Abstract

We propose the use of a prism with nonlinear optical properties to improve the prism-coupling method. The principle is based on the inscription of an adapted waveguide inside this prism by beam self-trapping to enhance the coupling efficiency and stability. The experimental demonstration is realized with a prism diced from a LiNbO3 wafer to couple light into a resonator.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Nonlinear prism coupling with nonlocality

G. Vitrant, R. Reinisch, J. C. Paumier, G. Assanto, and G. I. Stegeman
Opt. Lett. 14(16) 898-900 (1989)

Fano resonances in prism-coupled square micropillars

Ho-Tong Lee and Andrew W. Poon
Opt. Lett. 29(1) 5-7 (2004)

Diffuse nonlinearity with a thermal gradient in waveguide prism coupling

M. Bertolotti, F. Michelotti, C. Sibilia, E. Fazio, L. Schirone, A. Ferrari, F. Palma, and G. C. Righini
Appl. Opt. 31(6) 737-741 (1992)

References

  • View by:
  • |
  • |
  • |

  1. P. K. Tien and R. Ulrich, “Theory of prism-film coupler and thin film light guides,” J. Opt. Soc. Am. 60(10), 1325–1337 (1970).
    [Crossref]
  2. E. Kretschmann and H. Raether, “Radiative decay of nonradiative surface plasmons excited by light,” Z. Naturforsch. A 23, 2135–2136 (1968).
    [Crossref]
  3. A. Otto, “Excitation of nonradiative surface plasma waves in silver by method of frustrated total reflection,” Zeitschrift Fur Physik 216(4), 398–410 (1968).
    [Crossref]
  4. V. B. Braginsky, M. L. Gorodetsky, and V. S. Ilchenko, “Quality-factor and nonlinear properties of optical whispering-gallery modes,” Phys. Lett. A 137(7), 393–397 (1989).
    [Crossref]
  5. G. Griffel, S. Arnold, D. Taskent, A. Serpengüzel, J. Connolly, and N. Morris, “Morphology-dependent resonances of a microsphereoptical fiber system,” Opt. Lett. 21(10), 695–697 (1996).
    [Crossref] [PubMed]
  6. J. C. Knight, G. Cheung, F. Jacques, and T. A. Birks, “Phase-matched excitation of whispering-gallery-mode resonances by a fiber taper,” Opt. Lett. 20(15), 1129–1131 (1997).
    [Crossref]
  7. P. E. Barclay, K. Srinivasan, M. Borselli, and O. Painter, “Efficient input and output fiber coupling to a photonic-crystal waveguide,” Opt. Lett. 29(7), 697–699 (2004).
    [Crossref] [PubMed]
  8. K. Srinivasan, P. E. Barclay, M. Borselli, and O. Painter, “Optical-fiber-based measurement of an ultrasmall volume high-Q photonic crystal microcavity,” Phys. Rev. B 70, 081306 (2004).
    [Crossref]
  9. E. Fazio, F. Renzi, R. Rinaldi, M. Bertolotti, M. Chauvet, W. Ramadan, A. Petris, and V. I. Vlad, “Screening photovoltaic bright solitons in lithium niobate and associated single-mode waveguides,” Appl. Phys. Lett. 85, 2193–2195 (2004).
    [Crossref]
  10. M. Chauvet, “Temporal analysis of open-circuit dark photovoltaic spatial solitons,” J. Opt. Soc. Am. B 20, 2515–2522 (2003).
    [Crossref]
  11. J. Safioui, F. Devaux, and M. Chauvet, “Pyroliton: pyroelectric spatial soliton,” Opt. Express 17, 22209–22216 (2009).
    [Crossref] [PubMed]
  12. K. PhanHuy, J. Safioui, B. Guichardaz, F. Devaux, and M. Chauvet, “Writing and probing light-induced waveguides thanks to an endlessly single-mode photonic crystal fiber,” Appl. Opt. 51, 4353–4358 (2012).
    [Crossref]
  13. K. K. Wong, Properties of Lithium Niobate (The Institution of Engineering and Technology, 2002)
  14. B. E. Little, J.-P. Laine, and H. Haus, “Analytic theory of coupling from tapered fibers and half-blocks into microsphere resonators,” J. Lightwave Technol. 17(4), 704–715 (1999).
    [Crossref]
  15. M. Shih, Z. Chen, M. Mitchell, M. Segev, H. Lee, R. S. Feigelson, and J. P. Wilde, “Waveguides induced by photorefractive screening solitons,” J. Opt. Soc. Am. B 14(11), 3091–3101 (1997).
    [Crossref]
  16. M. Chauvet, G. Fu, and G. Salamo, “Assessment method for photo-induced waveguides,” Opt. Express 4(22), 10726–10732 (2006).
    [Crossref]
  17. M. L. Gorodetsky, A. A. Savchenkov, and V. S. Ilchenko, “Ultimate Q of optical microsphere resonators,” Opt. Lett. 21(7), 453–455 (1996).
    [Crossref] [PubMed]
  18. Y. Dumeige, S. Trebaol, L. Ghisa, T. K. N. Nguyên, H. Tavernier, and P. Féron, “Determination of coupling regime of high-Q resonators and optical gain of highly selective amplifiers,” J. Opt. Soc. Am. B 25(12), 2073–2080 (2008).
    [Crossref]
  19. M. L. Gorodetsky, A. D. Pryamikov, and V. S. Ilchenko, “Rayleigh scattering in high-Q microspheres,” J. Opt. Soc. Am. B 17(6), 1051–1057 (2000).
    [Crossref]
  20. A. Coillet, R. Henriet, K. PhanHuy, M. Jacquot, L. Furfaro, I.L. Balakireva, L. Larger, and Y. K. Chembo, “Microwave photonics systems based on whispering-gallery-mode resonators,” J. Vis. Exp. 7823963358(2013).
    [PubMed]

