Abstract

The effects of femtosecond laser ablation, with 115 fs pulses at 1040 nm wavelength and 57 MHz repetition-rate, on the physical and chemical properties of polylactide (PLA) were studied in air and in water. The surface of the PLA sample ablated by high-repetition-rate femtosecond laser was analysed using field emission scanning electron microscopy, infrared spectroscopy, raman spectroscopy, as well as X-ray photoelectron spectroscopy. Compared with the experiments in the air at ambient temperature, melting resolidification was negligible for the experiments conducted under water. Neither in air nor under water did oxidation and crystallization process take place in the laser ablated surface. In addition, the intensity of some oxygen related peaks increased for water experiments, probably due to the hydrolysis. Meantime, the chemical shift to higher energies appeared in C1s XPS spectrum of laser processing in water. Interestingly, a large amount of defects were observed after laser processing in air, while no significant change was shown under water experiments. This indicates that thermal and mechanical effects by high-repetition-rate femtosecond laser ablation in water are quite limited, which could be even ignored.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Superior local conductivity in self-organized nanodots on indium-tin-oxide films induced by femtosecond laser pulses

Chih Wang, Hsuan-I Wang, Wei-Tsung Tang, Chih-Wei Luo, Takayoshi Kobayashi, and Jihperng Leu
Opt. Express 19(24) 24286-24297 (2011)

Femtosecond laser induced periodic surface structure on poly-L-lactic acid

Shuhei Yada and Mitsuhiro Terakawa
Opt. Express 23(5) 5694-5703 (2015)

References

  • View by:
  • |
  • |
  • |

  1. W. Jia, Y. Luo, Y. Song, B. Liu, M. Hu, L. Chai, and C. Wang, “Laser micromachining of polymer,” Nanotech. Prec. Eng. 13, 205–210 (2015).
  2. P. Slepička, I. Michaljaničová, P. Sajdl, P. Fitl, and V. Švorčík, “Surface ablation of PLLA induced by KrF excimer laser,” Appl. Surf. Sci. 283, 438–444 (2013).
    [Crossref]
  3. P. Rytlewski, W. Mróz, M. Żenkiewicz, J. Czwartos, and B. Budner, “Laser induced surface modification of polylactide,” J. Mater. Process. Technol. 212(8), 1700–1704 (2012).
    [Crossref]
  4. B. Stępak, A. J. Antończak, K. Szustakiewicz, P. E. Kozioł, and K. M. Abramski, “Degradation of poly(L-lactide) under KrF excimer laser treatment,” Polym. Degrad. Stabil. 110, 156–164 (2014).
    [Crossref]
  5. A. J. Antończak, B. D. Stępak, K. Szustakiewicz, M. R. Wójcik, and K. M. Abramski, “Degradation of poly(L-lactide) under CO2 laser treatment above the ablation threshold,” Polym. Degrad. Stabil. 109, 97–105 (2014).
    [Crossref]
  6. B. Stępak, A. J. Antończak, M. Bartkowiak-Jowsa, J. Filipiak, C. Pezowicz, and K. M. Abramski, “Fabrication of a polymer-based biodegradable stent using a CO2 laser,” Arch. Civ. Mech. Eng. 14(2), 317–326 (2014).
    [Crossref]
  7. C. Dowding and J. Lawrence, “Effects of closed immersion filtered water flow velocity on the ablation threshold of bisphenol A polycarbonate during excimer laser machining,” Appl. Surf. Sci. 256(12), 3705–3713 (2010).
    [Crossref]
  8. R. Mariella, A. Rubenchik, M. Norton, and G. Donohue, “Laser comminution of submerged samples,” J. Appl. Phys. 114(1), 014904 (2013).
    [Crossref]
  9. I. Elaboudi, S. Lazare, C. Belin, D. Talaga, and C. Labrugère, “Underwater excimer laser ablation of polymers,” Appl. Phys., A Mater. Sci. Process. 92(4), 743–748 (2008).
    [Crossref]
  10. T.-C. Chang and P. A. Molian, “Excimer pulsed laser ablation of polymers in air and liquids for micromachining applications,” J. Manuf. Process. 1(1), 1–17 (1999).
    [Crossref]
  11. R. Fabbro, J. Fournier, P. Ballard, D. Devaux, and J. Virmont, “Physical study of laser produced plasma in confined geometry,” J. Appl. Phys. 68(2), 775–784 (1990).
    [Crossref]
  12. S. Singh and S. Sharma, “Micromachining of polyurethane (PU) polymer using a KrFexcimerlaser (248 nm),” Appl. Surf. Sci. 321, 289–301 (2014).
    [Crossref]
  13. M. Malinauskas, S. Rekštytė, L. Lukoševičius, S. Butkus, E. Balčiunas, M. Pečiukaitytė, D. Baltriukienė, V. Bukelskienė, A. Butkevičius, P. Kucevičius, V. Rutkūnas, and S. Juodkazis, “3D microporous scaffolds manufactured via combination of fused filament fabrication and direct laser writing ablation,” Micromachines (Basel) 5(4), 839–858 (2014).
    [Crossref]
  14. M. Malinauskas, L. Lukoševičius, S. Butkus, and D. Paipulas, “Femtosecond pulse light filament-assisted microfabrication of biodegradable polylactic acid (PLA) material,” J. Laser Micronanoeng. 10(2), 222–228 (2015).
    [Crossref]
  15. R. Buividas, S. Rekštytė, M. Malinauskas, and S. Juodkazis, “Nano-groove and 3D fabrication by controlled avalanche using femtosecond laser pulses,” