain with improved sensing resolution and rapid interrogation rate for biochemical and environmental measurement.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
In-situ DNA hybridization detection based on a reflective microfiber probe

Yanpeng Li, Fang Fang, Liuyang Yang, ShiJie Tan, Zhijun Yan, and Qizhen Sun
Opt. Express 28(2) 970-979 (2020)

High-resolution fiber Bragg grating based transverse load sensor using microwave photonics filtering technique

Yiping Wang, Ming Wang, Wei Xia, and Xiaoqi Ni
Opt. Express 24(16) 17960-17967 (2016)

Micro-capillary-based evanescent field biosensor for sensitive, label-free DNA detection

Yun Liu, Shimeng Chen, Qiang Liu, and Wei Peng
Opt. Express 23(16) 20686-20695 (2015)

References

  • View by:
  • |
  • |
  • |

  1. B. Lu, C. Lu, and Y. Wei, “A planar quartz waveguide immunosensor based on TIRF principle,” Anal. Lett. 25(1), 1–10 (1992).
    [Crossref]
  2. R. Cush, J. Cronin, W. Stewart, C. Maule, J. Molloy, and N. Goddard, “The resonant mirror: a novel optical biosensor for direct sensing of biomolecular interactions Part I: Principle of operation and associated instrumentation,” Biosens. Bioelectron. 8(7-8), 347–354 (1993).
    [Crossref]
  3. C. R. Graham, D. Leslie, and D. J. Squirrell, “Gene probe assays on a fibre-optic evanescent wave biosensor,” Biosens. Bioelectron. 7(7), 487–493 (1992).
    [Crossref] [PubMed]
  4. X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
    [Crossref] [PubMed]
  5. L. V. Nguyen, S. C. Warren-Smith, A. Cooper, and T. M. Monro, “Molecular beacons immobilized within suspended core optical fiber for specific DNA detection,” Opt. Express 20(28), 29378–29385 (2012).
    [Crossref] [PubMed]
  6. A. Candiani, A. Bertucci, S. Giannetti, M. Konstantaki, A. Manicardi, S. Pissadakis, A. Cucinotta, R. Corradini, and S. Selleri, “Label-free DNA biosensor based on a peptide nucleic acid-functionalized microstructured optical fiber-Bragg grating,” J. Biomed. Opt. 18(5), 057004 (2013).
    [Crossref] [PubMed]
  7. A. N. Chryssis, S. S. Saini, S. M. Lee, H. Yi, W. E. Bentley, and M. Dagenais, “Detecting hybridization of DNA by highly sensitive evanescent field etched core fiber Bragg grating sensors,” IEEE J. Sel. Top. Quantum Electron. 11(4), 864–872 (2005).
    [Crossref]
  8. X. Chen, L. Zhang, K. Zhou, E. Davies, K. Sugden, I. Bennion, M. Hughes, and A. Hine, “Real-time detection of DNA interactions with long-period fiber-grating-based biosensor,” Opt. Lett. 32(17), 2541–2543 (2007).
    [Crossref] [PubMed]
  9. A. V. Hine, X. Chen, M. D. Hughes, K. Zhou, E. Davies, K. Sugden, I. Bennion, and L. Zhang, “Optical fibre-based detection of DNA hybridization,” Biochem. Soc. Trans. 37(2), 445–449 (2009).
    [Crossref] [PubMed]
  10. H. S. Jang, K. N. Park, J. P. Kim, S. J. Sim, O. J. Kwon, Y.-G. Han, and K. S. Lee, “Sensitive DNA biosensor based on a long-period grating formed on the side-polished fiber surface,” Opt. Express 17(5), 3855–3860 (2009).
    [Crossref] [PubMed]
  11. A. Candiani, M. Sozzi, E. Coscelli, F. Poli, A. Cucinotta, S. Selleri, R. Veneziano, R. Corradini, R. Marchelli, and P. Childs, “Double tilted fiber bragg grating for label-free DNA detection,” in 2011 International Workshop on BioPhotonics (IEEE, 2011), pp. 1–3.
    [Crossref]
  12. X. Wang, K. L. Cooper, A. Wang, J. Xu, Z. Wang, Y. Zhang, and Z. Tu, “Label-free DNA sequence detection using oligonucleotide functionalized optical fiber,” Appl. Phys. Lett. 89(16), 163901 (2006).
    [Crossref]
  13. M. J. Yin, C. Wu, L. Y. Shao, W. K. Chan, A. P. Zhang, C. Lu, and H. Y. Tam, “Label-free, disposable fiber-optic biosensors for DNA hybridization detection,” Analyst (Lond.) 138(7), 1988–1994 (2013).
    [Crossref] [PubMed]
  14. A. Leung, P. M. Shankar, and R. Mutharasan, “Label-free detection of DNA hybridization using gold-coated tapered fiber optic biosensors (TFOBS) in a flow cell at 1310nm and 1550nm,” Sens. Actuators B Chem. 131(2), 640–645 (2008).
    [Crossref]
  15. M. Zibaii, Z. Taghipour, Z. Saeedian, H. Latifi, M. Gholami, and S. Hosseini, “Kinetic study for the hybridization of 25-mer DNA by nonadiabatic tapered optical fiber sensor,” in SPIE/OSA/IEEE Asia Communications and Photonics, (ISOP, 2011), paper 831109.
  16. Y. Ran, Y.-N. Tan, L.-P. Sun, S. Gao, J. Li, L. Jin, and B. O. Guan, “193 nm excimer laser inscribed Bragg gratings in microfibers for refractive index sensing,” Opt. Express 19(19), 18577–18583 (2011).
    [Crossref] [PubMed]
  17. D. Sun, T. Guo, Y. Ran, Y. Huang, and B.-O. Guan, “In-situ DNA hybridization detection with a reflective microfiber grating biosensor,” Biosens. Bioelectron. 61(20), 541–546 (2014).
    [Crossref] [PubMed]
  18. J. Capmany, B. Ortega, and D. Pastor, “A tutorial on microwave photonic filters,” J. Lightwave Technol. 24(1), 201–229 (2006).
    [Crossref]
  19. R. A. Minasian, “Photonic signal processing of microwave signals,” IEEE Trans. Microw. Theory Tech. 54(2), 832–846 (2006).
    [Crossref]
  20. J. Yao, “Microwave photonics,” J. Lightwave Technol. 27(3), 314–335 (2009).
    [Crossref]
  21. X. Dong, L. Y. Shao, H. Y. Fu, H. Y. Tam, and C. Lu, “Intensity-modulated fiber Bragg grating sensor system based on radio-frequency signal measurement,” Opt. Lett. 33(5), 482–484 (2008).
    [Crossref] [PubMed]
  22. W. Liu, H. Fu, A. P. Zhang, and S. He, “Fiber Bragg grating based wireless sensor module with modulated radio-frequency signal,” IEEE Microw. Wirel. Compon. Lett. 20(6), 358–360 (2010).
    [Crossref]
  23. A. Ricchiuti, D. Barrera, S. Sales, L. Thevenaz, and J. Capmany, “Long weak FBG sensor interrogation using microwave photonics filtering technique,” IEEE Photonics Technol. Lett. 26(20), 2039–2042 (2014).
    [Crossref]