2013 (1)

A. Coillet, R. Henriet, K. PhanHuy, M. Jacquot, L. Furfaro, I.L. Balakireva, L. Larger, and Y. K. Chembo, “Microwave photonics systems based on whispering-gallery-mode resonators,” J. Vis. Exp. 7823963358(2013).
[PubMed]

2012 (1)

2009 (1)

2008 (1)

2006 (1)

M. Chauvet, G. Fu, and G. Salamo, “Assessment method for photo-induced waveguides,” Opt. Express 4(22), 10726–10732 (2006).
[Crossref]

2004 (3)

P. E. Barclay, K. Srinivasan, M. Borselli, and O. Painter, “Efficient input and output fiber coupling to a photonic-crystal waveguide,” Opt. Lett. 29(7), 697–699 (2004).
[Crossref] [PubMed]

K. Srinivasan, P. E. Barclay, M. Borselli, and O. Painter, “Optical-fiber-based measurement of an ultrasmall volume high-Q photonic crystal microcavity,” Phys. Rev. B 70, 081306 (2004).
[Crossref]

E. Fazio, F. Renzi, R. Rinaldi, M. Bertolotti, M. Chauvet, W. Ramadan, A. Petris, and V. I. Vlad, “Screening photovoltaic bright solitons in lithium niobate and associated single-mode waveguides,” Appl. Phys. Lett. 85, 2193–2195 (2004).
[Crossref]

2003 (1)

2000 (1)

1999 (1)

1997 (2)

M. Shih, Z. Chen, M. Mitchell, M. Segev, H. Lee, R. S. Feigelson, and J. P. Wilde, “Waveguides induced by photorefractive screening solitons,” J. Opt. Soc. Am. B 14(11), 3091–3101 (1997).
[Crossref]

J. C. Knight, G. Cheung, F. Jacques, and T. A. Birks, “Phase-matched excitation of whispering-gallery-mode resonances by a fiber taper,” Opt. Lett. 20(15), 1129–1131 (1997).
[Crossref]

1996 (2)

1989 (1)

