Abstract

In this study, slot waveguide ring resonators patterned on a silicon-on-insulator (SOI) wafer and coated with an atomic layer deposited nanolaminate consisting of alternating layers of tantalum pentoxide and polyimide were fabricated and characterized. To the best of our knowledge, this is the first demonstration of atomic layer deposition (ALD) of organic materials in waveguiding applications. In our nanolaminate ring resonators, the optical power is not only confined in the narrow central air slot but also in several parallel sub-10 nm wide vertical polyimide slots. This indicates that the mode profiles in the silicon slot waveguide can be accurately tuned by the ALD method. Our results show that ALD of organic and inorganic materials can be combined with conventional silicon waveguide fabrication techniques to create slot waveguide ring resonators with varying mode profiles. This can potentially open new possibilities for various photonic applications, such as optical sensing and all-optical signal processing.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Reduced propagation loss in silicon strip and slot waveguides coated by atomic layer deposition

T. Alasaarela, D. Korn, L. Alloatti, A. Säynätjoki, A. Tervonen, R. Palmer, J. Leuthold, W. Freude, and S. Honkanen
Opt. Express 19(12) 11529-11538 (2011)

Enhanced sensitivity in polymer slot waveguides by atomic layer deposited bilayer coatings

Leila Ahmadi, Jani Tervo, Jyrki Saarinen, and Seppo Honkanen
Appl. Opt. 52(33) 8089-8094 (2013)

Low-loss silicon slot waveguides and couplers fabricated with optical lithography and atomic layer deposition

A. Säynätjoki, L. Karvonen, T. Alasaarela, X. Tu, T. Y. Liow, M. Hiltunen, A. Tervonen, G. Q. Lo, and S. Honkanen
Opt. Express 19(27) 26275-26282 (2011)

References

  • View by:
  • |
  • |
  • |

  1. A. E.-J. Lim, J. Song, Q. Fang, C. Li, X. Tu, N. Duan, K. K. Chen, R. P.-C. Tern, and T.-Y. Liow, “Review of silicon photonics foundry efforts,” IEEE J. Sel. Top. Quantum Electron. 20, 405–416 (2014).
    [Crossref]
  2. G. T. Reed, G. Mashanovich, F. Gardes, and D. Thomson, “Silicon optical modulators,” Nat. Photonics 4, 518–526 (2010).
    [Crossref]
  3. R. Soref, “The past, present, and future of silicon photonics,” IEEE. J. Sel. Top. Quantum Electron. 12, 1678–1687 (2006).
    [Crossref]
  4. C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3, 216–219 (2009).
    [Crossref]
  5. L. Alloatti, R. Palmer, S. Diebold, K. P. Pahl, B. Chen, R. Dinu, M. Fournier, J.-M. Fedeli, T. Zwick, W. Freude, C. Koos, and J. Leuthold, “100 GHz silicon–organic hybrid modulator,” Light Sci. Appl. 3, e173 (2014).
    [Crossref]
  6. V. R. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, “Guiding and confining light in void nanostructure,” Opt. Lett. 29, 1209-1211 (2004).
    [Crossref]
  7. T. Claes, J. G. Molera, K. De Vos, E. Schachtb, R. Baets, and P. Bienstman, “Label-free biosensing with a slot-waveguide-based ring resonator in silicon on insulator,” IEEE Photonics J. 1, 197–204 (2009).
    [Crossref]
  8. C. Koos, L. Jacome, C. Poulton, J. Leuthold, and W. Freude, “Nonlinear silicon-on-insulator waveguides for all-optical signal processing,” Opt. Express 15, 5976–5990 (2007).
    [Crossref] [PubMed]
  9. J. Clark and G. Lanzani, “Organic photonics for communications,” Nat. Photonics 4, 438–446 (2010).
    [Crossref]
  10. T. Baehr-Jones, M. Hochberg, G. Wang, R. Lawson, Y. Liao, P. Sullivan, L. Dalton, A. Jen, and A. Scherer, “Optical modulation and detection in slotted silicon waveguides,” Opt. Express 13, 5216–5226 (2005).
    [Crossref] [PubMed]
  11. M. Putkonen, J. Harjuoja, T. Sajavaara, and L. Niinistö, “Atomic layer deposition of polyimide thin films,” J. Mater. Chem. 17, 664–669 (2007).
    [Crossref]
  12. L. D. Salmi, E. Puukilainen, M. Vehkamäki, M. Heikkilä, and M. Ritala, “Atomic layer deposition of Ta2O5/polyimide nanolaminates,” Chem. Vap. Deposition 15, 221–226 (2009).
    [Crossref]
  13. M. Leskelä and M. Ritala, “Atomic layer deposition (ALD): from precursors to thin film structures,” Thin Solid Films 409, 138–146 (2002).
    [Crossref]
  14. M. Leskelä, M. Kemell, K. Kukli, V. Pore, E. Santala, M. Ritala, and J. Lu, “Exploitation of atomic layer deposition for nanostructured materials,” Mater. Sci. Eng., C 27, 1504–1508 (2007).
    [Crossref]
  15. T. Alasaarela, D. Korn, L. Alloatti, A. Säynätjoki, A. Tervonen, R. Palmer, J. Leuthold, W. Freude, and S. Honkanen, “Reduced propagation loss in silicon strip and slot waveguides coated by atomic layer deposition,” Opt. Express 19, 11529–11538 (2011).
    [Crossref] [PubMed]
  16. A. Khanna, A. Z. Subramanian, M. Häyrinen, S. Selvaraja, P. Verheyen, D. V. Thourhout, S. Honkanen, H. Lipsanen, and R. Baets, “Impact of ALD grown passivation layers on silicon nitride based integrated optic devices for very-near-infrared wavelengths,” Opt. Express 22, 5684–5692 (2014).
    [Crossref] [PubMed]
  17. A. Säynätjoki, L. Karvonen, T. Alasaarela, X. Tu, T. Y. Liow, M. Hiltunen, A. Tervonen, G. Q. Lo, and S. Honkanen, “Low-loss silicon slot waveguides and couplers fabricated with optical lithography and atomic layer deposition,” Opt. Express 19, 26275–26282 (2011).
    [Crossref]
  18. L. Karvonen, A. Säynätjoki, Y. Chen, O. Tu, T.-Y. Liow, J. Hiltunen, M. Hiltunen, G.-Q. Lo, and S. Honkanen, “Low-loss multiple-slot waveguides fabricated by optical lithography and atomic layer deposition,” IEEE Photonics Technol. Lett. 24, 2074–2076 (2012).
    [Crossref]
  19. M. Erdmanis, L. Karvonen, A. Säynätjoki, X. Tu, T. Y. Liow, Q. G. Lo, O. Vänskä, S. Honkanen, and I. Tittonen, “Towards broad-bandwidth polarization-independent nanostrip waveguide ring resonators,” Opt. Express 21, 9974–9981 (2013).
    [Crossref] [PubMed]
  20. J. Riemensberger, K. Hartinger, T. Herr, V. Brasch, R. Holzwarth, and T. J. Kippenberg, “Dispersion engineering of thick high-Q silicon nitride ring-resonators via atomic layer deposition,” Opt. Express 20, 27661–27669 (2012).
    [Crossref] [PubMed]
  21. G. Testa, Y. Huang, L. Zeni, P. Sarro, and R. Bernini, “Liquid core ARROW waveguides by atomic layer deposition,” IEEE Photonics Technol. Lett. 22, 616–618 (2010).
    [Crossref]
  22. A. C. Turner, C. Manolatou, B. S. Schmidt, M. Lipson, M. A. Foster, J. E. Sharping, and A. L. Gaeta, “Tailored anomalous group-velocity dispersion in silicon channel waveguides,” Opt. Express 14, 4357–4362 (2006).
    [Crossref] [PubMed]
  23. L. Zhang, Y. Yue, Y. Xiao-Li, J. Wang, R. G. Beausoleil, and A. E. Willner, “Flat and low dispersion in highly nonlinear slot waveguides,” Opt. Express 18, 13187–13193 (2010).
    [Crossref] [PubMed]
  24. L. Zhang, Y. Yue, R. G. Beausoleil, and A. E. Willner, “Flattened dispersion in silicon slot waveguides,” Opt. Express 18, 20529–20534 (2010).
    [Crossref] [PubMed]
  25. M. Erdmanis, L. Karvonen, M. R. Saleem, M. Ruoho, V. Pale, A. Tervonen, S. Honkanen, and I. Tittonen, “Ald-assisted multiorder dispersion engineering of nanophotonic strip waveguides,” J. Lightwave Technol. 30, 2488–2493 (2012).
    [Crossref]
  26. Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435, 325–327 (2005).
    [Crossref] [PubMed]
  27. F. Y. Gardes, A. Brimont, P. Sanchis, G. Rasigade, D. Marris-Morini, L. O’Faolain, F. Dong, J. M. Fedeli, P. Dumon, L. Vivien, T. F. Krauss, G. T. Reed, and J. Martí, “High-speed modulation of a compact silicon ring resonator based on a reverse-biased pn diode,” Opt. Express 17, 21986–21991 (2009).
    [Crossref] [PubMed]
  28. Q. Xu, S. Manipatruni, B. Schmidt, J. Shakya, and M. Lipson, “12.5 Gbit/s carrier-injection-based silicon micro-ring silicon modulators,” Opt. Express 15, 430–436 (2007).
    [Crossref] [PubMed]
  29. E. Timurdogan, C. M. Sorace-Agaskar, J. Sun, E. S. Hosseini, A. Biberman, and M. R. Watts, “An ultra low power athermal silicon modulator,” Nat. Commun. 5, 4008 (2014).
    [Crossref]
  30. F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1, 65–71 (2006).
    [Crossref]
  31. B. E. Little, J. Foresi, G. Steinmeyer, E. Thoen, S. Chu, H. Haus, E. Ippen, L. Kimerling, and W. Greene, “Ultra-compact Si-SiO2 microring resonator optical channel dropping filters,” IEEE Photonics Technol. Lett. 10, 549–551 (1998).
    [Crossref]
  32. Y. Sun and X. Fan, “Optical ring resonators for biochemical and chemical sensing,” Anal. Bioanal. Chem. 399, 205–211 (2011).
    [Crossref]
  33. G. Testa, Y. Huang, P. M. Sarro, L. Zeni, and R. Bernini, “Integrated silicon optofluidic ring resonator,” Appl. Phys. Lett. 97, 131110 (2010).
    [Crossref]
  34. K. Kukli, M. Ritala, and M. Leskelä, “Atomic layer epitaxy growth of tantalum oxide thin films from Ta(OC2H5)5 and H2O,” J. Electrochem. Soc. 142, 1670–1675 (1995).
    [Crossref]
  35. S. Morino, T. Yamashita, K. Horie, T. Wada, and H. Sasabe, “Third-order nonlinear optical properties of aromatic polyisoimides,” React. Funct. Polym. 44, 183–188 (2000).
    [Crossref]
  36. C.-Y. Tai, J. Wilkinson, N. Perney, M. Netti, F. Cattaneo, C. Finlayson, and J. Baumberg, “Determination of nonlinear refractive index in a Ta2O5 rib waveguide using self-phase modulation,” Opt. Express 12, 5110–5116 (2004).
    [Crossref] [PubMed]
  37. R. Y. Chen, M. D. B. Charlton, and P. G. Lagoudakis, “Broadband stimulated four-wave parametric conversion on a tantalum pentoxide photonic chip,” Opt. Express 19, 26343–26352 (2011).
    [Crossref]
  38. J. Song, H. Zhao, Q. Fang, S. H. Tao, T. Y. Liow, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Effective thermo-optical enhanced cross-ring resonator MZI interleavers on SOI,” Opt. Express 16, 21476–21482 (2008).
    [Crossref] [PubMed]
  39. W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6, 47–73 (2012).
    [Crossref]
  40. J. Niehusmann, A. Vörckel, P. H. Bolivar, T. Wahlbrink, W. Henschel, and H. Kurz, “Ultrahigh-quality-factor silicon-on-insulator microring resonator,” Opt. Lett. 29, 2861–2863 (2004).
    [Crossref]
  41. W. R. McKinnon, D. X. Xu, C. Storey, E. Post, A. Densmore, A. Delâge, P. Waldron, J. H. Schmid, and S. Janz, “Extracting coupling and loss coefficients from a ring resonator,” Opt. Express 17, 18971–18982 (2009).
    [Crossref]
  42. T. Ling, S.-L. Chen, and L. J. Guo, “Fabrication and characterization of High Q polymer micro-ring resonator and its application as a sensitive ultrasonic detector,” Opt. Express 19, 861–869 (2011).
    [Crossref] [PubMed]