2014 (2)

D. Sun, T. Guo, Y. Ran, Y. Huang, and B.-O. Guan, “In-situ DNA hybridization detection with a reflective microfiber grating biosensor,” Biosens. Bioelectron. 61(20), 541–546 (2014).
[Crossref] [PubMed]

A. Ricchiuti, D. Barrera, S. Sales, L. Thevenaz, and J. Capmany, “Long weak FBG sensor interrogation using microwave photonics filtering technique,” IEEE Photonics Technol. Lett. 26(20), 2039–2042 (2014).
[Crossref]

2013 (2)

M. J. Yin, C. Wu, L. Y. Shao, W. K. Chan, A. P. Zhang, C. Lu, and H. Y. Tam, “Label-free, disposable fiber-optic biosensors for DNA hybridization detection,” Analyst (Lond.) 138(7), 1988–1994 (2013).
[Crossref] [PubMed]

A. Candiani, A. Bertucci, S. Giannetti, M. Konstantaki, A. Manicardi, S. Pissadakis, A. Cucinotta, R. Corradini, and S. Selleri, “Label-free DNA biosensor based on a peptide nucleic acid-functionalized microstructured optical fiber-Bragg grating,” J. Biomed. Opt. 18(5), 057004 (2013).
[Crossref] [PubMed]

2012 (1)

2011 (1)

2010 (1)

W. Liu, H. Fu, A. P. Zhang, and S. He, “Fiber Bragg grating based wireless sensor module with modulated radio-frequency signal,” IEEE Microw. Wirel. Compon. Lett. 20(6), 358–360 (2010).
[Crossref]

2009 (3)

2008 (3)

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[Crossref] [PubMed]

X. Dong, L. Y. Shao, H. Y. Fu, H. Y. Tam, and C. Lu, “Intensity-modulated fiber Bragg grating sensor system based on radio-frequency signal measurement,” Opt. Lett. 33(5), 482–484 (2008).
[Crossref] [PubMed]

A. Leung, P. M. Shankar, and R. Mutharasan, “Label-free detection of DNA hybridization using gold-coated tapered fiber optic biosensors (TFOBS) in a flow cell at 1310nm and 1550nm,” Sens. Actuators B Chem. 131(2), 640–645 (2008).
[Crossref]

2007 (1)

2006 (3)

J. Capmany, B. Ortega, and D. Pastor, “A tutorial on microwave photonic filters,” J. Lightwave Technol. 24(1), 201–229 (2006).
[Crossref]

R. A. Minasian, “Photonic signal processing of microwave signals,” IEEE Trans. Microw. Theory Tech. 54(2), 832–846 (2006).
[Crossref]

X. Wang, K. L. Cooper, A. Wang, J. Xu, Z. Wang, Y. Zhang, and Z. Tu, “Label-free DNA sequence detection using oligonucleotide functionalized optical fiber,” Appl. Phys. Lett. 89(16), 163901 (2006).
[Crossref]

2005 (1)

A. N. Chryssis, S. S. Saini, S. M. Lee, H. Yi, W. E. Bentley, and M. Dagenais, “Detecting hybridization of DNA by highly sensitive evanescent field etched core fiber Bragg grating sensors,” IEEE J. Sel. Top. Quantum Electron. 11(4), 864–872 (2005).
[Crossref]

1993 (1)

R. Cush, J. Cronin, W. Stewart, C. Maule, J. Molloy, and N. Goddard, “The resonant mirror: a novel optical biosensor for direct sensing of biomolecular interactions Part I: Principle of operation and associated instrumentation,” Biosens. Bioelectron. 8(7-8), 347–354 (1993).
[Crossref]

1992 (2)

C. R. Graham, D. Leslie, and D. J. Squirrell, “Gene probe assays on a fibre-optic evanescent wave biosensor,” Biosens. Bioelectron. 7(7), 487–493 (1992).
[Crossref] [PubMed]

B. Lu, C. Lu, and Y. Wei, “A planar quartz waveguide immunosensor based on TIRF principle,” Anal. Lett. 25(1), 1–10 (1992).
[Crossref]

Barrera, D.

A. Ricchiuti, D. Barrera, S. Sales, L. Thevenaz, and J. Capmany, “Long weak FBG sensor interrogation using microwave photonics filtering technique,” IEEE Photonics Technol. Lett. 26(20), 2039–2042 (2014).
[Crossref]

Bennion, I.

A. V. Hine, X. Chen, M. D. Hughes, K. Zhou, E. Davies, K. Sugden, I. Bennion, and L. Zhang, “Optical fibre-based detection of DNA hybridization,” Biochem. Soc. Trans. 37(2), 445–449 (2009).
[Crossref] [PubMed]

X. Chen, L. Zhang, K. Zhou, E. Davies, K. Sugden, I. Bennion, M. Hughes, and A. Hine, “Real-time detection of DNA interactions with long-period fiber-grating-based biosensor,” Opt. Lett. 32(17), 2541–2543 (2007).
[Crossref] [PubMed]

Bentley, W. E.

A. N. Chryssis, S. S. Saini, S. M. Lee, H. Yi, W. E. Bentley, and M. Dagenais, “Detecting hybridization of DNA by highly sensitive evanescent field etched core fiber Bragg grating sensors,” IEEE J. Sel. Top. Quantum Electron. 11(4), 864–872 (2005).
[Crossref]

Bertucci, A.

A. Candiani, A. Bertucci, S. Giannetti, M. Konstantaki, A. Manicardi, S. Pissadakis, A. Cucinotta, R. Corradini, and S. Selleri, “Label-free DNA biosensor based on a peptide nucleic acid-functionalized microstructured optical fiber-Bragg grating,” J. Biomed. Opt. 18(5), 057004 (2013).
[Crossref] [PubMed]

Candiani, A.

A. Candiani, A. Bertucci, S. Giannetti, M. Konstantaki, A. Manicardi, S. Pissadakis, A. Cucinotta, R. Corradini, and S. Selleri, “Label-free DNA biosensor based on a peptide nucleic acid-functionalized microstructured optical fiber-Bragg grating,” J. Biomed. Opt. 18(5), 057004 (2013).
[Crossref] [PubMed]

Capmany, J.

A. Ricchiuti, D. Barrera, S. Sales, L. Thevenaz, and J. Capmany, “Long weak FBG sensor interrogation using microwave photonics filtering technique,” IEEE Photonics Technol. Lett. 26(20), 2039–2042 (2014).
[Crossref]

J. Capmany, B. Ortega, and D. Pastor, “A tutorial on microwave photonic filters,” J. Lightwave Technol. 24(1), 201–229 (2006).
[Crossref]

Chan, W. K.

M. J. Yin, C. Wu, L. Y. Shao, W. K. Chan, A. P. Zhang, C. Lu, and H. Y. Tam, “Label-free, disposable fiber-optic biosensors for DNA hybridization detection,” Analyst (Lond.) 138(7), 1988–1994 (2013).
[Crossref] [PubMed]

Chen, X.

A. V. Hine, X. Chen, M. D. Hughes, K. Zhou, E. Davies, K. Sugden, I. Bennion, and L. Zhang, “Optical fibre-based detection of DNA hybridization,” Biochem. Soc. Trans. 37(2), 445–449 (2009).
[Crossref] [PubMed]

X. Chen, L. Zhang, K. Zhou, E. Davies, K. Sugden, I. Bennion, M. Hughes, and A. Hine, “Real-time detection of DNA interactions with long-period fiber-grating-based biosensor,” Opt. Lett. 32(17), 2541–2543 (2007).
[Crossref] [PubMed]

Chryssis, A. N.

A. N. Chryssis, S. S. Saini, S. M. Lee, H. Yi, W. E. Bentley, and M. Dagenais, “Detecting hybridization of DNA by highly sensitive evanescent field etched core fiber Bragg grating sensors,” IEEE J. Sel. Top. Quantum Electron. 11(4), 864–872 (2005).
[Crossref]

Cooper, A.

Cooper, K. L.

X. Wang, K. L. Cooper, A. Wang, J. Xu, Z. Wang, Y. Zhang, and Z. Tu, “Label-free DNA sequence detection using oligonucleotide functionalized optical fiber,” Appl. Phys. Lett. 89(16), 163901 (2006).
[Crossref]

Corradini, R.

A. Candiani, A. Bertucci, S. Giannetti, M. Konstantaki, A. Manicardi, S. Pissadakis, A. Cucinotta, R. Corradini, and S. Selleri, “Label-free DNA biosensor based on a peptide nucleic acid-functionalized microstructured optical fiber-Bragg grating,” J. Biomed. Opt. 18(5), 057004 (2013).
[Crossref] [PubMed]

Cronin, J.

R. Cush, J. Cronin, W. Stewart, C. Maule, J. Molloy, and N. Goddard, “The resonant mirror: a novel optical biosensor for direct sensing of biomolecular interactions Part I: Principle of operation and associated instrumentation,” Biosens. Bioelectron. 8(7-8), 347–354 (1993).
[Crossref]

Cucinotta, A.