V. B. Braginsky, M. L. Gorodetsky, and V. S. Ilchenko, “Quality-factor and nonlinear properties of optical whispering-gallery modes,” Phys. Lett. A 137(7), 393–397 (1989).
[Crossref]

1970 (1)

1968 (2)

E. Kretschmann and H. Raether, “Radiative decay of nonradiative surface plasmons excited by light,” Z. Naturforsch. A 23, 2135–2136 (1968).
[Crossref]

A. Otto, “Excitation of nonradiative surface plasma waves in silver by method of frustrated total reflection,” Zeitschrift Fur Physik 216(4), 398–410 (1968).
[Crossref]

Arnold, S.

Balakireva, I.L.

A. Coillet, R. Henriet, K. PhanHuy, M. Jacquot, L. Furfaro, I.L. Balakireva, L. Larger, and Y. K. Chembo, “Microwave photonics systems based on whispering-gallery-mode resonators,” J. Vis. Exp. 7823963358(2013).
[PubMed]

Barclay, P. E.

K. Srinivasan, P. E. Barclay, M. Borselli, and O. Painter, “Optical-fiber-based measurement of an ultrasmall volume high-Q photonic crystal microcavity,” Phys. Rev. B 70, 081306 (2004).
[Crossref]

P. E. Barclay, K. Srinivasan, M. Borselli, and O. Painter, “Efficient input and output fiber coupling to a photonic-crystal waveguide,” Opt. Lett. 29(7), 697–699 (2004).
[Crossref] [PubMed]

Bertolotti, M.

E. Fazio, F. Renzi, R. Rinaldi, M. Bertolotti, M. Chauvet, W. Ramadan, A. Petris, and V. I. Vlad, “Screening photovoltaic bright solitons in lithium niobate and associated single-mode waveguides,” Appl. Phys. Lett. 85, 2193–2195 (2004).
[Crossref]

Birks, T. A.

J. C. Knight, G. Cheung, F. Jacques, and T. A. Birks, “Phase-matched excitation of whispering-gallery-mode resonances by a fiber taper,” Opt. Lett. 20(15), 1129–1131 (1997).
[Crossref]

Borselli, M.

K. Srinivasan, P. E. Barclay, M. Borselli, and O. Painter, “Optical-fiber-based measurement of an ultrasmall volume high-Q photonic crystal microcavity,” Phys. Rev. B 70, 081306 (2004).
[Crossref]

P. E. Barclay, K. Srinivasan, M. Borselli, and O. Painter, “Efficient input and output fiber coupling to a photonic-crystal waveguide,” Opt. Lett. 29(7), 697–699 (2004).
[Crossref] [PubMed]

Braginsky, V. B.

V. B. Braginsky, M. L. Gorodetsky, and V. S. Ilchenko, “Quality-factor and nonlinear properties of optical whispering-gallery modes,” Phys. Lett. A 137(7), 393–397 (1989).
[Crossref]

Chauvet, M.

K. PhanHuy, J. Safioui, B. Guichardaz, F. Devaux, and M. Chauvet, “Writing and probing light-induced waveguides thanks to an endlessly single-mode photonic crystal fiber,” Appl. Opt. 51, 4353–4358 (2012).
[Crossref]

J. Safioui, F. Devaux, and M. Chauvet, “Pyroliton: pyroelectric spatial soliton,” Opt. Express 17, 22209–22216 (2009).
[Crossref] [PubMed]

M. Chauvet, G. Fu, and G. Salamo, “Assessment method for photo-induced waveguides,” Opt. Express 4(22), 10726–10732 (2006).
[Crossref]

E. Fazio, F. Renzi, R. Rinaldi, M. Bertolotti, M. Chauvet, W. Ramadan, A. Petris, and V. I. Vlad, “Screening photovoltaic bright solitons in lithium niobate and associated single-mode waveguides,” Appl. Phys. Lett. 85, 2193–2195 (2004).
[Crossref]

M. Chauvet, “Temporal analysis of open-circuit dark photovoltaic spatial solitons,” J. Opt. Soc. Am. B 20, 2515–2522 (2003).
[Crossref]

Chembo, Y. K.

