Abstract

Horizontally scanning holography using a microelectromechanical system spatial light modulator (MEMS-SLM) can provide reconstructed images with an enlarged screen size and an increased viewing zone angle. Herein, we propose techniques to enable color image generation for a screen-scanning display system employing a single MEMS-SLM. Higher-order diffraction components generated by the MEMS-SLM for R, G, and B laser lights were coupled by providing proper illumination angles on the MEMS-SLM for each color. An error diffusion technique to binarize the hologram patterns was developed, in which the error diffusion directions were determined for each color. Color reconstructed images with a screen size of 6.2 in. and a viewing zone angle of 10.2° were generated at a frame rate of 30 Hz.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Viewing-zone scanning holographic display using a MEMS spatial light modulator

Yasuhiro Takaki and Keisuke Fujii
Opt. Express 22(20) 24713-24721 (2014)

Scalable screen-size enlargement by multi-channel viewing-zone scanning holography

Yasuhiro Takaki and Mitsuki Nakaoka
Opt. Express 24(16) 18772-18781 (2016)

Table screen 360-degree holographic display using circular viewing-zone scanning

Tatsuaki Inoue and Yasuhiro Takaki
Opt. Express 23(5) 6533-6542 (2015)

References

  • View by:
  • |
  • |
  • |

  1. T. Okoshi, Three-Dimensional Imaging Techniques (Academic, 1976).
  2. D. M. Hoffman, A. R. Girshick, K. Akeley, and M. S. Banks, “Vergence-accommodation conflicts hinder visual performance and cause visual fatigue,” J. Vis. 8(3), 33 (2008).
    [Crossref] [PubMed]
  3. Y. Takaki and N. Okada, “Hologram generation by horizontal scanning of a high-speed spatial light modulator,” Appl. Opt. 48(17), 3255 (2009)
    [Crossref] [PubMed]
  4. Y. Takaki and K. Fujii, “Viewing-zone scanning holographic display using a MEMS spatial light modulator,” Opt. Express 22(20), 24713–24721 (2014).
    [Crossref] [PubMed]
  5. T. Inoue and Y. Takaki, “Table screen 360-degree holographic display using circular viewing-zone scanning,” Opt. Express 23(5), 6533–6542 (2015).
    [Crossref] [PubMed]
  6. K. Aoshima, N. Funabashi, K. Machida, Y. Miyamoto, K. Kuga, T. Ishibashi, N. Shimidzu, and F. Sato, “Submicron magneto-optical spatial light modulation device for holographic displays driven by spin-polarized electrons,” J. Disp. Technol. 6(9), 374–380 (2010).
    [Crossref]
  7. R. Stahl and M. Jayapala, “Holographic displays and smart lenses,” Opt. Photonics 6, 39–42 (2011).
  8. K. Maeno, N. Fukaya, O. Nishikawa, K. Sato, and T. Honda, “Electro-holographic display using 15 mega pixels LCD,” Proc. SPIE 2652, 15–23 (1996).
    [Crossref]
  9. J. Hahn, H. Kim, Y. Lim, G. Park, and B. Lee, “Wide viewing angle dynamic holographic stereogram with a curved array of spatial light modulators,” Opt. Express 16(16), 12372–12386 (2008).
    [Crossref] [PubMed]
  10. F. Yaraş, H. Kang, and L. Onural, “Circular holographic video display system,” Opt. Express 19(10), 9147–9156 (2011).
    [Crossref] [PubMed]
  11. K. Yamamoto, Y. Ichihashi, T. Senoh, R. Oi, and T. Kurita, “3D objects enlargement technique using an optical system and multiple SLMs for electronic holography,” Opt. Express 20(19), 21137–21144 (2012).
    [Crossref] [PubMed]
  12. Y. Takaki and N. Okada, “Reduction of image blurring of horizontally scanning holographic display,” Opt. Express 18(11), 11327–11334 (2010).
    [Crossref] [PubMed]
  13. Y. Takaki, M. Yokouchi, and N. Okada, “Improvement of grayscale representation of the horizontally scanning holographic display,” Opt. Express 18(24), 24926–24936 (2010).
    [Crossref] [PubMed]
  14. Y. Takaki and M. Yokouchi, “Accommodation measurements of horizontally scanning holographic display,” Opt. Express 20(4), 3918–3931 (2012).
    [Crossref] [PubMed]
  15. D. Dudley, W. M. Duncan, and J. Slaughter, “Emerging digital micromirror device (DMD) applications,” Proc. SPIE 4985, 14–25 (2003).
    [Crossref]
  16. Y. Matsumoto and Y. Takaki, “Improvement of gray-scale representation of horizontally scanning holographic display using error diffusion,” Opt. Lett. 39(12), 3433–3436 (2014).
    [Crossref] [PubMed]
  17. P. St-Hilaire, S. A. Benton, M. E. Lucente, and P. M. Hubel, “Color images with the MIT holographic video display,” Proc. SPIE 1667, 73–84 (1992).
  18. D. E. Smalley, Q. Y. Smithwick, V. M. Bove, J. Barabas, and S. Jolly, “Anisotropic leaky-mode modulator for holographic video displays,” Nature 498(7454), 313–317 (2013).
    [Crossref] [PubMed]
  19. M. Stanley, M. A. G. Smith, A. P. Smith, P. J. Watson, S. D. Coomber, C. D. Cameron, C. W. Slinger, and A. D. Wood, “3D electronic holography display system using a 100 Mega-pixel spatial light modulator,” Proc. SPIE 5249, 292–308 (2004).
  20. K. Sato, A. Sugita, M. Morimoto, and K. Fujii, “Reconstruction of color images of high quality by a holographic display,” Proc. SPIE 6136, 61360V (2006).
    [Crossref]
  21. T. Senoh, T. Mishina, K. Yamamoto, R. Oi, and T. Kurita, “Viewing-zone-angle-expanded color electronic holography system using ultra-high-definition liquid crystal displays with undesirable light elimination,” J. Disp. Technol. 7(7), 382–390 (2011).
    [Crossref]
  22. R. Häussler, S. Reichelt, N. Leister, E. Zschau, R. Missbach, and A. Schwerdtner, “Large real-time holographic displays: from prototype to a consumer product,” Proc. SPIE 7237, 72370S (2009).
    [Crossref]
  23. Y. Takaki and Y. Tanemoto, “Band-limited zone plates for single-sideband holography,” Appl. Opt. 48(34), H64–H70 (2009).
    [Crossref] [PubMed]
  24. R. Hauck and O. Bryngdahl, “Computer-generated holograms with pulse-density modulation,” J. Opt. Soc. Am. A 1(1), 5–10 (1984).
    [Crossref]