A. Candiani, A. Bertucci, S. Giannetti, M. Konstantaki, A. Manicardi, S. Pissadakis, A. Cucinotta, R. Corradini, and S. Selleri, “Label-free DNA biosensor based on a peptide nucleic acid-functionalized microstructured optical fiber-Bragg grating,” J. Biomed. Opt. 18(5), 057004 (2013).
[Crossref] [PubMed]

Cush, R.

R. Cush, J. Cronin, W. Stewart, C. Maule, J. Molloy, and N. Goddard, “The resonant mirror: a novel optical biosensor for direct sensing of biomolecular interactions Part I: Principle of operation and associated instrumentation,” Biosens. Bioelectron. 8(7-8), 347–354 (1993).
[Crossref]

Dagenais, M.

A. N. Chryssis, S. S. Saini, S. M. Lee, H. Yi, W. E. Bentley, and M. Dagenais, “Detecting hybridization of DNA by highly sensitive evanescent field etched core fiber Bragg grating sensors,” IEEE J. Sel. Top. Quantum Electron. 11(4), 864–872 (2005).
[Crossref]

Davies, E.

A. V. Hine, X. Chen, M. D. Hughes, K. Zhou, E. Davies, K. Sugden, I. Bennion, and L. Zhang, “Optical fibre-based detection of DNA hybridization,” Biochem. Soc. Trans. 37(2), 445–449 (2009).
[Crossref] [PubMed]

X. Chen, L. Zhang, K. Zhou, E. Davies, K. Sugden, I. Bennion, M. Hughes, and A. Hine, “Real-time detection of DNA interactions with long-period fiber-grating-based biosensor,” Opt. Lett. 32(17), 2541–2543 (2007).
[Crossref] [PubMed]

Dong, X.

Fan, X.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[Crossref] [PubMed]

Fu, H.

W. Liu, H. Fu, A. P. Zhang, and S. He, “Fiber Bragg grating based wireless sensor module with modulated radio-frequency signal,” IEEE Microw. Wirel. Compon. Lett. 20(6), 358–360 (2010).
[Crossref]

Fu, H. Y.

Gao, S.

Giannetti, S.

A. Candiani, A. Bertucci, S. Giannetti, M. Konstantaki, A. Manicardi, S. Pissadakis, A. Cucinotta, R. Corradini, and S. Selleri, “Label-free DNA biosensor based on a peptide nucleic acid-functionalized microstructured optical fiber-Bragg grating,” J. Biomed. Opt. 18(5), 057004 (2013).
[Crossref] [PubMed]

Goddard, N.

R. Cush, J. Cronin, W. Stewart, C. Maule, J. Molloy, and N. Goddard, “The resonant mirror: a novel optical biosensor for direct sensing of biomolecular interactions Part I: Principle of operation and associated instrumentation,” Biosens. Bioelectron. 8(7-8), 347–354 (1993).
[Crossref]

Graham, C. R.

C. R. Graham, D. Leslie, and D. J. Squirrell, “Gene probe assays on a fibre-optic evanescent wave biosensor,” Biosens. Bioelectron. 7(7), 487–493 (1992).
[Crossref] [PubMed]

Guan, B. O.

Guan, B.-O.

D. Sun, T. Guo, Y. Ran, Y. Huang, and B.-O. Guan, “In-situ DNA hybridization detection with a reflective microfiber grating biosensor,” Biosens. Bioelectron. 61(20), 541–546 (2014).
[Crossref] [PubMed]

Guo, T.

D. Sun, T. Guo, Y. Ran, Y. Huang, and B.-O. Guan, “In-situ DNA hybridization detection with a reflective microfiber grating biosensor,” Biosens. Bioelectron. 61(20), 541–546 (2014).
[Crossref] [PubMed]

Han, Y.-G.

He, S.

W. Liu, H. Fu, A. P. Zhang, and S. He, “Fiber Bragg grating based wireless sensor module with modulated radio-frequency signal,” IEEE Microw. Wirel. Compon. Lett. 20(6), 358–360 (2010).
[Crossref]

Hine, A.

Hine, A. V.

A. V. Hine, X. Chen, M. D. Hughes, K. Zhou, E. Davies, K. Sugden, I. Bennion, and L. Zhang, “Optical fibre-based detection of DNA hybridization,” Biochem. Soc. Trans. 37(2), 445–449 (2009).
[Crossref] [PubMed]

Huang, Y.

D. Sun, T. Guo, Y. Ran, Y. Huang, and B.-O. Guan, “In-situ DNA hybridization detection with a reflective microfiber grating biosensor,” Biosens. Bioelectron. 61(20), 541–546 (2014).
[Crossref] [PubMed]

Hughes, M.

Hughes, M. D.

A. V. Hine, X. Chen, M. D. Hughes, K. Zhou, E. Davies, K. Sugden, I. Bennion, and L. Zhang, “Optical fibre-based detection of DNA hybridization,” Biochem. Soc. Trans. 37(2), 445–449 (2009).
[Crossref] [PubMed]

Jang, H. S.

Jin, L.

Kim, J. P.

Konstantaki, M.

A. Candiani, A. Bertucci, S. Giannetti, M. Konstantaki, A. Manicardi, S. Pissadakis, A. Cucinotta, R. Corradini, and S. Selleri, “Label-free DNA biosensor based on a peptide nucleic acid-functionalized microstructured optical fiber-Bragg grating,” J. Biomed. Opt. 18(5), 057004 (2013).
[Crossref] [PubMed]

Kwon, O. J.

Lee, K. S.