A. Coillet, R. Henriet, K. PhanHuy, M. Jacquot, L. Furfaro, I.L. Balakireva, L. Larger, and Y. K. Chembo, “Microwave photonics systems based on whispering-gallery-mode resonators,” J. Vis. Exp. 7823963358(2013).
[PubMed]

Chen, Z.

Cheung, G.

J. C. Knight, G. Cheung, F. Jacques, and T. A. Birks, “Phase-matched excitation of whispering-gallery-mode resonances by a fiber taper,” Opt. Lett. 20(15), 1129–1131 (1997).
[Crossref]

Coillet, A.

A. Coillet, R. Henriet, K. PhanHuy, M. Jacquot, L. Furfaro, I.L. Balakireva, L. Larger, and Y. K. Chembo, “Microwave photonics systems based on whispering-gallery-mode resonators,” J. Vis. Exp. 7823963358(2013).
[PubMed]

Connolly, J.

Devaux, F.

Dumeige, Y.

Fazio, E.

E. Fazio, F. Renzi, R. Rinaldi, M. Bertolotti, M. Chauvet, W. Ramadan, A. Petris, and V. I. Vlad, “Screening photovoltaic bright solitons in lithium niobate and associated single-mode waveguides,” Appl. Phys. Lett. 85, 2193–2195 (2004).
[Crossref]

Feigelson, R. S.

Féron, P.

Fu, G.

M. Chauvet, G. Fu, and G. Salamo, “Assessment method for photo-induced waveguides,” Opt. Express 4(22), 10726–10732 (2006).
[Crossref]

Furfaro, L.

A. Coillet, R. Henriet, K. PhanHuy, M. Jacquot, L. Furfaro, I.L. Balakireva, L. Larger, and Y. K. Chembo, “Microwave photonics systems based on whispering-gallery-mode resonators,” J. Vis. Exp. 7823963358(2013).
[PubMed]

Ghisa, L.

Gorodetsky, M. L.

Griffel, G.

Guichardaz, B.

Haus, H.

Henriet, R.

A. Coillet, R. Henriet, K. PhanHuy, M. Jacquot, L. Furfaro, I.L. Balakireva, L. Larger, and Y. K. Chembo, “Microwave photonics systems based on whispering-gallery-mode resonators,” J. Vis. Exp. 7823963358(2013).
[PubMed]

Ilchenko, V. S.

Jacques, F.

J. C. Knight, G. Cheung, F. Jacques, and T. A. Birks, “Phase-matched excitation of whispering-gallery-mode resonances by a fiber taper,” Opt. Lett. 20(15), 1129–1131 (1997).
[Crossref]

Jacquot, M.

A. Coillet, R. Henriet, K. PhanHuy, M. Jacquot, L. Furfaro, I.L. Balakireva, L. Larger, and Y. K. Chembo, “Microwave photonics systems based on whispering-gallery-mode resonators,” J. Vis. Exp. 7823963358(2013).
[PubMed]

Knight, J. C.

J. C. Knight, G. Cheung, F. Jacques, and T. A. Birks, “Phase-matched excitation of whispering-gallery-mode resonances by a fiber taper,” Opt. Lett. 20(15), 1129–1131 (1997).
[Crossref]

Kretschmann, E.

E. Kretschmann and H. Raether, “Radiative decay of nonradiative surface plasmons excited by light,” Z. Naturforsch. A 23, 2135–2136 (1968).
[Crossref]

Laine, J.-P.

Larger, L.

A. Coillet, R. Henriet, K. PhanHuy, M. Jacquot, L. Furfaro, I.L. Balakireva, L. Larger, and Y. K. Chembo, “Microwave photonics systems based on whispering-gallery-mode resonators,” J. Vis. Exp. 7823963358(2013).
[PubMed]

Lee, H.

Little, B. E.

Mitchell, M.

Morris, N.

Nguyên, T. K. N.

Otto, A.

A. Otto, “Excitation of nonradiative surface plasma waves in silver by method of frustrated total reflection,” Zeitschrift Fur Physik 216(4), 398–410 (1968).
[Crossref]

Painter, O.

K. Srinivasan, P. E. Barclay, M. Borselli, and O. Painter, “Optical-fiber-based measurement of an ultrasmall volume high-Q photonic crystal microcavity,” Phys. Rev. B 70, 081306 (2004).
[Crossref]

P. E. Barclay, K. Srinivasan, M. Borselli, and O. Painter, “Efficient input and output fiber coupling to a photonic-crystal waveguide,” Opt. Lett. 29(7), 697–699 (2004).
[Crossref] [PubMed]

Petris, A.

E. Fazio, F. Renzi, R. Rinaldi, M. Bertolotti, M. Chauvet, W. Ramadan, A. Petris, and V. I. Vlad, “Screening photovoltaic bright solitons in lithium niobate and associated single-mode waveguides,” Appl. Phys. Lett. 85, 2193–2195 (2004).
[Crossref]

PhanHuy, K.

A. Coillet, R. Henriet, K. PhanHuy, M. Jacquot, L. Furfaro, I.L. Balakireva, L. Larger, and Y. K. Chembo, “Microwave photonics systems based on whispering-gallery-mode resonators,” J. Vis. Exp. 7823963358(2013).
[PubMed]

K. PhanHuy, J. Safioui, B. Guichardaz, F. Devaux, and M. Chauvet, “Writing and probing light-induced waveguides thanks to an endlessly single-mode photonic crystal fiber,” Appl. Opt. 51, 4353–4358 (2012).
[Crossref]

Pryamikov, A. D.

Raether, H.

E. Kretschmann and H. Raether, “Radiative decay of nonradiative surface plasmons excited by light,” Z. Naturforsch. A 23, 2135–2136 (1968).
[Crossref]

Ramadan, W.

E. Fazio, F. Renzi, R. Rinaldi, M. Bertolotti, M. Chauvet, W. Ramadan, A. Petris, and V. I. Vlad, “Screening photovoltaic bright solitons in lithium niobate and associated single-mode waveguides,” Appl. Phys. Lett. 85, 2193–2195 (2004).
[Crossref]

Renzi, F.

E. Fazio, F. Renzi, R. Rinaldi, M. Bertolotti, M. Chauvet, W. Ramadan, A. Petris, and V. I. Vlad, “Screening photovoltaic bright solitons in lithium niobate and associated single-mode waveguides,” Appl. Phys. Lett. 85, 2193–2195 (2004).
[Crossref]

Rinaldi, R.

E. Fazio, F. Renzi, R. Rinaldi, M. Bertolotti, M. Chauvet, W. Ramadan, A. Petris, and V. I. Vlad, “Screening photovoltaic bright solitons in lithium niobate and associated single-mode waveguides,” Appl. Phys. Lett. 85, 2193–2195 (2004).
[Crossref]

Safioui, J.

Salamo, G.

M. Chauvet, G. Fu, and G. Salamo, “Assessment method for photo-induced waveguides,” Opt. Express 4(22), 10726–10732 (2006).
[Crossref]

Savchenkov, A. A.

Segev, M.

Serpengüzel, A.

Shih, M.

Srinivasan, K.

K. Srinivasan, P. E. Barclay, M. Borselli, and O. Painter, “Optical-fiber-based measurement of an ultrasmall volume high-Q photonic crystal microcavity,” Phys. Rev. B 70, 081306 (2004).
[Crossref]

P. E. Barclay, K. Srinivasan, M. Borselli, and O. Painter, “Efficient input and output fiber coupling to a photonic-crystal waveguide,” Opt. Lett. 29(7), 697–699 (2004).
[Crossref] [PubMed]

Taskent, D.

Tavernier, H.

Tien, P. K.

Trebaol, S.

Ulrich, R.

Vlad, V. I.

E. Fazio, F. Renzi, R. Rinaldi, M. Bertolotti, M. Chauvet, W. Ramadan, A. Petris, and V. I. Vlad, “Screening photovoltaic bright solitons in lithium niobate and associated single-mode waveguides,” Appl. Phys. Lett. 85, 2193–2195 (2004).
[Crossref]

Wilde, J. P.

Wong, K. K.

K. K. Wong, Properties of Lithium Niobate (The Institution of Engineering and Technology, 2002)

Appl. Opt. (1)

Appl. Phys. Lett. (1)

E. Fazio, F. Renzi, R. Rinaldi, M. Bertolotti, M. Chauvet, W. Ramadan, A. Petris, and V. I. Vlad, “Screening photovoltaic bright solitons in lithium niobate and associated single-mode waveguides,” Appl. Phys. Lett. 85, 2193–2195 (2004).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (4)

J. Vis. Exp. (1)

A. Coillet, R. Henriet, K. PhanHuy, M. Jacquot, L. Furfaro, I.L. Balakireva, L. Larger, and Y. K. Chembo, “Microwave photonics systems based on whispering-gallery-mode resonators,” J. Vis. Exp. 7823963358(2013).
[PubMed]

Opt. Express (2)

M. Chauvet, G. Fu, and G. Salamo, “Assessment method for photo-induced waveguides,” Opt. Express 4(22), 10726–10732 (2006).
[Crossref]

J. Safioui, F. Devaux, and M. Chauvet, “Pyroliton: pyroelectric spatial soliton,” Opt. Express 17, 22209–22216 (2009).
[Crossref] [PubMed]

Opt. Lett. (4)

Phys. Lett. A (1)

V. B. Braginsky, M. L. Gorodetsky, and V. S. Ilchenko, “Quality-factor and nonlinear properties of optical whispering-gallery modes,” Phys. Lett. A 137(7), 393–397 (1989).
[Crossref]

Phys. Rev. B (1)

K. Srinivasan, P. E. Barclay, M. Borselli, and O. Painter, “Optical-fiber-based measurement of an ultrasmall volume high-Q photonic crystal microcavity,” Phys. Rev. B 70, 081306 (2004).
[Crossref]

Z. Naturforsch. A (1)

E. Kretschmann and H. Raether, “Radiative decay of nonradiative surface plasmons excited by light,” Z. Naturforsch. A 23, 2135–2136 (1968).
[Crossref]

Zeitschrift Fur Physik (1)

A. Otto, “Excitation of nonradiative surface plasma waves in silver by method of frustrated total reflection,” Zeitschrift Fur Physik 216(4), 398–410 (1968).
[Crossref]

Other (1)

K. K. Wong, Properties of Lithium Niobate (The Institution of Engineering and Technology, 2002)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) Experimental setup for writing and probing the waveguides inscribed by self-trapped beams. D1 : Diaphragm. OD: Optical density. L1, L2, L3, L4 and L5 lenses. PMF : Polarization Maintaining Fiber, PE : Peltier Element. (b) Diffracting beam at low power. (c) Self-trapped beam.
Fig. 2
Fig. 2 (a) Injected beam profile. (b) Diffracting beam profile at the output face for low power. (c) Self-trapped beam in nonlinear regime.
Fig. 3
Fig. 3 (a) For multimode waveguides, an optical beating between modes occurs when the laser is swept. (b) Transmission of the microsphere coupling when the beam is focused at the entrance of the prism (α), when the beam is focused on the coupling surface (β) i.e. standard prism coupling and when the beam is self-focused (γ). Note that all curves are normalized with respect to the laser mode hop that is common to all measurements. Note that resonance (γ) goes down to 0 thanks to normalization. As a consequence, it does not reflect a critical coupling condition.
Fig. 4
Fig. 4 (a) Detail of the whispering-gallery-mode resonance normalized to 1. Inset: Large-scale scanning of the resonance. Dashed line shows the wavelength scanning with respect to time. (b) Picture of the resonator in front of the coupling surface made thanks to a mirror and a binocular. Strong scattering is observed.

Metrics