2014 (4)

A. E.-J. Lim, J. Song, Q. Fang, C. Li, X. Tu, N. Duan, K. K. Chen, R. P.-C. Tern, and T.-Y. Liow, “Review of silicon photonics foundry efforts,” IEEE J. Sel. Top. Quantum Electron. 20, 405–416 (2014).
[Crossref]

L. Alloatti, R. Palmer, S. Diebold, K. P. Pahl, B. Chen, R. Dinu, M. Fournier, J.-M. Fedeli, T. Zwick, W. Freude, C. Koos, and J. Leuthold, “100 GHz silicon–organic hybrid modulator,” Light Sci. Appl. 3, e173 (2014).
[Crossref]

A. Khanna, A. Z. Subramanian, M. Häyrinen, S. Selvaraja, P. Verheyen, D. V. Thourhout, S. Honkanen, H. Lipsanen, and R. Baets, “Impact of ALD grown passivation layers on silicon nitride based integrated optic devices for very-near-infrared wavelengths,” Opt. Express 22, 5684–5692 (2014).
[Crossref] [PubMed]

E. Timurdogan, C. M. Sorace-Agaskar, J. Sun, E. S. Hosseini, A. Biberman, and M. R. Watts, “An ultra low power athermal silicon modulator,” Nat. Commun. 5, 4008 (2014).
[Crossref]

2013 (1)

2012 (4)

J. Riemensberger, K. Hartinger, T. Herr, V. Brasch, R. Holzwarth, and T. J. Kippenberg, “Dispersion engineering of thick high-Q silicon nitride ring-resonators via atomic layer deposition,” Opt. Express 20, 27661–27669 (2012).
[Crossref] [PubMed]

M. Erdmanis, L. Karvonen, M. R. Saleem, M. Ruoho, V. Pale, A. Tervonen, S. Honkanen, and I. Tittonen, “Ald-assisted multiorder dispersion engineering of nanophotonic strip waveguides,” J. Lightwave Technol. 30, 2488–2493 (2012).
[Crossref]

L. Karvonen, A. Säynätjoki, Y. Chen, O. Tu, T.-Y. Liow, J. Hiltunen, M. Hiltunen, G.-Q. Lo, and S. Honkanen, “Low-loss multiple-slot waveguides fabricated by optical lithography and atomic layer deposition,” IEEE Photonics Technol. Lett. 24, 2074–2076 (2012).
[Crossref]

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6, 47–73 (2012).
[Crossref]

2011 (5)

2010 (6)

G. T. Reed, G. Mashanovich, F. Gardes, and D. Thomson, “Silicon optical modulators,” Nat. Photonics 4, 518–526 (2010).
[Crossref]

J. Clark and G. Lanzani, “Organic photonics for communications,” Nat. Photonics 4, 438–446 (2010).
[Crossref]

G. Testa, Y. Huang, P. M. Sarro, L. Zeni, and R. Bernini, “Integrated silicon optofluidic ring resonator,” Appl. Phys. Lett. 97, 131110 (2010).
[Crossref]

L. Zhang, Y. Yue, Y. Xiao-Li, J. Wang, R. G. Beausoleil, and A. E. Willner, “Flat and low dispersion in highly nonlinear slot waveguides,” Opt. Express 18, 13187–13193 (2010).
[Crossref] [PubMed]

L. Zhang, Y. Yue, R. G. Beausoleil, and A. E. Willner, “Flattened dispersion in silicon slot waveguides,” Opt. Express 18, 20529–20534 (2010).
[Crossref] [PubMed]

G. Testa, Y. Huang, L. Zeni, P. Sarro, and R. Bernini, “Liquid core ARROW waveguides by atomic layer deposition,” IEEE Photonics Technol. Lett. 22, 616–618 (2010).
[Crossref]

2009 (5)

F. Y. Gardes, A. Brimont, P. Sanchis, G. Rasigade, D. Marris-Morini, L. O’Faolain, F. Dong, J. M. Fedeli, P. Dumon, L. Vivien, T. F. Krauss, G. T. Reed, and J. Martí, “High-speed modulation of a compact silicon ring resonator based on a reverse-biased pn diode,” Opt. Express 17, 21986–21991 (2009).
[Crossref] [PubMed]

T. Claes, J. G. Molera, K. De Vos, E. Schachtb, R. Baets, and P. Bienstman, “Label-free biosensing with a slot-waveguide-based ring resonator in silicon on insulator,” IEEE Photonics J. 1, 197–204 (2009).
[Crossref]

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3, 216–219 (2009).
[Crossref]

L. D. Salmi, E. Puukilainen, M. Vehkamäki, M. Heikkilä, and M. Ritala, “Atomic layer deposition of Ta2O5/polyimide nanolaminates,” Chem. Vap. Deposition 15, 221–226 (2009).
[Crossref]

W. R. McKinnon, D. X. Xu, C. Storey, E. Post, A. Densmore, A. Delâge, P. Waldron, J. H. Schmid, and S. Janz, “Extracting coupling and loss coefficients from a ring resonator,” Opt. Express 17, 18971–18982 (2009).
[Crossref]

2008 (1)

2007 (4)

M. Putkonen, J. Harjuoja, T. Sajavaara, and L. Niinistö, “Atomic layer deposition of polyimide thin films,” J. Mater. Chem. 17, 664–669 (2007).
[Crossref]

M. Leskelä, M. Kemell, K. Kukli, V. Pore, E. Santala, M. Ritala, and J. Lu, “Exploitation of atomic layer deposition for nanostructured materials,” Mater. Sci. Eng., C 27, 1504–1508 (2007).
[Crossref]

C. Koos, L. Jacome, C. Poulton, J. Leuthold, and W. Freude, “Nonlinear silicon-on-insulator waveguides for all-optical signal processing,” Opt. Express 15, 5976–5990 (2007).
[Crossref] [PubMed]

Q. Xu, S. Manipatruni, B. Schmidt, J. Shakya, and M. Lipson, “12.5 Gbit/s carrier-injection-based silicon micro-ring silicon modulators,” Opt. Express 15, 430–436 (2007).
[Crossref] [PubMed]

2006 (3)

F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1, 65–71 (2006).
[Crossref]

A. C. Turner, C. Manolatou, B. S. Schmidt, M. Lipson, M. A. Foster, J. E. Sharping, and A. L. Gaeta, “Tailored anomalous group-velocity dispersion in silicon channel waveguides,” Opt. Express 14, 4357–4362 (2006).
[Crossref] [PubMed]

R. Soref, “The past, present, and future of silicon photonics,” IEEE. J. Sel. Top. Quantum Electron. 12, 1678–1687 (2006).
[Crossref]

2005 (2)

2004 (3)

2002 (1)

M. Leskelä and M. Ritala, “Atomic layer deposition (ALD): from precursors to thin film structures,” Thin Solid Films 409, 138–146 (2002).
[Crossref]

2000 (1)

S. Morino, T. Yamashita, K. Horie, T. Wada, and H. Sasabe, “Third-order nonlinear optical properties of aromatic polyisoimides,” React. Funct. Polym. 44, 183–188 (2000).
[Crossref]

1998 (1)

B. E. Little, J. Foresi, G. Steinmeyer, E. Thoen, S. Chu, H. Haus, E. Ippen, L. Kimerling, and W. Greene, “Ultra-compact Si-SiO2 microring resonator optical channel dropping filters,” IEEE Photonics Technol. Lett. 10, 549–551 (1998).
[Crossref]

1995 (1)

K. Kukli, M. Ritala, and M. Leskelä, “Atomic layer epitaxy growth of tantalum oxide thin films from Ta(OC2H5)5 and H2O,” J. Electrochem. Soc. 142, 1670–1675 (1995).
[Crossref]

Alasaarela, T.

Alloatti, L.

L. Alloatti, R. Palmer, S. Diebold, K. P. Pahl, B. Chen, R. Dinu, M. Fournier, J.-M. Fedeli, T. Zwick, W. Freude, C. Koos, and J. Leuthold, “100 GHz silicon–organic hybrid modulator,” Light Sci. Appl. 3, e173 (2014).
[Crossref]

T. Alasaarela, D. Korn, L. Alloatti, A. Säynätjoki, A. Tervonen, R. Palmer, J. Leuthold, W. Freude, and S. Honkanen, “Reduced propagation loss in silicon strip and slot waveguides coated by atomic layer deposition,” Opt. Express 19, 11529–11538 (2011).
[Crossref] [PubMed]

Almeida, V. R.

Baehr-Jones, T.

Baets, R.

A. Khanna, A. Z. Subramanian, M. Häyrinen, S. Selvaraja, P. Verheyen, D. V. Thourhout, S. Honkanen, H. Lipsanen, and R. Baets, “Impact of ALD grown passivation layers on silicon nitride based integrated optic devices for very-near-infrared wavelengths,” Opt. Express 22, 5684–5692 (2014).
[Crossref] [PubMed]

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6, 47–73 (2012).
[Crossref]

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3, 216–219 (2009).
[Crossref]

T. Claes, J. G. Molera, K. De Vos, E. Schachtb, R. Baets, and P. Bienstman, “Label-free biosensing with a slot-waveguide-based ring resonator in silicon on insulator,” IEEE Photonics J. 1, 197–204 (2009).
[Crossref]

Barrios, C. A.

Baumberg, J.

Beausoleil, R. G.

Bernini, R.

G. Testa, Y. Huang, P. M. Sarro, L. Zeni, and R. Bernini, “Integrated silicon optofluidic ring resonator,” Appl. Phys. Lett. 97, 131110 (2010).
[Crossref]

G. Testa, Y. Huang, L. Zeni, P. Sarro, and R. Bernini, “Liquid core ARROW waveguides by atomic layer deposition,” IEEE Photonics Technol. Lett. 22, 616–618 (2010).
[Crossref]

Biaggio, I.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3, 216–219 (2009).
[Crossref]

Biberman, A.

E. Timurdogan, C. M. Sorace-Agaskar, J. Sun, E. S. Hosseini, A. Biberman, and M. R. Watts, “An ultra low power athermal silicon modulator,” Nat. Commun. 5, 4008 (2014).
[Crossref]

Bienstman, P.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6, 47–73 (2012).
[Crossref]

T. Claes, J. G. Molera, K. De Vos, E. Schachtb, R. Baets, and P. Bienstman, “Label-free biosensing with a slot-waveguide-based ring resonator in silicon on insulator,” IEEE Photonics J. 1, 197–204 (2009).
[Crossref]

Bogaerts, W.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6, 47–73 (2012).
[Crossref]

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3, 216–219 (2009).
[Crossref]

Bolivar, P. H.

Brasch, V.

Brimont, A.

Cattaneo, F.

Charlton, M. D. B.

Chen, B.

L. Alloatti, R. Palmer, S. Diebold, K. P. Pahl, B. Chen, R. Dinu, M. Fournier, J.-M. Fedeli, T. Zwick, W. Freude, C. Koos, and J. Leuthold, “100 GHz silicon–organic hybrid modulator,” Light Sci. Appl. 3, e173 (2014).
[Crossref]

Chen, K. K.

A. E.-J. Lim, J. Song, Q. Fang, C. Li, X. Tu, N. Duan, K. K. Chen, R. P.-C. Tern, and T.-Y. Liow, “Review of silicon photonics foundry efforts,” IEEE J. Sel. Top. Quantum Electron. 20, 405–416 (2014).
[Crossref]

Chen, R. Y.

Chen, S.-L.

Chen, Y.

L. Karvonen, A. Säynätjoki, Y. Chen, O. Tu, T.-Y. Liow, J. Hiltunen, M. Hiltunen, G.-Q. Lo, and S. Honkanen, “Low-loss multiple-slot waveguides fabricated by optical lithography and atomic layer deposition,” IEEE Photonics Technol. Lett. 24, 2074–2076 (2012).
[Crossref]

Chu, S.

B. E. Little, J. Foresi, G. Steinmeyer, E. Thoen, S. Chu, H. Haus, E. Ippen, L. Kimerling, and W. Greene, “Ultra-compact Si-SiO2 microring resonator optical channel dropping filters,” IEEE Photonics Technol. Lett. 10, 549–551 (1998).
[Crossref]

Claes, T.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6, 47–73 (2012).
[Crossref]

T. Claes, J. G. Molera, K. De Vos, E. Schachtb, R. Baets, and P. Bienstman, “Label-free biosensing with a slot-waveguide-based ring resonator in silicon on insulator,” IEEE Photonics J. 1, 197–204 (2009).
[Crossref]

Clark, J.

J. Clark and G. Lanzani, “Organic photonics for communications,” Nat. Photonics 4, 438–446 (2010).
[Crossref]

Dalton, L.

De Heyn, P.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6, 47–73 (2012).
[Crossref]

De Vos, K.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6, 47–73 (2012).
[Crossref]

T. Claes, J. G. Molera, K. De Vos, E. Schachtb, R. Baets, and P. Bienstman, “Label-free biosensing with a slot-waveguide-based ring resonator in silicon on insulator,” IEEE Photonics J. 1, 197–204 (2009).
[Crossref]

Delâge, A.

Densmore, A.

Diebold, S.

L. Alloatti, R. Palmer, S. Diebold, K. P. Pahl, B. Chen, R. Dinu, M. Fournier, J.-M. Fedeli, T. Zwick, W. Freude, C. Koos, and J. Leuthold, “100 GHz silicon–organic hybrid modulator,” Light Sci. Appl. 3, e173 (2014).
[Crossref]

Diederich, F.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3, 216–219 (2009).
[Crossref]

Dinu, R.

L. Alloatti, R. Palmer, S. Diebold, K. P. Pahl, B. Chen, R. Dinu, M. Fournier, J.-M. Fedeli, T. Zwick, W. Freude, C. Koos, and J. Leuthold, “100 GHz silicon–organic hybrid modulator,” Light Sci. Appl. 3, e173 (2014).
[Crossref]

Dong, F.

Duan, N.

A. E.-J. Lim, J. Song, Q. Fang, C. Li, X. Tu, N. Duan, K. K. Chen, R. P.-C. Tern, and T.-Y. Liow, “Review of silicon photonics foundry efforts,” IEEE J. Sel. Top. Quantum Electron. 20, 405–416 (2014).
[Crossref]

Dumon, P.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6, 47–73 (2012).
[Crossref]

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3, 216–219 (2009).
[Crossref]

F. Y. Gardes, A. Brimont, P. Sanchis, G. Rasigade, D. Marris-Morini, L. O’Faolain, F. Dong, J. M. Fedeli, P. Dumon, L. Vivien, T. F. Krauss, G. T. Reed, and J. Martí, “High-speed modulation of a compact silicon ring resonator based on a reverse-biased pn diode,” Opt. Express 17, 21986–21991 (2009).
[Crossref] [PubMed]

Erdmanis, M.

Esembeson, B.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3, 216–219 (2009).
[Crossref]

Fan, X.

Y. Sun and X. Fan, “Optical ring resonators for biochemical and chemical sensing,” Anal. Bioanal. Chem. 399, 205–211 (2011).
[Crossref]

Fang, Q.

A. E.-J. Lim, J. Song, Q. Fang, C. Li, X. Tu, N. Duan, K. K. Chen, R. P.-C. Tern, and T.-Y. Liow, “Review of silicon photonics foundry efforts,” IEEE J. Sel. Top. Quantum Electron. 20, 405–416 (2014).
[Crossref]

J. Song, H. Zhao, Q. Fang, S. H. Tao, T. Y. Liow, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Effective thermo-optical enhanced cross-ring resonator MZI interleavers on SOI,” Opt. Express 16, 21476–21482 (2008).
[Crossref] [PubMed]

Fedeli, J. M.

Fedeli, J.-M.

L. Alloatti, R. Palmer, S. Diebold, K. P. Pahl, B. Chen, R. Dinu, M. Fournier, J.-M. Fedeli, T. Zwick, W. Freude, C. Koos, and J. Leuthold, “100 GHz silicon–organic hybrid modulator,” Light Sci. Appl. 3, e173 (2014).
[Crossref]

Finlayson, C.

Foresi, J.

B. E. Little, J. Foresi, G. Steinmeyer, E. Thoen, S. Chu, H. Haus, E. Ippen, L. Kimerling, and W. Greene, “Ultra-compact Si-SiO2 microring resonator optical channel dropping filters,” IEEE Photonics Technol. Lett. 10, 549–551 (1998).
[Crossref]

Foster, M. A.

Fournier, M.

L. Alloatti, R. Palmer, S. Diebold, K. P. Pahl, B. Chen, R. Dinu, M. Fournier, J.-M. Fedeli, T. Zwick, W. Freude, C. Koos, and J. Leuthold, “100 GHz silicon–organic hybrid modulator,” Light Sci. Appl. 3, e173 (2014).
[Crossref]

Freude, W.

L. Alloatti, R. Palmer, S. Diebold, K. P. Pahl, B. Chen, R. Dinu, M. Fournier, J.-M. Fedeli, T. Zwick, W. Freude, C. Koos, and J. Leuthold, “100 GHz silicon–organic hybrid modulator,” Light Sci. Appl. 3, e173 (2014).
[Crossref]

T. Alasaarela, D. Korn, L. Alloatti, A. Säynätjoki, A. Tervonen, R. Palmer, J. Leuthold, W. Freude, and S. Honkanen, “Reduced propagation loss in silicon strip and slot waveguides coated by atomic layer deposition,” Opt. Express 19, 11529–11538 (2011).
[Crossref] [PubMed]

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3, 216–219 (2009).
[Crossref]

C. Koos, L. Jacome, C. Poulton, J. Leuthold, and W. Freude, “Nonlinear silicon-on-insulator waveguides for all-optical signal processing,” Opt. Express 15, 5976–5990 (2007).
[Crossref] [PubMed]

Gaeta, A. L.

Gardes, F.

G. T. Reed, G. Mashanovich, F. Gardes, and D. Thomson, “Silicon optical modulators,” Nat. Photonics 4, 518–526 (2010).
[Crossref]

Gardes, F. Y.

Greene, W.

B. E. Little, J. Foresi, G. Steinmeyer, E. Thoen, S. Chu, H. Haus, E. Ippen, L. Kimerling, and W. Greene, “Ultra-compact Si-SiO2 microring resonator optical channel dropping filters,” IEEE Photonics Technol. Lett. 10, 549–551 (1998).
[Crossref]

Guo, L. J.

Harjuoja, J.

M. Putkonen, J. Harjuoja, T. Sajavaara, and L. Niinistö, “Atomic layer deposition of polyimide thin films,” J. Mater. Chem. 17, 664–669 (2007).
[Crossref]

Hartinger, K.

Haus, H.

B. E. Little, J. Foresi, G. Steinmeyer, E. Thoen, S. Chu, H. Haus, E. Ippen, L. Kimerling, and W. Greene, “Ultra-compact Si-SiO2 microring resonator optical channel dropping filters,” IEEE Photonics Technol. Lett. 10, 549–551 (1998).
[Crossref]

Häyrinen, M.

Heikkilä, M.

L. D. Salmi, E. Puukilainen, M. Vehkamäki, M. Heikkilä, and M. Ritala, “Atomic layer deposition of Ta2O5/polyimide nanolaminates,” Chem. Vap. Deposition 15, 221–226 (2009).
[Crossref]

Henschel, W.

Herr, T.

Hiltunen, J.

L. Karvonen, A. Säynätjoki, Y. Chen, O. Tu, T.-Y. Liow, J. Hiltunen, M. Hiltunen, G.-Q. Lo, and S. Honkanen, “Low-loss multiple-slot waveguides fabricated by optical lithography and atomic layer deposition,” IEEE Photonics Technol. Lett. 24, 2074–2076 (2012).
[Crossref]

Hiltunen, M.

L. Karvonen, A. Säynätjoki, Y. Chen, O. Tu, T.-Y. Liow, J. Hiltunen, M. Hiltunen, G.-Q. Lo, and S. Honkanen, “Low-loss multiple-slot waveguides fabricated by optical lithography and atomic layer deposition,” IEEE Photonics Technol. Lett. 24, 2074–2076 (2012).
[Crossref]

A. Säynätjoki, L. Karvonen, T. Alasaarela, X. Tu, T. Y. Liow, M. Hiltunen, A. Tervonen, G. Q. Lo, and S. Honkanen, “Low-loss silicon slot waveguides and couplers fabricated with optical lithography and atomic layer deposition,” Opt. Express 19, 26275–26282 (2011).
[Crossref]

Hochberg, M.

Holzwarth, R.

Honkanen, S.

A. Khanna, A. Z. Subramanian, M. Häyrinen, S. Selvaraja, P. Verheyen, D. V. Thourhout, S. Honkanen, H. Lipsanen, and R. Baets, “Impact of ALD grown passivation layers on silicon nitride based integrated optic devices for very-near-infrared wavelengths,” Opt. Express 22, 5684–5692 (2014).
[Crossref] [PubMed]

M. Erdmanis, L. Karvonen, A. Säynätjoki, X. Tu, T. Y. Liow, Q. G. Lo, O. Vänskä, S. Honkanen, and I. Tittonen, “Towards broad-bandwidth polarization-independent nanostrip waveguide ring resonators,” Opt. Express 21, 9974–9981 (2013).
[Crossref] [PubMed]

M. Erdmanis, L. Karvonen, M. R. Saleem, M. Ruoho, V. Pale, A. Tervonen, S. Honkanen, and I. Tittonen, “Ald-assisted multiorder dispersion engineering of nanophotonic strip waveguides,” J. Lightwave Technol. 30, 2488–2493 (2012).
[Crossref]

L. Karvonen, A. Säynätjoki, Y. Chen, O. Tu, T.-Y. Liow, J. Hiltunen, M. Hiltunen, G.-Q. Lo, and S. Honkanen, “Low-loss multiple-slot waveguides fabricated by optical lithography and atomic layer deposition,” IEEE Photonics Technol. Lett. 24, 2074–2076 (2012).
[Crossref]

A. Säynätjoki, L. Karvonen, T. Alasaarela, X. Tu, T. Y. Liow, M. Hiltunen, A. Tervonen, G. Q. Lo, and S. Honkanen, “Low-loss silicon slot waveguides and couplers fabricated with optical lithography and atomic layer deposition,” Opt. Express 19, 26275–26282 (2011).
[Crossref]

T. Alasaarela, D. Korn, L. Alloatti, A. Säynätjoki, A. Tervonen, R. Palmer, J. Leuthold, W. Freude, and S. Honkanen, “Reduced propagation loss in silicon strip and slot waveguides coated by atomic layer deposition,” Opt. Express 19, 11529–11538 (2011).
[Crossref] [PubMed]

Horie, K.

S. Morino, T. Yamashita, K. Horie, T. Wada, and H. Sasabe, “Third-order nonlinear optical properties of aromatic polyisoimides,” React. Funct. Polym. 44, 183–188 (2000).
[Crossref]

Hosseini, E. S.

E. Timurdogan, C. M. Sorace-Agaskar, J. Sun, E. S. Hosseini, A. Biberman, and M. R. Watts, “An ultra low power athermal silicon modulator,” Nat. Commun. 5, 4008 (2014).
[Crossref]

Huang, Y.

G. Testa, Y. Huang, L. Zeni, P. Sarro, and R. Bernini, “Liquid core ARROW waveguides by atomic layer deposition,” IEEE Photonics Technol. Lett. 22, 616–618 (2010).
[Crossref]

G. Testa, Y. Huang, P. M. Sarro, L. Zeni, and R. Bernini, “Integrated silicon optofluidic ring resonator,” Appl. Phys. Lett. 97, 131110 (2010).
[Crossref]

Ippen, E.

B. E. Little, J. Foresi, G. Steinmeyer, E. Thoen, S. Chu, H. Haus, E. Ippen, L. Kimerling, and W. Greene, “Ultra-compact Si-SiO2 microring resonator optical channel dropping filters,” IEEE Photonics Technol. Lett. 10, 549–551 (1998).
[Crossref]

Jacome, L.

Janz, S.

Jen, A.

Karvonen, L.

Kemell, M.

M. Leskelä, M. Kemell, K. Kukli, V. Pore, E. Santala, M. Ritala, and J. Lu, “Exploitation of atomic layer deposition for nanostructured materials,” Mater. Sci. Eng., C 27, 1504–1508 (2007).
[Crossref]

Khanna, A.

Kimerling, L.

B. E. Little, J. Foresi, G. Steinmeyer, E. Thoen, S. Chu, H. Haus, E. Ippen, L. Kimerling, and W. Greene, “Ultra-compact Si-SiO2 microring resonator optical channel dropping filters,” IEEE Photonics Technol. Lett. 10, 549–551 (1998).
[Crossref]

Kippenberg, T. J.

Koos, C.

L. Alloatti, R. Palmer, S. Diebold, K. P. Pahl, B. Chen, R. Dinu, M. Fournier, J.-M. Fedeli, T. Zwick, W. Freude, C. Koos, and J. Leuthold, “100 GHz silicon–organic hybrid modulator,” Light Sci. Appl. 3, e173 (2014).
[Crossref]

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3, 216–219 (2009).
[Crossref]

C. Koos, L. Jacome, C. Poulton, J. Leuthold, and W. Freude, “Nonlinear silicon-on-insulator waveguides for all-optical signal processing,” Opt. Express 15, 5976–5990 (2007).
[Crossref] [PubMed]

Korn, D.

Krauss, T. F.

Kukli, K.

M. Leskelä, M. Kemell, K. Kukli, V. Pore, E. Santala, M. Ritala, and J. Lu, “Exploitation of atomic layer deposition for nanostructured materials,” Mater. Sci. Eng., C 27, 1504–1508 (2007).
[Crossref]

K. Kukli, M. Ritala, and M. Leskelä, “Atomic layer epitaxy growth of tantalum oxide thin films from Ta(OC2H5)5 and H2O,” J. Electrochem. Soc. 142, 1670–1675 (1995).
[Crossref]

Kumar Selvaraja, S.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6, 47–73 (2012).
[Crossref]

Kurz, H.

Kwong, D. L.

Lagoudakis, P. G.

Lanzani, G.

J. Clark and G. Lanzani, “Organic photonics for communications,” Nat. Photonics 4, 438–446 (2010).
[Crossref]

Lawson, R.

Leskelä, M.

M. Leskelä, M. Kemell, K. Kukli, V. Pore, E. Santala, M. Ritala, and J. Lu, “Exploitation of atomic layer deposition for nanostructured materials,” Mater. Sci. Eng., C 27, 1504–1508 (2007).
[Crossref]

M. Leskelä and M. Ritala, “Atomic layer deposition (ALD): from precursors to thin film structures,” Thin Solid Films 409, 138–146 (2002).
[Crossref]

K. Kukli, M. Ritala, and M. Leskelä, “Atomic layer epitaxy growth of tantalum oxide thin films from Ta(OC2H5)5 and H2O,” J. Electrochem. Soc. 142, 1670–1675 (1995).
[Crossref]

Leuthold, J.

L. Alloatti, R. Palmer, S. Diebold, K. P. Pahl, B. Chen, R. Dinu, M. Fournier, J.-M. Fedeli, T. Zwick, W. Freude, C. Koos, and J. Leuthold, “100 GHz silicon–organic hybrid modulator,” Light Sci. Appl. 3, e173 (2014).
[Crossref]

T. Alasaarela, D. Korn, L. Alloatti, A. Säynätjoki, A. Tervonen, R. Palmer, J. Leuthold, W. Freude, and S. Honkanen, “Reduced propagation loss in silicon strip and slot waveguides coated by atomic layer deposition,” Opt. Express 19, 11529–11538 (2011).
[Crossref] [PubMed]

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3, 216–219 (2009).
[Crossref]

C. Koos, L. Jacome, C. Poulton, J. Leuthold, and W. Freude, “Nonlinear silicon-on-insulator waveguides for all-optical signal processing,” Opt. Express 15, 5976–5990 (2007).
[Crossref] [PubMed]

Li, C.

A. E.-J. Lim, J. Song, Q. Fang, C. Li, X. Tu, N. Duan, K. K. Chen, R. P.-C. Tern, and T.-Y. Liow, “Review of silicon photonics foundry efforts,” IEEE J. Sel. Top. Quantum Electron. 20, 405–416 (2014).
[Crossref]

Liao, Y.

Lim, A. E.-J.

A. E.-J. Lim, J. Song, Q. Fang, C. Li, X. Tu, N. Duan, K. K. Chen, R. P.-C. Tern, and T.-Y. Liow, “Review of silicon photonics foundry efforts,” IEEE J. Sel. Top. Quantum Electron. 20, 405–416 (2014).
[Crossref]

Ling, T.

Liow, T. Y.

Liow, T.-Y.

A. E.-J. Lim, J. Song, Q. Fang, C. Li, X. Tu, N. Duan, K. K. Chen, R. P.-C. Tern, and T.-Y. Liow, “Review of silicon photonics foundry efforts,” IEEE J. Sel. Top. Quantum Electron. 20, 405–416 (2014).
[Crossref]

L. Karvonen, A. Säynätjoki, Y. Chen, O. Tu, T.-Y. Liow, J. Hiltunen, M. Hiltunen, G.-Q. Lo, and S. Honkanen, “Low-loss multiple-slot waveguides fabricated by optical lithography and atomic layer deposition,” IEEE Photonics Technol. Lett. 24, 2074–2076 (2012).
[Crossref]

Lipsanen, H.

Lipson, M.

Little, B. E.

B. E. Little, J. Foresi, G. Steinmeyer, E. Thoen, S. Chu, H. Haus, E. Ippen, L. Kimerling, and W. Greene, “Ultra-compact Si-SiO2 microring resonator optical channel dropping filters,” IEEE Photonics Technol. Lett. 10, 549–551 (1998).
[Crossref]

Lo, G. Q.

Lo, G.-Q.

L. Karvonen, A. Säynätjoki, Y. Chen, O. Tu, T.-Y. Liow, J. Hiltunen, M. Hiltunen, G.-Q. Lo, and S. Honkanen, “Low-loss multiple-slot waveguides fabricated by optical lithography and atomic layer deposition,” IEEE Photonics Technol. Lett. 24, 2074–2076 (2012).
[Crossref]

Lo, Q. G.

Lu, J.

M. Leskelä, M. Kemell, K. Kukli, V. Pore, E. Santala, M. Ritala, and J. Lu, “Exploitation of atomic layer deposition for nanostructured materials,” Mater. Sci. Eng., C 27, 1504–1508 (2007).
[Crossref]

Manipatruni, S.

Manolatou, C.

Marris-Morini, D.

Martí, J.

Mashanovich, G.

G. T. Reed, G. Mashanovich, F. Gardes, and D. Thomson, “Silicon optical modulators,” Nat. Photonics 4, 518–526 (2010).
[Crossref]

McKinnon, W. R.

Michinobu, T.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3, 216–219 (2009).
[Crossref]

Molera, J. G.

T. Claes, J. G. Molera, K. De Vos, E. Schachtb, R. Baets, and P. Bienstman, “Label-free biosensing with a slot-waveguide-based ring resonator in silicon on insulator,” IEEE Photonics J. 1, 197–204 (2009).
[Crossref]

Morino, S.

S. Morino, T. Yamashita, K. Horie, T. Wada, and H. Sasabe, “Third-order nonlinear optical properties of aromatic polyisoimides,” React. Funct. Polym. 44, 183–188 (2000).
[Crossref]

Netti, M.

Niehusmann, J.

Niinistö, L.

M. Putkonen, J. Harjuoja, T. Sajavaara, and L. Niinistö, “Atomic layer deposition of polyimide thin films,” J. Mater. Chem. 17, 664–669 (2007).
[Crossref]

O’Faolain, L.

Pahl, K. P.

L. Alloatti, R. Palmer, S. Diebold, K. P. Pahl, B. Chen, R. Dinu, M. Fournier, J.-M. Fedeli, T. Zwick, W. Freude, C. Koos, and J. Leuthold, “100 GHz silicon–organic hybrid modulator,” Light Sci. Appl. 3, e173 (2014).
[Crossref]

Pale, V.

Palmer, R.

L. Alloatti, R. Palmer, S. Diebold, K. P. Pahl, B. Chen, R. Dinu, M. Fournier, J.-M. Fedeli, T. Zwick, W. Freude, C. Koos, and J. Leuthold, “100 GHz silicon–organic hybrid modulator,” Light Sci. Appl. 3, e173 (2014).
[Crossref]

T. Alasaarela, D. Korn, L. Alloatti, A. Säynätjoki, A. Tervonen, R. Palmer, J. Leuthold, W. Freude, and S. Honkanen, “Reduced propagation loss in silicon strip and slot waveguides coated by atomic layer deposition,” Opt. Express 19, 11529–11538 (2011).
[Crossref] [PubMed]

Perney, N.

Pore, V.

M. Leskelä, M. Kemell, K. Kukli, V. Pore, E. Santala, M. Ritala, and J. Lu, “Exploitation of atomic layer deposition for nanostructured materials,” Mater. Sci. Eng., C 27, 1504–1508 (2007).
[Crossref]

Post, E.

Poulton, C.

Pradhan, S.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435, 325–327 (2005).
[Crossref] [PubMed]

Putkonen, M.

M. Putkonen, J. Harjuoja, T. Sajavaara, and L. Niinistö, “Atomic layer deposition of polyimide thin films,” J. Mater. Chem. 17, 664–669 (2007).
[Crossref]

Puukilainen, E.

L. D. Salmi, E. Puukilainen, M. Vehkamäki, M. Heikkilä, and M. Ritala, “Atomic layer deposition of Ta2O5/polyimide nanolaminates,” Chem. Vap. Deposition 15, 221–226 (2009).
[Crossref]

Rasigade, G.

Reed, G. T.

Riemensberger, J.

Ritala, M.

L. D. Salmi, E. Puukilainen, M. Vehkamäki, M. Heikkilä, and M. Ritala, “Atomic layer deposition of Ta2O5/polyimide nanolaminates,” Chem. Vap. Deposition 15, 221–226 (2009).
[Crossref]

M. Leskelä, M. Kemell, K. Kukli, V. Pore, E. Santala, M. Ritala, and J. Lu, “Exploitation of atomic layer deposition for nanostructured materials,” Mater. Sci. Eng., C 27, 1504–1508 (2007).
[Crossref]

M. Leskelä and M. Ritala, “Atomic layer deposition (ALD): from precursors to thin film structures,” Thin Solid Films 409, 138–146 (2002).
[Crossref]

K. Kukli, M. Ritala, and M. Leskelä, “Atomic layer epitaxy growth of tantalum oxide thin films from Ta(OC2H5)5 and H2O,” J. Electrochem. Soc. 142, 1670–1675 (1995).
[Crossref]

Ruoho, M.

Sajavaara, T.

M. Putkonen, J. Harjuoja, T. Sajavaara, and L. Niinistö, “Atomic layer deposition of polyimide thin films,” J. Mater. Chem. 17, 664–669 (2007).
[Crossref]

Saleem, M. R.

Salmi, L. D.

L. D. Salmi, E. Puukilainen, M. Vehkamäki, M. Heikkilä, and M. Ritala, “Atomic layer deposition of Ta2O5/polyimide nanolaminates,” Chem. Vap. Deposition 15, 221–226 (2009).
[Crossref]

Sanchis, P.

Santala, E.

M. Leskelä, M. Kemell, K. Kukli, V. Pore, E. Santala, M. Ritala, and J. Lu, “Exploitation of atomic layer deposition for nanostructured materials,” Mater. Sci. Eng., C 27, 1504–1508 (2007).
[Crossref]

Sarro, P.

G. Testa, Y. Huang, L. Zeni, P. Sarro, and R. Bernini, “Liquid core ARROW waveguides by atomic layer deposition,” IEEE Photonics Technol. Lett. 22, 616–618 (2010).
[Crossref]

Sarro, P. M.

G. Testa, Y. Huang, P. M. Sarro, L. Zeni, and R. Bernini, “Integrated silicon optofluidic ring resonator,” Appl. Phys. Lett. 97, 131110 (2010).
[Crossref]

Sasabe, H.

S. Morino, T. Yamashita, K. Horie, T. Wada, and H. Sasabe, “Third-order nonlinear optical properties of aromatic polyisoimides,” React. Funct. Polym. 44, 183–188 (2000).
[Crossref]

Säynätjoki, A.

Schachtb, E.

T. Claes, J. G. Molera, K. De Vos, E. Schachtb, R. Baets, and P. Bienstman, “Label-free biosensing with a slot-waveguide-based ring resonator in silicon on insulator,” IEEE Photonics J. 1, 197–204 (2009).
[Crossref]

Scherer, A.

Schmid, J. H.

Schmidt, B.

Schmidt, B. S.

Sekaric, L.

F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1, 65–71 (2006).
[Crossref]

Selvaraja, S.

Shakya, J.

Sharping, J. E.

Song, J.

A. E.-J. Lim, J. Song, Q. Fang, C. Li, X. Tu, N. Duan, K. K. Chen, R. P.-C. Tern, and T.-Y. Liow, “Review of silicon photonics foundry efforts,” IEEE J. Sel. Top. Quantum Electron. 20, 405–416 (2014).
[Crossref]

J. Song, H. Zhao, Q. Fang, S. H. Tao, T. Y. Liow, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Effective thermo-optical enhanced cross-ring resonator MZI interleavers on SOI,” Opt. Express 16, 21476–21482 (2008).
[Crossref] [PubMed]

Sorace-Agaskar, C. M.

E. Timurdogan, C. M. Sorace-Agaskar, J. Sun, E. S. Hosseini, A. Biberman, and M. R. Watts, “An ultra low power athermal silicon modulator,” Nat. Commun. 5, 4008 (2014).
[Crossref]

Soref, R.

R. Soref, “The past, present, and future of silicon photonics,” IEEE. J. Sel. Top. Quantum Electron. 12, 1678–1687 (2006).
[Crossref]

Steinmeyer, G.

B. E. Little, J. Foresi, G. Steinmeyer, E. Thoen, S. Chu, H. Haus, E. Ippen, L. Kimerling, and W. Greene, “Ultra-compact Si-SiO2 microring resonator optical channel dropping filters,” IEEE Photonics Technol. Lett. 10, 549–551 (1998).
[Crossref]

Storey, C.

Subramanian, A. Z.

Sullivan, P.

Sun, J.

E. Timurdogan, C. M. Sorace-Agaskar, J. Sun, E. S. Hosseini, A. Biberman, and M. R. Watts, “An ultra low power athermal silicon modulator,” Nat. Commun. 5, 4008 (2014).
[Crossref]

Sun, Y.

Y. Sun and X. Fan, “Optical ring resonators for biochemical and chemical sensing,” Anal. Bioanal. Chem. 399, 205–211 (2011).
[Crossref]

Tai, C.-Y.

Tao, S. H.

Tern, R. P.-C.

A. E.-J. Lim, J. Song, Q. Fang, C. Li, X. Tu, N. Duan, K. K. Chen, R. P.-C. Tern, and T.-Y. Liow, “Review of silicon photonics foundry efforts,” IEEE J. Sel. Top. Quantum Electron. 20, 405–416 (2014).
[Crossref]

Tervonen, A.

Testa, G.

G. Testa, Y. Huang, P. M. Sarro, L. Zeni, and R. Bernini, “Integrated silicon optofluidic ring resonator,” Appl. Phys. Lett. 97, 131110 (2010).
[Crossref]

G. Testa, Y. Huang, L. Zeni, P. Sarro, and R. Bernini, “Liquid core ARROW waveguides by atomic layer deposition,” IEEE Photonics Technol. Lett. 22, 616–618 (2010).
[Crossref]

Thoen, E.

B. E. Little, J. Foresi, G. Steinmeyer, E. Thoen, S. Chu, H. Haus, E. Ippen, L. Kimerling, and W. Greene, “Ultra-compact Si-SiO2 microring resonator optical channel dropping filters,” IEEE Photonics Technol. Lett. 10, 549–551 (1998).
[Crossref]

Thomson, D.

G. T. Reed, G. Mashanovich, F. Gardes, and D. Thomson, “Silicon optical modulators,” Nat. Photonics 4, 518–526 (2010).
[Crossref]

Thourhout, D. V.

Timurdogan, E.

E. Timurdogan, C. M. Sorace-Agaskar, J. Sun, E. S. Hosseini, A. Biberman, and M. R. Watts, “An ultra low power athermal silicon modulator,” Nat. Commun. 5, 4008 (2014).
[Crossref]

Tittonen, I.

Tu, O.

L. Karvonen, A. Säynätjoki, Y. Chen, O. Tu, T.-Y. Liow, J. Hiltunen, M. Hiltunen, G.-Q. Lo, and S. Honkanen, “Low-loss multiple-slot waveguides fabricated by optical lithography and atomic layer deposition,” IEEE Photonics Technol. Lett. 24, 2074–2076 (2012).
[Crossref]

Tu, X.

Turner, A. C.

Vallaitis, T.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3, 216–219 (2009).
[Crossref]

Van Thourhout, D.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6, 47–73 (2012).
[Crossref]

Van Vaerenbergh, T.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6, 47–73 (2012).
[Crossref]

Vänskä, O.

Vehkamäki, M.

L. D. Salmi, E. Puukilainen, M. Vehkamäki, M. Heikkilä, and M. Ritala, “Atomic layer deposition of Ta2O5/polyimide nanolaminates,” Chem. Vap. Deposition 15, 221–226 (2009).
[Crossref]

Verheyen, P.

Vivien, L.

Vlasov, Y.

F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1, 65–71 (2006).
[Crossref]

Vörckel, A.

Vorreau, P.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3, 216–219 (2009).
[Crossref]

Wada, T.

S. Morino, T. Yamashita, K. Horie, T. Wada, and H. Sasabe, “Third-order nonlinear optical properties of aromatic polyisoimides,” React. Funct. Polym. 44, 183–188 (2000).
[Crossref]

Wahlbrink, T.

Waldron, P.

Wang, G.

Wang, J.

Watts, M. R.

E. Timurdogan, C. M. Sorace-Agaskar, J. Sun, E. S. Hosseini, A. Biberman, and M. R. Watts, “An ultra low power athermal silicon modulator,” Nat. Commun. 5, 4008 (2014).
[Crossref]

Wilkinson, J.

Willner, A. E.

Xia, F.

F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1, 65–71 (2006).
[Crossref]

Xiao-Li, Y.

Xu, D. X.

Xu, Q.

Yamashita, T.

S. Morino, T. Yamashita, K. Horie, T. Wada, and H. Sasabe, “Third-order nonlinear optical properties of aromatic polyisoimides,” React. Funct. Polym. 44, 183–188 (2000).
[Crossref]

Yu, M. B.

Yue, Y.

Zeni, L.

G. Testa, Y. Huang, P. M. Sarro, L. Zeni, and R. Bernini, “Integrated silicon optofluidic ring resonator,” Appl. Phys. Lett. 97, 131110 (2010).
[Crossref]

G. Testa, Y. Huang, L. Zeni, P. Sarro, and R. Bernini, “Liquid core ARROW waveguides by atomic layer deposition,” IEEE Photonics Technol. Lett. 22, 616–618 (2010).
[Crossref]

Zhang, L.

Zhao, H.

Zwick, T.

L. Alloatti, R. Palmer, S. Diebold, K. P. Pahl, B. Chen, R. Dinu, M. Fournier, J.-M. Fedeli, T. Zwick, W. Freude, C. Koos, and J. Leuthold, “100 GHz silicon–organic hybrid modulator,” Light Sci. Appl. 3, e173 (2014).
[Crossref]

Anal. Bioanal. Chem. (1)

Y. Sun and X. Fan, “Optical ring resonators for biochemical and chemical sensing,” Anal. Bioanal. Chem. 399, 205–211 (2011).
[Crossref]

Appl. Phys. Lett. (1)

G. Testa, Y. Huang, P. M. Sarro, L. Zeni, and R. Bernini, “Integrated silicon optofluidic ring resonator,” Appl. Phys. Lett. 97, 131110 (2010).
[Crossref]

Chem. Vap. Deposition (1)

L. D. Salmi, E. Puukilainen, M. Vehkamäki, M. Heikkilä, and M. Ritala, “Atomic layer deposition of Ta2O5/polyimide nanolaminates,” Chem. Vap. Deposition 15, 221–226 (2009).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

A. E.-J. Lim, J. Song, Q. Fang, C. Li, X. Tu, N. Duan, K. K. Chen, R. P.-C. Tern, and T.-Y. Liow, “Review of silicon photonics foundry efforts,” IEEE J. Sel. Top. Quantum Electron. 20, 405–416 (2014).
[Crossref]

IEEE Photonics J. (1)

T. Claes, J. G. Molera, K. De Vos, E. Schachtb, R. Baets, and P. Bienstman, “Label-free biosensing with a slot-waveguide-based ring resonator in silicon on insulator,” IEEE Photonics J. 1, 197–204 (2009).
[Crossref]

IEEE Photonics Technol. Lett. (3)

L. Karvonen, A. Säynätjoki, Y. Chen, O. Tu, T.-Y. Liow, J. Hiltunen, M. Hiltunen, G.-Q. Lo, and S. Honkanen, “Low-loss multiple-slot waveguides fabricated by optical lithography and atomic layer deposition,” IEEE Photonics Technol. Lett. 24, 2074–2076 (2012).
[Crossref]

G. Testa, Y. Huang, L. Zeni, P. Sarro, and R. Bernini, “Liquid core ARROW waveguides by atomic layer deposition,” IEEE Photonics Technol. Lett. 22, 616–618 (2010).
[Crossref]

B. E. Little, J. Foresi, G. Steinmeyer, E. Thoen, S. Chu, H. Haus, E. Ippen, L. Kimerling, and W. Greene, “Ultra-compact Si-SiO2 microring resonator optical channel dropping filters,” IEEE Photonics Technol. Lett. 10, 549–551 (1998).
[Crossref]

IEEE. J. Sel. Top. Quantum Electron. (1)

R. Soref, “The past, present, and future of silicon photonics,” IEEE. J. Sel. Top. Quantum Electron. 12, 1678–1687 (2006).
[Crossref]

J. Electrochem. Soc. (1)

K. Kukli, M. Ritala, and M. Leskelä, “Atomic layer epitaxy growth of tantalum oxide thin films from Ta(OC2H5)5 and H2O,” J. Electrochem. Soc. 142, 1670–1675 (1995).
[Crossref]

J. Lightwave Technol. (1)

J. Mater. Chem. (1)

M. Putkonen, J. Harjuoja, T. Sajavaara, and L. Niinistö, “Atomic layer deposition of polyimide thin films,” J. Mater. Chem. 17, 664–669 (2007).
[Crossref]

Laser Photonics Rev. (1)

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6, 47–73 (2012).
[Crossref]

Light Sci. Appl. (1)

L. Alloatti, R. Palmer, S. Diebold, K. P. Pahl, B. Chen, R. Dinu, M. Fournier, J.-M. Fedeli, T. Zwick, W. Freude, C. Koos, and J. Leuthold, “100 GHz silicon–organic hybrid modulator,” Light Sci. Appl. 3, e173 (2014).
[Crossref]

Mater. Sci. Eng., C (1)

M. Leskelä, M. Kemell, K. Kukli, V. Pore, E. Santala, M. Ritala, and J. Lu, “Exploitation of atomic layer deposition for nanostructured materials,” Mater. Sci. Eng., C 27, 1504–1508 (2007).
[Crossref]

Nat. Commun. (1)

E. Timurdogan, C. M. Sorace-Agaskar, J. Sun, E. S. Hosseini, A. Biberman, and M. R. Watts, “An ultra low power athermal silicon modulator,” Nat. Commun. 5, 4008 (2014).
[Crossref]

Nat. Photonics (4)

F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1, 65–71 (2006).
[Crossref]

J. Clark and G. Lanzani, “Organic photonics for communications,” Nat. Photonics 4, 438–446 (2010).
[Crossref]

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3, 216–219 (2009).
[Crossref]

G. T. Reed, G. Mashanovich, F. Gardes, and D. Thomson, “Silicon optical modulators,” Nat. Photonics 4, 518–526 (2010).
[Crossref]

Nature (1)

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435, 325–327 (2005).
[Crossref] [PubMed]

Opt. Express (17)

F. Y. Gardes, A. Brimont, P. Sanchis, G. Rasigade, D. Marris-Morini, L. O’Faolain, F. Dong, J. M. Fedeli, P. Dumon, L. Vivien, T. F. Krauss, G. T. Reed, and J. Martí, “High-speed modulation of a compact silicon ring resonator based on a reverse-biased pn diode,” Opt. Express 17, 21986–21991 (2009).
[Crossref] [PubMed]

Q. Xu, S. Manipatruni, B. Schmidt, J. Shakya, and M. Lipson, “12.5 Gbit/s carrier-injection-based silicon micro-ring silicon modulators,” Opt. Express 15, 430–436 (2007).
[Crossref] [PubMed]

A. C. Turner, C. Manolatou, B. S. Schmidt, M. Lipson, M. A. Foster, J. E. Sharping, and A. L. Gaeta, “Tailored anomalous group-velocity dispersion in silicon channel waveguides,” Opt. Express 14, 4357–4362 (2006).
[Crossref] [PubMed]

L. Zhang, Y. Yue, Y. Xiao-Li, J. Wang, R. G. Beausoleil, and A. E. Willner, “Flat and low dispersion in highly nonlinear slot waveguides,” Opt. Express 18, 13187–13193 (2010).
[Crossref] [PubMed]

L. Zhang, Y. Yue, R. G. Beausoleil, and A. E. Willner, “Flattened dispersion in silicon slot waveguides,” Opt. Express 18, 20529–20534 (2010).
[Crossref] [PubMed]

M. Erdmanis, L. Karvonen, A. Säynätjoki, X. Tu, T. Y. Liow, Q. G. Lo, O. Vänskä, S. Honkanen, and I. Tittonen, “Towards broad-bandwidth polarization-independent nanostrip waveguide ring resonators,” Opt. Express 21, 9974–9981 (2013).
[Crossref] [PubMed]

J. Riemensberger, K. Hartinger, T. Herr, V. Brasch, R. Holzwarth, and T. J. Kippenberg, “Dispersion engineering of thick high-Q silicon nitride ring-resonators via atomic layer deposition,” Opt. Express 20, 27661–27669 (2012).
[Crossref] [PubMed]

C. Koos, L. Jacome, C. Poulton, J. Leuthold, and W. Freude, “Nonlinear silicon-on-insulator waveguides for all-optical signal processing,” Opt. Express 15, 5976–5990 (2007).
[Crossref] [PubMed]

T. Baehr-Jones, M. Hochberg, G. Wang, R. Lawson, Y. Liao, P. Sullivan, L. Dalton, A. Jen, and A. Scherer, “Optical modulation and detection in slotted silicon waveguides,” Opt. Express 13, 5216–5226 (2005).
[Crossref] [PubMed]

T. Alasaarela, D. Korn, L. Alloatti, A. Säynätjoki, A. Tervonen, R. Palmer, J. Leuthold, W. Freude, and S. Honkanen, “Reduced propagation loss in silicon strip and slot waveguides coated by atomic layer deposition,” Opt. Express 19, 11529–11538 (2011).
[Crossref] [PubMed]

A. Khanna, A. Z. Subramanian, M. Häyrinen, S. Selvaraja, P. Verheyen, D. V. Thourhout, S. Honkanen, H. Lipsanen, and R. Baets, “Impact of ALD grown passivation layers on silicon nitride based integrated optic devices for very-near-infrared wavelengths,” Opt. Express 22, 5684–5692 (2014).
[Crossref] [PubMed]

A. Säynätjoki, L. Karvonen, T. Alasaarela, X. Tu, T. Y. Liow, M. Hiltunen, A. Tervonen, G. Q. Lo, and S. Honkanen, “Low-loss silicon slot waveguides and couplers fabricated with optical lithography and atomic layer deposition,” Opt. Express 19, 26275–26282 (2011).
[Crossref]

W. R. McKinnon, D. X. Xu, C. Storey, E. Post, A. Densmore, A. Delâge, P. Waldron, J. H. Schmid, and S. Janz, “Extracting coupling and loss coefficients from a ring resonator,” Opt. Express 17, 18971–18982 (2009).
[Crossref]

T. Ling, S.-L. Chen, and L. J. Guo, “Fabrication and characterization of High Q polymer micro-ring resonator and its application as a sensitive ultrasonic detector,” Opt. Express 19, 861–869 (2011).
[Crossref] [PubMed]

C.-Y. Tai, J. Wilkinson, N. Perney, M. Netti, F. Cattaneo, C. Finlayson, and J. Baumberg, “Determination of nonlinear refractive index in a Ta2O5 rib waveguide using self-phase modulation,” Opt. Express 12, 5110–5116 (2004).
[Crossref] [PubMed]

R. Y. Chen, M. D. B. Charlton, and P. G. Lagoudakis, “Broadband stimulated four-wave parametric conversion on a tantalum pentoxide photonic chip,” Opt. Express 19, 26343–26352 (2011).
[Crossref]

J. Song, H. Zhao, Q. Fang, S. H. Tao, T. Y. Liow, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Effective thermo-optical enhanced cross-ring resonator MZI interleavers on SOI,” Opt. Express 16, 21476–21482 (2008).
[Crossref] [PubMed]

Opt. Lett. (2)

React. Funct. Polym. (1)

S. Morino, T. Yamashita, K. Horie, T. Wada, and H. Sasabe, “Third-order nonlinear optical properties of aromatic polyisoimides,” React. Funct. Polym. 44, 183–188 (2000).
[Crossref]

Thin Solid Films (1)

M. Leskelä and M. Ritala, “Atomic layer deposition (ALD): from precursors to thin film structures,” Thin Solid Films 409, 138–146 (2002).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 SEM images of a fabricated device. a)–c) before the ALD and d) after ALD of Ta2O5/PI nanolaminate. e) A schematic illustration of the nanolaminate structure. Inset in d): enhanced image of the nanolaminate film. a)–c) are taken in a tilted angle.
Fig. 2
Fig. 2 Simulated mode profiles of the TE (a) and TM (b) modes at 1550 nm. c) and d) normalized x and y- components of the electric field along dashed lines in a) and b). Slot mode characteristics can also be seen in the electric field distribution of the TM mode. Waveguide dimension used in the simulation are wr = 195 nm and ws = 240 nm
Fig. 3
Fig. 3 Electric field distribution with different slot materials. The graphs are normalized so that the maximum electric field intensity in the slot with polyimide film equals one.
Fig. 4
Fig. 4 Measured transmission spectra of an ALD-nanolaminate ring resonator with waveguide dimensions wr = 195 nm, ws = 220 nm and g= 500 nm. a) TE polarization. b) Enlarged view of the resonance at 1528.7 nm yielding a Q-factor of 6 709. c) TM polarization d) Enlarged view of the resonance close to 1544 nm yielding a Q-factor of 4 082. Blue: through port transmission, red: drop port transmission
Fig. 5
Fig. 5 Measured and simulated values of the group index of a ring resonator with dimensions wr = 195 nm, ws = 220 nm and g= 500 nm.
Fig. 6
Fig. 6 a) Measured transmission spectrum around the resonance at 1550 nm and corresponding dip obtained by fitting the measured data to Eq. (4). The parameters obtained from the fit are a = 0.9251 and r = 0.6813. Calculated propagation loss and intrinsic quality factor for the resonance in a) are α = 21.5 dB/cm, Qi=13 509, respectively. b) Measured transmission spectrum (quasi-TE mode) of all-pass ring resonator with dimensions: wr = 195 nm and ws = 240. c) Coefficients a and r for ring resonators with gaps of 200, 300 and 400 nm. d) Histogram of calculated propagation losses from all resonances in the spectrum displayed in b).

Tables (2)

Tables Icon

Table 1 Simulated effective indices of quasi-TE modes with different slot materials.

Tables Icon

Table 2 Comparison of measured and simulated values of FSR (at 1550 nm) and typical measured quality factors (Q) and extinction ratios (ER).

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

FSR = λ 2 n g 2 π R ,
n g = n eff λ 0 d n eff d λ .
Q = λ res FWHM ,
T = a 2 2 a r cos ϕ + r 2 1 2 a r cos ϕ + ( r a ) 2 ,
α = 2 × ln a 2 π R × 10 × log e = 2 × 10 × log 10 a 2 π R [ dB / cm ] .
Q i = 4 π 2 R n eff | 2 ln a | λ 0 .

Metrics