Lee, S. M.

A. N. Chryssis, S. S. Saini, S. M. Lee, H. Yi, W. E. Bentley, and M. Dagenais, “Detecting hybridization of DNA by highly sensitive evanescent field etched core fiber Bragg grating sensors,” IEEE J. Sel. Top. Quantum Electron. 11(4), 864–872 (2005).
[Crossref]

Leslie, D.

C. R. Graham, D. Leslie, and D. J. Squirrell, “Gene probe assays on a fibre-optic evanescent wave biosensor,” Biosens. Bioelectron. 7(7), 487–493 (1992).
[Crossref] [PubMed]

Leung, A.

A. Leung, P. M. Shankar, and R. Mutharasan, “Label-free detection of DNA hybridization using gold-coated tapered fiber optic biosensors (TFOBS) in a flow cell at 1310nm and 1550nm,” Sens. Actuators B Chem. 131(2), 640–645 (2008).
[Crossref]

Li, J.

Liu, W.

W. Liu, H. Fu, A. P. Zhang, and S. He, “Fiber Bragg grating based wireless sensor module with modulated radio-frequency signal,” IEEE Microw. Wirel. Compon. Lett. 20(6), 358–360 (2010).
[Crossref]

Lu, B.

B. Lu, C. Lu, and Y. Wei, “A planar quartz waveguide immunosensor based on TIRF principle,” Anal. Lett. 25(1), 1–10 (1992).
[Crossref]

Lu, C.

M. J. Yin, C. Wu, L. Y. Shao, W. K. Chan, A. P. Zhang, C. Lu, and H. Y. Tam, “Label-free, disposable fiber-optic biosensors for DNA hybridization detection,” Analyst (Lond.) 138(7), 1988–1994 (2013).
[Crossref] [PubMed]

X. Dong, L. Y. Shao, H. Y. Fu, H. Y. Tam, and C. Lu, “Intensity-modulated fiber Bragg grating sensor system based on radio-frequency signal measurement,” Opt. Lett. 33(5), 482–484 (2008).
[Crossref] [PubMed]

B. Lu, C. Lu, and Y. Wei, “A planar quartz waveguide immunosensor based on TIRF principle,” Anal. Lett. 25(1), 1–10 (1992).
[Crossref]

Manicardi, A.

A. Candiani, A. Bertucci, S. Giannetti, M. Konstantaki, A. Manicardi, S. Pissadakis, A. Cucinotta, R. Corradini, and S. Selleri, “Label-free DNA biosensor based on a peptide nucleic acid-functionalized microstructured optical fiber-Bragg grating,” J. Biomed. Opt. 18(5), 057004 (2013).
[Crossref] [PubMed]

Maule, C.

R. Cush, J. Cronin, W. Stewart, C. Maule, J. Molloy, and N. Goddard, “The resonant mirror: a novel optical biosensor for direct sensing of biomolecular interactions Part I: Principle of operation and associated instrumentation,” Biosens. Bioelectron. 8(7-8), 347–354 (1993).
[Crossref]

Minasian, R. A.

R. A. Minasian, “Photonic signal processing of microwave signals,” IEEE Trans. Microw. Theory Tech. 54(2), 832–846 (2006).
[Crossref]

Molloy, J.

R. Cush, J. Cronin, W. Stewart, C. Maule, J. Molloy, and N. Goddard, “The resonant mirror: a novel optical biosensor for direct sensing of biomolecular interactions Part I: Principle of operation and associated instrumentation,” Biosens. Bioelectron. 8(7-8), 347–354 (1993).
[Crossref]

Monro, T. M.

Mutharasan, R.

A. Leung, P. M. Shankar, and R. Mutharasan, “Label-free detection of DNA hybridization using gold-coated tapered fiber optic biosensors (TFOBS) in a flow cell at 1310nm and 1550nm,” Sens. Actuators B Chem. 131(2), 640–645 (2008).
[Crossref]

Nguyen, L. V.

Ortega, B.

Park, K. N.

Pastor, D.

Pissadakis, S.

A. Candiani, A. Bertucci, S. Giannetti, M. Konstantaki, A. Manicardi, S. Pissadakis, A. Cucinotta, R. Corradini, and S. Selleri, “Label-free DNA biosensor based on a peptide nucleic acid-functionalized microstructured optical fiber-Bragg grating,” J. Biomed. Opt. 18(5), 057004 (2013).
[Crossref] [PubMed]

Ran, Y.

D. Sun, T. Guo, Y. Ran, Y. Huang, and B.-O. Guan, “In-situ DNA hybridization detection with a reflective microfiber grating biosensor,” Biosens. Bioelectron. 61(20), 541–546 (2014).
[Crossref] [PubMed]

Y. Ran, Y.-N. Tan, L.-P. Sun, S. Gao, J. Li, L. Jin, and B. O. Guan, “193 nm excimer laser inscribed Bragg gratings in microfibers for refractive index sensing,” Opt. Express 19(19), 18577–18583 (2011).
[Crossref] [PubMed]

Ricchiuti, A.

A. Ricchiuti, D. Barrera, S. Sales, L. Thevenaz, and J. Capmany, “Long weak FBG sensor interrogation using microwave photonics filtering technique,” IEEE Photonics Technol. Lett. 26(20), 2039–2042 (2014).
[Crossref]

Saini, S. S.