2015 (1)

2014 (2)

2013 (1)

D. E. Smalley, Q. Y. Smithwick, V. M. Bove, J. Barabas, and S. Jolly, “Anisotropic leaky-mode modulator for holographic video displays,” Nature 498(7454), 313–317 (2013).
[Crossref] [PubMed]

2012 (2)

2011 (3)

F. Yaraş, H. Kang, and L. Onural, “Circular holographic video display system,” Opt. Express 19(10), 9147–9156 (2011).
[Crossref] [PubMed]

R. Stahl and M. Jayapala, “Holographic displays and smart lenses,” Opt. Photonics 6, 39–42 (2011).

T. Senoh, T. Mishina, K. Yamamoto, R. Oi, and T. Kurita, “Viewing-zone-angle-expanded color electronic holography system using ultra-high-definition liquid crystal displays with undesirable light elimination,” J. Disp. Technol. 7(7), 382–390 (2011).
[Crossref]

2010 (3)

Y. Takaki and N. Okada, “Reduction of image blurring of horizontally scanning holographic display,” Opt. Express 18(11), 11327–11334 (2010).
[Crossref] [PubMed]

Y. Takaki, M. Yokouchi, and N. Okada, “Improvement of grayscale representation of the horizontally scanning holographic display,” Opt. Express 18(24), 24926–24936 (2010).
[Crossref] [PubMed]

K. Aoshima, N. Funabashi, K. Machida, Y. Miyamoto, K. Kuga, T. Ishibashi, N. Shimidzu, and F. Sato, “Submicron magneto-optical spatial light modulation device for holographic displays driven by spin-polarized electrons,” J. Disp. Technol. 6(9), 374–380 (2010).
[Crossref]

2009 (3)

2008 (2)

J. Hahn, H. Kim, Y. Lim, G. Park, and B. Lee, “Wide viewing angle dynamic holographic stereogram with a curved array of spatial light modulators,” Opt. Express 16(16), 12372–12386 (2008).
[Crossref] [PubMed]

D. M. Hoffman, A. R. Girshick, K. Akeley, and M. S. Banks, “Vergence-accommodation conflicts hinder visual performance and cause visual fatigue,” J. Vis. 8(3), 33 (2008).
[Crossref] [PubMed]

2006 (1)

K. Sato, A. Sugita, M. Morimoto, and K. Fujii, “Reconstruction of color images of high quality by a holographic display,” Proc. SPIE 6136, 61360V (2006).
[Crossref]

2004 (1)

M. Stanley, M. A. G. Smith, A. P. Smith, P. J. Watson, S. D. Coomber, C. D. Cameron, C. W. Slinger, and A. D. Wood, “3D electronic holography display system using a 100 Mega-pixel spatial light modulator,” Proc. SPIE 5249, 292–308 (2004).

2003 (1)

D. Dudley, W. M. Duncan, and J. Slaughter, “Emerging digital micromirror device (DMD) applications,” Proc. SPIE 4985, 14–25 (2003).
[Crossref]

1996 (1)

K. Maeno, N. Fukaya, O. Nishikawa, K. Sato, and T. Honda, “Electro-holographic display using 15 mega pixels LCD,” Proc. SPIE 2652, 15–23 (1996).
[Crossref]

1992 (1)

P. St-Hilaire, S. A. Benton, M. E. Lucente, and P. M. Hubel, “Color images with the MIT holographic video display,” Proc. SPIE 1667, 73–84 (1992).

1984 (1)

Akeley, K.

D. M. Hoffman, A. R. Girshick, K. Akeley, and M. S. Banks, “Vergence-accommodation conflicts hinder visual performance and cause visual fatigue,” J. Vis. 8(3), 33 (2008).
[Crossref] [PubMed]

Aoshima, K.

K. Aoshima, N. Funabashi, K. Machida, Y. Miyamoto, K. Kuga, T. Ishibashi, N. Shimidzu, and F. Sato, “Submicron magneto-optical spatial light modulation device for holographic displays driven by spin-polarized electrons,” J. Disp. Technol. 6(9), 374–380 (2010).
[Crossref]

Banks, M. S.

D. M. Hoffman, A. R. Girshick, K. Akeley, and M. S. Banks, “Vergence-accommodation conflicts hinder visual performance and cause visual fatigue,” J. Vis. 8(3), 33 (2008).
[Crossref] [PubMed]

Barabas, J.

D. E. Smalley, Q. Y. Smithwick, V. M. Bove, J. Barabas, and S. Jolly, “Anisotropic leaky-mode modulator for holographic video displays,” Nature 498(7454), 313–317 (2013).
[Crossref] [PubMed]

Benton, S. A.

P. St-Hilaire, S. A. Benton, M. E. Lucente, and P. M. Hubel, “Color images with the MIT holographic video display,” Proc. SPIE 1667, 73–84 (1992).

Bove, V. M.

D. E. Smalley, Q. Y. Smithwick, V. M. Bove, J. Barabas, and S. Jolly, “Anisotropic leaky-mode modulator for holographic video displays,” Nature 498(7454), 313–317 (2013).
[Crossref] [PubMed]

Bryngdahl, O.

Cameron, C. D.

M. Stanley, M. A. G. Smith, A. P. Smith, P. J. Watson, S. D. Coomber, C. D. Cameron, C. W. Slinger, and A. D. Wood, “3D electronic holography display system using a 100 Mega-pixel spatial light modulator,” Proc. SPIE 5249, 292–308 (2004).