A. N. Chryssis, S. S. Saini, S. M. Lee, H. Yi, W. E. Bentley, and M. Dagenais, “Detecting hybridization of DNA by highly sensitive evanescent field etched core fiber Bragg grating sensors,” IEEE J. Sel. Top. Quantum Electron. 11(4), 864–872 (2005).
[Crossref]

Sales, S.

A. Ricchiuti, D. Barrera, S. Sales, L. Thevenaz, and J. Capmany, “Long weak FBG sensor interrogation using microwave photonics filtering technique,” IEEE Photonics Technol. Lett. 26(20), 2039–2042 (2014).
[Crossref]

Selleri, S.

A. Candiani, A. Bertucci, S. Giannetti, M. Konstantaki, A. Manicardi, S. Pissadakis, A. Cucinotta, R. Corradini, and S. Selleri, “Label-free DNA biosensor based on a peptide nucleic acid-functionalized microstructured optical fiber-Bragg grating,” J. Biomed. Opt. 18(5), 057004 (2013).
[Crossref] [PubMed]

Shankar, P. M.

A. Leung, P. M. Shankar, and R. Mutharasan, “Label-free detection of DNA hybridization using gold-coated tapered fiber optic biosensors (TFOBS) in a flow cell at 1310nm and 1550nm,” Sens. Actuators B Chem. 131(2), 640–645 (2008).
[Crossref]

Shao, L. Y.

M. J. Yin, C. Wu, L. Y. Shao, W. K. Chan, A. P. Zhang, C. Lu, and H. Y. Tam, “Label-free, disposable fiber-optic biosensors for DNA hybridization detection,” Analyst (Lond.) 138(7), 1988–1994 (2013).
[Crossref] [PubMed]

X. Dong, L. Y. Shao, H. Y. Fu, H. Y. Tam, and C. Lu, “Intensity-modulated fiber Bragg grating sensor system based on radio-frequency signal measurement,” Opt. Lett. 33(5), 482–484 (2008).
[Crossref] [PubMed]

Shopova, S. I.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[Crossref] [PubMed]

Sim, S. J.

Squirrell, D. J.

C. R. Graham, D. Leslie, and D. J. Squirrell, “Gene probe assays on a fibre-optic evanescent wave biosensor,” Biosens. Bioelectron. 7(7), 487–493 (1992).
[Crossref] [PubMed]

Stewart, W.

R. Cush, J. Cronin, W. Stewart, C. Maule, J. Molloy, and N. Goddard, “The resonant mirror: a novel optical biosensor for direct sensing of biomolecular interactions Part I: Principle of operation and associated instrumentation,” Biosens. Bioelectron. 8(7-8), 347–354 (1993).
[Crossref]

Sugden, K.

A. V. Hine, X. Chen, M. D. Hughes, K. Zhou, E. Davies, K. Sugden, I. Bennion, and L. Zhang, “Optical fibre-based detection of DNA hybridization,” Biochem. Soc. Trans. 37(2), 445–449 (2009).
[Crossref] [PubMed]

X. Chen, L. Zhang, K. Zhou, E. Davies, K. Sugden, I. Bennion, M. Hughes, and A. Hine, “Real-time detection of DNA interactions with long-period fiber-grating-based biosensor,” Opt. Lett. 32(17), 2541–2543 (2007).
[Crossref] [PubMed]

Sun, D.

D. Sun, T. Guo, Y. Ran, Y. Huang, and B.-O. Guan, “In-situ DNA hybridization detection with a reflective microfiber grating biosensor,” Biosens. Bioelectron. 61(20), 541–546 (2014).
[Crossref] [PubMed]

Sun, L.-P.

Sun, Y.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[Crossref] [PubMed]

Suter, J. D.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[Crossref] [PubMed]

Tam, H. Y.

M. J. Yin, C. Wu, L. Y. Shao, W. K. Chan, A. P. Zhang, C. Lu, and H. Y. Tam, “Label-free, disposable fiber-optic biosensors for DNA hybridization detection,” Analyst (Lond.) 138(7), 1988–1994 (2013).
[Crossref] [PubMed]

X. Dong, L. Y. Shao, H. Y. Fu, H. Y. Tam, and C. Lu, “Intensity-modulated fiber Bragg grating sensor system based on radio-frequency signal measurement,” Opt. Lett. 33(5), 482–484 (2008).
[Crossref] [PubMed]

Tan, Y.-N.

Thevenaz, L.

A. Ricchiuti, D. Barrera, S. Sales, L. Thevenaz, and J. Capmany, “Long weak FBG sensor interrogation using microwave photonics filtering technique,” IEEE Photonics Technol. Lett. 26(20), 2039–2042 (2014).
[Crossref]

Tu, Z.

X. Wang, K. L. Cooper, A. Wang, J. Xu, Z. Wang, Y. Zhang, and Z. Tu, “Label-free DNA sequence detection using oligonucleotide functionalized optical fiber,” Appl. Phys. Lett. 89(16), 163901 (2006).
[Crossref]

Wang, A.

X. Wang, K. L. Cooper, A. Wang, J. Xu, Z. Wang, Y. Zhang, and Z. Tu, “Label-free DNA sequence detection using oligonucleotide functionalized optical fiber,” Appl. Phys. Lett. 89(16), 163901 (2006).
[Crossref]

Wang, X.

X. Wang, K. L. Cooper, A. Wang, J. Xu, Z. Wang, Y. Zhang, and Z. Tu, “Label-free DNA sequence detection using oligonucleotide functionalized optical fiber,” Appl. Phys. Lett. 89(16), 163901 (2006).
[Crossref]

Wang, Z.