Coomber, S. D.

M. Stanley, M. A. G. Smith, A. P. Smith, P. J. Watson, S. D. Coomber, C. D. Cameron, C. W. Slinger, and A. D. Wood, “3D electronic holography display system using a 100 Mega-pixel spatial light modulator,” Proc. SPIE 5249, 292–308 (2004).

Dudley, D.

D. Dudley, W. M. Duncan, and J. Slaughter, “Emerging digital micromirror device (DMD) applications,” Proc. SPIE 4985, 14–25 (2003).
[Crossref]

Duncan, W. M.

D. Dudley, W. M. Duncan, and J. Slaughter, “Emerging digital micromirror device (DMD) applications,” Proc. SPIE 4985, 14–25 (2003).
[Crossref]

Fujii, K.

Y. Takaki and K. Fujii, “Viewing-zone scanning holographic display using a MEMS spatial light modulator,” Opt. Express 22(20), 24713–24721 (2014).
[Crossref] [PubMed]

K. Sato, A. Sugita, M. Morimoto, and K. Fujii, “Reconstruction of color images of high quality by a holographic display,” Proc. SPIE 6136, 61360V (2006).
[Crossref]

Fukaya, N.

K. Maeno, N. Fukaya, O. Nishikawa, K. Sato, and T. Honda, “Electro-holographic display using 15 mega pixels LCD,” Proc. SPIE 2652, 15–23 (1996).
[Crossref]

Funabashi, N.

K. Aoshima, N. Funabashi, K. Machida, Y. Miyamoto, K. Kuga, T. Ishibashi, N. Shimidzu, and F. Sato, “Submicron magneto-optical spatial light modulation device for holographic displays driven by spin-polarized electrons,” J. Disp. Technol. 6(9), 374–380 (2010).
[Crossref]

Girshick, A. R.

D. M. Hoffman, A. R. Girshick, K. Akeley, and M. S. Banks, “Vergence-accommodation conflicts hinder visual performance and cause visual fatigue,” J. Vis. 8(3), 33 (2008).
[Crossref] [PubMed]

Hahn, J.

Hauck, R.

Häussler, R.

R. Häussler, S. Reichelt, N. Leister, E. Zschau, R. Missbach, and A. Schwerdtner, “Large real-time holographic displays: from prototype to a consumer product,” Proc. SPIE 7237, 72370S (2009).
[Crossref]

Hoffman, D. M.

D. M. Hoffman, A. R. Girshick, K. Akeley, and M. S. Banks, “Vergence-accommodation conflicts hinder visual performance and cause visual fatigue,” J. Vis. 8(3), 33 (2008).
[Crossref] [PubMed]

Honda, T.

K. Maeno, N. Fukaya, O. Nishikawa, K. Sato, and T. Honda, “Electro-holographic display using 15 mega pixels LCD,” Proc. SPIE 2652, 15–23 (1996).
[Crossref]

Hubel, P. M.

P. St-Hilaire, S. A. Benton, M. E. Lucente, and P. M. Hubel, “Color images with the MIT holographic video display,” Proc. SPIE 1667, 73–84 (1992).

Ichihashi, Y.

Inoue, T.

Ishibashi, T.

K. Aoshima, N. Funabashi, K. Machida, Y. Miyamoto, K. Kuga, T. Ishibashi, N. Shimidzu, and F. Sato, “Submicron magneto-optical spatial light modulation device for holographic displays driven by spin-polarized electrons,” J. Disp. Technol. 6(9), 374–380 (2010).
[Crossref]

Jayapala, M.

R. Stahl and M. Jayapala, “Holographic displays and smart lenses,” Opt. Photonics 6, 39–42 (2011).

Jolly, S.

D. E. Smalley, Q. Y. Smithwick, V. M. Bove, J. Barabas, and S. Jolly, “Anisotropic leaky-mode modulator for holographic video displays,” Nature 498(7454), 313–317 (2013).
[Crossref] [PubMed]

Kang, H.