X. Wang, K. L. Cooper, A. Wang, J. Xu, Z. Wang, Y. Zhang, and Z. Tu, “Label-free DNA sequence detection using oligonucleotide functionalized optical fiber,” Appl. Phys. Lett. 89(16), 163901 (2006).
[Crossref]

Warren-Smith, S. C.

Wei, Y.

B. Lu, C. Lu, and Y. Wei, “A planar quartz waveguide immunosensor based on TIRF principle,” Anal. Lett. 25(1), 1–10 (1992).
[Crossref]

White, I. M.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[Crossref] [PubMed]

Wu, C.

M. J. Yin, C. Wu, L. Y. Shao, W. K. Chan, A. P. Zhang, C. Lu, and H. Y. Tam, “Label-free, disposable fiber-optic biosensors for DNA hybridization detection,” Analyst (Lond.) 138(7), 1988–1994 (2013).
[Crossref] [PubMed]

Xu, J.

X. Wang, K. L. Cooper, A. Wang, J. Xu, Z. Wang, Y. Zhang, and Z. Tu, “Label-free DNA sequence detection using oligonucleotide functionalized optical fiber,” Appl. Phys. Lett. 89(16), 163901 (2006).
[Crossref]

Yao, J.

Yi, H.

A. N. Chryssis, S. S. Saini, S. M. Lee, H. Yi, W. E. Bentley, and M. Dagenais, “Detecting hybridization of DNA by highly sensitive evanescent field etched core fiber Bragg grating sensors,” IEEE J. Sel. Top. Quantum Electron. 11(4), 864–872 (2005).
[Crossref]

Yin, M. J.

M. J. Yin, C. Wu, L. Y. Shao, W. K. Chan, A. P. Zhang, C. Lu, and H. Y. Tam, “Label-free, disposable fiber-optic biosensors for DNA hybridization detection,” Analyst (Lond.) 138(7), 1988–1994 (2013).
[Crossref] [PubMed]

Zhang, A. P.

M. J. Yin, C. Wu, L. Y. Shao, W. K. Chan, A. P. Zhang, C. Lu, and H. Y. Tam, “Label-free, disposable fiber-optic biosensors for DNA hybridization detection,” Analyst (Lond.) 138(7), 1988–1994 (2013).
[Crossref] [PubMed]

W. Liu, H. Fu, A. P. Zhang, and S. He, “Fiber Bragg grating based wireless sensor module with modulated radio-frequency signal,” IEEE Microw. Wirel. Compon. Lett. 20(6), 358–360 (2010).
[Crossref]

Zhang, L.

A. V. Hine, X. Chen, M. D. Hughes, K. Zhou, E. Davies, K. Sugden, I. Bennion, and L. Zhang, “Optical fibre-based detection of DNA hybridization,” Biochem. Soc. Trans. 37(2), 445–449 (2009).
[Crossref] [PubMed]

X. Chen, L. Zhang, K. Zhou, E. Davies, K. Sugden, I. Bennion, M. Hughes, and A. Hine, “Real-time detection of DNA interactions with long-period fiber-grating-based biosensor,” Opt. Lett. 32(17), 2541–2543 (2007).
[Crossref] [PubMed]

Zhang, Y.

X. Wang, K. L. Cooper, A. Wang, J. Xu, Z. Wang, Y. Zhang, and Z. Tu, “Label-free DNA sequence detection using oligonucleotide functionalized optical fiber,” Appl. Phys. Lett. 89(16), 163901 (2006).
[Crossref]

Zhou, K.

A. V. Hine, X. Chen, M. D. Hughes, K. Zhou, E. Davies, K. Sugden, I. Bennion, and L. Zhang, “Optical fibre-based detection of DNA hybridization,” Biochem. Soc. Trans. 37(2), 445–449 (2009).
[Crossref] [PubMed]

X. Chen, L. Zhang, K. Zhou, E. Davies, K. Sugden, I. Bennion, M. Hughes, and A. Hine, “Real-time detection of DNA interactions with long-period fiber-grating-based biosensor,” Opt. Lett. 32(17), 2541–2543 (2007).
[Crossref] [PubMed]

Zhu, H.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[Crossref] [PubMed]

Anal. Chim. Acta (1)

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[Crossref] [PubMed]

Anal. Lett. (1)

B. Lu, C. Lu, and Y. Wei, “A planar quartz waveguide immunosensor based on TIRF principle,” Anal. Lett. 25(1), 1–10 (1992).
[Crossref]

Analyst (Lond.) (1)

M. J. Yin, C. Wu, L. Y. Shao, W. K. Chan, A. P. Zhang, C. Lu, and H. Y. Tam, “Label-free, disposable fiber-optic biosensors for DNA hybridization detection,” Analyst (Lond.) 138(7), 1988–1994 (2013).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

X. Wang, K. L. Cooper, A. Wang, J. Xu, Z. Wang, Y. Zhang, and Z. Tu, “Label-free DNA sequence detection using oligonucleotide functionalized optical fiber,” Appl. Phys. Lett. 89(16), 163901 (2006).
[Crossref]

Biochem. Soc. Trans. (1)

A. V. Hine, X. Chen, M. D. Hughes, K. Zhou, E. Davies, K. Sugden, I. Bennion, and L. Zhang, “Optical fibre-based detection of DNA hybridization,” Biochem. Soc. Trans. 37(2), 445–449 (2009).
[Crossref] [PubMed]

Biosens. Bioelectron. (3)