Kim, H.

Kuga, K.

K. Aoshima, N. Funabashi, K. Machida, Y. Miyamoto, K. Kuga, T. Ishibashi, N. Shimidzu, and F. Sato, “Submicron magneto-optical spatial light modulation device for holographic displays driven by spin-polarized electrons,” J. Disp. Technol. 6(9), 374–380 (2010).
[Crossref]

Kurita, T.

K. Yamamoto, Y. Ichihashi, T. Senoh, R. Oi, and T. Kurita, “3D objects enlargement technique using an optical system and multiple SLMs for electronic holography,” Opt. Express 20(19), 21137–21144 (2012).
[Crossref] [PubMed]

T. Senoh, T. Mishina, K. Yamamoto, R. Oi, and T. Kurita, “Viewing-zone-angle-expanded color electronic holography system using ultra-high-definition liquid crystal displays with undesirable light elimination,” J. Disp. Technol. 7(7), 382–390 (2011).
[Crossref]

Lee, B.

Leister, N.

R. Häussler, S. Reichelt, N. Leister, E. Zschau, R. Missbach, and A. Schwerdtner, “Large real-time holographic displays: from prototype to a consumer product,” Proc. SPIE 7237, 72370S (2009).
[Crossref]

Lim, Y.

Lucente, M. E.

P. St-Hilaire, S. A. Benton, M. E. Lucente, and P. M. Hubel, “Color images with the MIT holographic video display,” Proc. SPIE 1667, 73–84 (1992).

Machida, K.

K. Aoshima, N. Funabashi, K. Machida, Y. Miyamoto, K. Kuga, T. Ishibashi, N. Shimidzu, and F. Sato, “Submicron magneto-optical spatial light modulation device for holographic displays driven by spin-polarized electrons,” J. Disp. Technol. 6(9), 374–380 (2010).
[Crossref]

Maeno, K.

K. Maeno, N. Fukaya, O. Nishikawa, K. Sato, and T. Honda, “Electro-holographic display using 15 mega pixels LCD,” Proc. SPIE 2652, 15–23 (1996).
[Crossref]

Matsumoto, Y.

Mishina, T.

T. Senoh, T. Mishina, K. Yamamoto, R. Oi, and T. Kurita, “Viewing-zone-angle-expanded color electronic holography system using ultra-high-definition liquid crystal displays with undesirable light elimination,” J. Disp. Technol. 7(7), 382–390 (2011).
[Crossref]

Missbach, R.

R. Häussler, S. Reichelt, N. Leister, E. Zschau, R. Missbach, and A. Schwerdtner, “Large real-time holographic displays: from prototype to a consumer product,” Proc. SPIE 7237, 72370S (2009).
[Crossref]

Miyamoto, Y.

K. Aoshima, N. Funabashi, K. Machida, Y. Miyamoto, K. Kuga, T. Ishibashi, N. Shimidzu, and F. Sato, “Submicron magneto-optical spatial light modulation device for holographic displays driven by spin-polarized electrons,” J. Disp. Technol. 6(9), 374–380 (2010).
[Crossref]

Morimoto, M.

K. Sato, A. Sugita, M. Morimoto, and K. Fujii, “Reconstruction of color images of high quality by a holographic display,” Proc. SPIE 6136, 61360V (2006).
[Crossref]

Nishikawa, O.

K. Maeno, N. Fukaya, O. Nishikawa, K. Sato, and T. Honda, “Electro-holographic display using 15 mega pixels LCD,” Proc. SPIE 2652, 15–23 (1996).
[Crossref]

Oi, R.

K. Yamamoto, Y. Ichihashi, T. Senoh, R. Oi, and T. Kurita, “3D objects enlargement technique using an optical system and multiple SLMs for electronic holography,” Opt. Express 20(19), 21137–21144 (2012).
[Crossref] [PubMed]

T. Senoh, T. Mishina, K. Yamamoto, R. Oi, and T. Kurita, “Viewing-zone-angle-expanded color electronic holography system using ultra-high-definition liquid crystal displays with undesirable light elimination,” J. Disp. Technol. 7(7), 382–390 (2011).
[Crossref]

Okada, N.