R. Cush, J. Cronin, W. Stewart, C. Maule, J. Molloy, and N. Goddard, “The resonant mirror: a novel optical biosensor for direct sensing of biomolecular interactions Part I: Principle of operation and associated instrumentation,” Biosens. Bioelectron. 8(7-8), 347–354 (1993).
[Crossref]

C. R. Graham, D. Leslie, and D. J. Squirrell, “Gene probe assays on a fibre-optic evanescent wave biosensor,” Biosens. Bioelectron. 7(7), 487–493 (1992).
[Crossref] [PubMed]

D. Sun, T. Guo, Y. Ran, Y. Huang, and B.-O. Guan, “In-situ DNA hybridization detection with a reflective microfiber grating biosensor,” Biosens. Bioelectron. 61(20), 541–546 (2014).
[Crossref] [PubMed]

IEEE J. Sel. Top. Quantum Electron. (1)

A. N. Chryssis, S. S. Saini, S. M. Lee, H. Yi, W. E. Bentley, and M. Dagenais, “Detecting hybridization of DNA by highly sensitive evanescent field etched core fiber Bragg grating sensors,” IEEE J. Sel. Top. Quantum Electron. 11(4), 864–872 (2005).
[Crossref]

IEEE Microw. Wirel. Compon. Lett. (1)

W. Liu, H. Fu, A. P. Zhang, and S. He, “Fiber Bragg grating based wireless sensor module with modulated radio-frequency signal,” IEEE Microw. Wirel. Compon. Lett. 20(6), 358–360 (2010).
[Crossref]

IEEE Photonics Technol. Lett. (1)

A. Ricchiuti, D. Barrera, S. Sales, L. Thevenaz, and J. Capmany, “Long weak FBG sensor interrogation using microwave photonics filtering technique,” IEEE Photonics Technol. Lett. 26(20), 2039–2042 (2014).
[Crossref]

IEEE Trans. Microw. Theory Tech. (1)

R. A. Minasian, “Photonic signal processing of microwave signals,” IEEE Trans. Microw. Theory Tech. 54(2), 832–846 (2006).
[Crossref]

J. Biomed. Opt. (1)

A. Candiani, A. Bertucci, S. Giannetti, M. Konstantaki, A. Manicardi, S. Pissadakis, A. Cucinotta, R. Corradini, and S. Selleri, “Label-free DNA biosensor based on a peptide nucleic acid-functionalized microstructured optical fiber-Bragg grating,” J. Biomed. Opt. 18(5), 057004 (2013).
[Crossref] [PubMed]

J. Lightwave Technol. (2)

Opt. Express (3)

Opt. Lett. (2)

Sens. Actuators B Chem. (1)

A. Leung, P. M. Shankar, and R. Mutharasan, “Label-free detection of DNA hybridization using gold-coated tapered fiber optic biosensors (TFOBS) in a flow cell at 1310nm and 1550nm,” Sens. Actuators B Chem. 131(2), 640–645 (2008).
[Crossref]

Other (2)

M. Zibaii, Z. Taghipour, Z. Saeedian, H. Latifi, M. Gholami, and S. Hosseini, “Kinetic study for the hybridization of 25-mer DNA by nonadiabatic tapered optical fiber sensor,” in SPIE/OSA/IEEE Asia Communications and Photonics, (ISOP, 2011), paper 831109.

A. Candiani, M. Sozzi, E. Coscelli, F. Poli, A. Cucinotta, S. Selleri, R. Veneziano, R. Corradini, R. Marchelli, and P. Childs, “Double tilted fiber bragg grating for label-free DNA detection,” in 2011 International Workshop on BioPhotonics (IEEE, 2011), pp. 1–3.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 The experimental setup of MPF-based bio-sensing system.
Fig. 2
Fig. 2 The reflection spectrum of mFBG (in EDFL cavity) immured in air (blue curve) and pure water (red curve).
Fig. 3
Fig. 3 Linear sensitivity of probe laser (red curve) and MPF (blue curve) interrogation for SRI measurement.
Fig. 4
Fig. 4 (a) Wavelength shifts of probe laser and (b) frequency shifts of the 6-th notch versus SRI changes.
Fig. 5
Fig. 5 In situ DNA hybridization detection curves for (a) complementary target ssDNA and (b) non-complementary ssDNA, in which the red curves are traditional wavelength interrogation method and the blue curves are MPF-based frequency interrogation method. Note: the mean value and error bar of each curve are achieved by repeated measurement of three times.
Fig. 6
Fig. 6 (a) The probe laser spectra and (b) the MPF frequency responses before (red line) and after hybridization (blue line) in DI water.
Fig. 7
Fig. 7 The confocal microscopy fluorescence image of the mFBG sensor probe after DNA hybridization.

Tables (2)

Tables Icon

Table 1 Sensing resolution of SRI measurement for probe laser monitoring and MPF sensing system.

Tables Icon

Table 2 Comparison of Q values for probe laser and MPF-based sensing system (from RI = 1.3632 to 1.3751).

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

H(f)=r( A p + A r e i2πfΔT ),
FSR= 1 ΔT = 1 ( λ r λ p )DL = 1 ΔλDL ,
d(FSR)= d(Δλ) (Δλ) 2 DL = d( λ r λ p ) (Δλ) 2 DL = d λ p (Δλ) 2 DL ,
f notch (n)=(n0.5)FSR= (n0.5) ΔλDL .
r λ = 1 R OSA d λ p
r f = (n0.5) (Δλ) 2 DL 1 R VNA d λ p

Metrics