Onural, L.

Park, G.

Reichelt, S.

R. Häussler, S. Reichelt, N. Leister, E. Zschau, R. Missbach, and A. Schwerdtner, “Large real-time holographic displays: from prototype to a consumer product,” Proc. SPIE 7237, 72370S (2009).
[Crossref]

Sato, F.

K. Aoshima, N. Funabashi, K. Machida, Y. Miyamoto, K. Kuga, T. Ishibashi, N. Shimidzu, and F. Sato, “Submicron magneto-optical spatial light modulation device for holographic displays driven by spin-polarized electrons,” J. Disp. Technol. 6(9), 374–380 (2010).
[Crossref]

Sato, K.

K. Sato, A. Sugita, M. Morimoto, and K. Fujii, “Reconstruction of color images of high quality by a holographic display,” Proc. SPIE 6136, 61360V (2006).
[Crossref]

K. Maeno, N. Fukaya, O. Nishikawa, K. Sato, and T. Honda, “Electro-holographic display using 15 mega pixels LCD,” Proc. SPIE 2652, 15–23 (1996).
[Crossref]

Schwerdtner, A.

R. Häussler, S. Reichelt, N. Leister, E. Zschau, R. Missbach, and A. Schwerdtner, “Large real-time holographic displays: from prototype to a consumer product,” Proc. SPIE 7237, 72370S (2009).
[Crossref]

Senoh, T.

K. Yamamoto, Y. Ichihashi, T. Senoh, R. Oi, and T. Kurita, “3D objects enlargement technique using an optical system and multiple SLMs for electronic holography,” Opt. Express 20(19), 21137–21144 (2012).
[Crossref] [PubMed]

T. Senoh, T. Mishina, K. Yamamoto, R. Oi, and T. Kurita, “Viewing-zone-angle-expanded color electronic holography system using ultra-high-definition liquid crystal displays with undesirable light elimination,” J. Disp. Technol. 7(7), 382–390 (2011).
[Crossref]

Shimidzu, N.

K. Aoshima, N. Funabashi, K. Machida, Y. Miyamoto, K. Kuga, T. Ishibashi, N. Shimidzu, and F. Sato, “Submicron magneto-optical spatial light modulation device for holographic displays driven by spin-polarized electrons,” J. Disp. Technol. 6(9), 374–380 (2010).
[Crossref]

Slaughter, J.

D. Dudley, W. M. Duncan, and J. Slaughter, “Emerging digital micromirror device (DMD) applications,” Proc. SPIE 4985, 14–25 (2003).
[Crossref]

Slinger, C. W.

M. Stanley, M. A. G. Smith, A. P. Smith, P. J. Watson, S. D. Coomber, C. D. Cameron, C. W. Slinger, and A. D. Wood, “3D electronic holography display system using a 100 Mega-pixel spatial light modulator,” Proc. SPIE 5249, 292–308 (2004).

Smalley, D. E.

D. E. Smalley, Q. Y. Smithwick, V. M. Bove, J. Barabas, and S. Jolly, “Anisotropic leaky-mode modulator for holographic video displays,” Nature 498(7454), 313–317 (2013).
[Crossref] [PubMed]

Smith, A. P.

M. Stanley, M. A. G. Smith, A. P. Smith, P. J. Watson, S. D. Coomber, C. D. Cameron, C. W. Slinger, and A. D. Wood, “3D electronic holography display system using a 100 Mega-pixel spatial light modulator,” Proc. SPIE 5249, 292–308 (2004).

Smith, M. A. G.

M. Stanley, M. A. G. Smith, A. P. Smith, P. J. Watson, S. D. Coomber, C. D. Cameron, C. W. Slinger, and A. D. Wood, “3D electronic holography display system using a 100 Mega-pixel spatial light modulator,” Proc. SPIE 5249, 292–308 (2004).

Smithwick, Q. Y.

D. E. Smalley, Q. Y. Smithwick, V. M. Bove, J. Barabas, and S. Jolly, “Anisotropic leaky-mode modulator for holographic video displays,” Nature 498(7454), 313–317 (2013).
[Crossref] [PubMed]

Stahl, R.

R. Stahl and M. Jayapala, “Holographic displays and smart lenses,” Opt. Photonics 6, 39–42 (2011).

Stanley, M.

M. Stanley, M. A. G. Smith, A. P. Smith, P. J. Watson, S. D. Coomber, C. D. Cameron, C. W. Slinger, and A. D. Wood, “3D electronic holography display system using a 100 Mega-pixel spatial light modulator,” Proc. SPIE 5249, 292–308 (2004).

St-Hilaire, P.

P. St-Hilaire, S. A. Benton, M. E. Lucente, and P. M. Hubel, “Color images with the MIT holographic video display,” Proc. SPIE 1667, 73–84 (1992).

Sugita, A.

K. Sato, A. Sugita, M. Morimoto, and K. Fujii, “Reconstruction of color images of high quality by a holographic display,” Proc. SPIE 6136, 61360V (2006).
[Crossref]

Takaki, Y.

Tanemoto, Y.

Watson, P. J.

M. Stanley, M. A. G. Smith, A. P. Smith, P. J. Watson, S. D. Coomber, C. D. Cameron, C. W. Slinger, and A. D. Wood, “3D electronic holography display system using a 100 Mega-pixel spatial light modulator,” Proc. SPIE 5249, 292–308 (2004).

Wood, A. D.

M. Stanley, M. A. G. Smith, A. P. Smith, P. J. Watson, S. D. Coomber, C. D. Cameron, C. W. Slinger, and A. D. Wood, “3D electronic holography display system using a 100 Mega-pixel spatial light modulator,” Proc. SPIE 5249, 292–308 (2004).

Yamamoto, K.

K. Yamamoto, Y. Ichihashi, T. Senoh, R. Oi, and T. Kurita, “3D objects enlargement technique using an optical system and multiple SLMs for electronic holography,” Opt. Express 20(19), 21137–21144 (2012).
[Crossref] [PubMed]

T. Senoh, T. Mishina, K. Yamamoto, R. Oi, and T. Kurita, “Viewing-zone-angle-expanded color electronic holography system using ultra-high-definition liquid crystal displays with undesirable light elimination,” J. Disp. Technol. 7(7), 382–390 (2011).
[Crossref]

Yaras, F.

Yokouchi, M.

Zschau, E.

R. Häussler, S. Reichelt, N. Leister, E. Zschau, R. Missbach, and A. Schwerdtner, “Large real-time holographic displays: from prototype to a consumer product,” Proc. SPIE 7237, 72370S (2009).
[Crossref]

Appl. Opt. (2)

J. Disp. Technol. (2)

K. Aoshima, N. Funabashi, K. Machida, Y. Miyamoto, K. Kuga, T. Ishibashi, N. Shimidzu, and F. Sato, “Submicron magneto-optical spatial light modulation device for holographic displays driven by spin-polarized electrons,” J. Disp. Technol. 6(9), 374–380 (2010).
[Crossref]

T. Senoh, T. Mishina, K. Yamamoto, R. Oi, and T. Kurita, “Viewing-zone-angle-expanded color electronic holography system using ultra-high-definition liquid crystal displays with undesirable light elimination,” J. Disp. Technol. 7(7), 382–390 (2011).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Vis. (1)

D. M. Hoffman, A. R. Girshick, K. Akeley, and M. S. Banks, “Vergence-accommodation conflicts hinder visual performance and cause visual fatigue,” J. Vis. 8(3), 33 (2008).
[Crossref] [PubMed]

Nature (1)

D. E. Smalley, Q. Y. Smithwick, V. M. Bove, J. Barabas, and S. Jolly, “Anisotropic leaky-mode modulator for holographic video displays,” Nature 498(7454), 313–317 (2013).
[Crossref] [PubMed]

Opt. Express (8)

Opt. Lett. (1)

Opt. Photonics (1)

R. Stahl and M. Jayapala, “Holographic displays and smart lenses,” Opt. Photonics 6, 39–42 (2011).

Proc. SPIE (6)

K. Maeno, N. Fukaya, O. Nishikawa, K. Sato, and T. Honda, “Electro-holographic display using 15 mega pixels LCD,” Proc. SPIE 2652, 15–23 (1996).
[Crossref]

D. Dudley, W. M. Duncan, and J. Slaughter, “Emerging digital micromirror device (DMD) applications,” Proc. SPIE 4985, 14–25 (2003).
[Crossref]

P. St-Hilaire, S. A. Benton, M. E. Lucente, and P. M. Hubel, “Color images with the MIT holographic video display,” Proc. SPIE 1667, 73–84 (1992).

M. Stanley, M. A. G. Smith, A. P. Smith, P. J. Watson, S. D. Coomber, C. D. Cameron, C. W. Slinger, and A. D. Wood, “3D electronic holography display system using a 100 Mega-pixel spatial light modulator,” Proc. SPIE 5249, 292–308 (2004).

K. Sato, A. Sugita, M. Morimoto, and K. Fujii, “Reconstruction of color images of high quality by a holographic display,” Proc. SPIE 6136, 61360V (2006).
[Crossref]

R. Häussler, S. Reichelt, N. Leister, E. Zschau, R. Missbach, and A. Schwerdtner, “Large real-time holographic displays: from prototype to a consumer product,” Proc. SPIE 7237, 72370S (2009).
[Crossref]

Other (1)

T. Okoshi, Three-Dimensional Imaging Techniques (Academic, 1976).

Supplementary Material (2)

NameDescription
» Visualization 1: MOV (1019 KB)      video of color reconstructed image (cube)
» Visualization 2: MOV (1461 KB)      video color reconstructed image (snowman)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1 Schematic of the screen-scanning display system for a horizontally scanning holograph that generates color images.
Fig. 2
Fig. 2 Multiple elementary hologram sets on the display screen generated by horizontal scanning.
Fig. 3
Fig. 3 Diffraction of light by a digital micromirror device: (a) directions of diffraction peaks and (b) direction of light reflected by micromirrors.
Fig. 4
Fig. 4 Two conditions are required to combine three colors using diffraction phenomena: (a) diffraction condition and (b) reflection condition.
Fig. 5
Fig. 5 Error diffusion scheme for R, G, and B binarization: (a) diffraction peaks and diffraction components, (b) directions of reference waves projected on a Fourier plane, and (c) error diffusion directions.
Fig. 6
Fig. 6 Screen-scanning display system used for color reconstructed image generation.
Fig. 7
Fig. 7 Designed diffraction on the Fourier plane: (a) diffraction peaks and (b) centers of the reflected beams.
Fig. 8
Fig. 8 RGB laser illumination system for DMD: (a) optical fiber array and (b) illumination system.
Fig. 9
Fig. 9 Experimentally obtained light diffraction on the Fourier plane.
Fig. 10
Fig. 10 Error diffusion for three colors: (a) carrier directions, (b) error diffusion directions, and (c) error diffusion coefficients.
Fig. 11
Fig. 11 RGB reconstructed images and color reconstructed images obtained by the (a) simple binarization technique, (b) error diffusion technique using Floyd–Steinberg coefficients, and (c) wavelength-dependent error diffusion technique.
Fig. 12
Fig. 12 Experimental results: (a) target images and reconstructed images obtained by the (b) simple binarization technique, (c) error diffusion technique using Floyd–Steinberg coefficients, and (d) wavelength-dependent error diffusion technique.
Fig. 13
Fig. 13 Reconstructed images generated by the wavelength-dependent error diffusion technique, which were captured from different three directions: (a) cube (see Visualization 1) and (b) snowman (see Visualization 2).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

k i + k d m x , m y =i m x ( 2π/d )+j m y ( 2π/d ),
k r = k i 2( k i n )n,
( λ/2π ) k d y f s = 0 or h ,
k r x =0,

Metrics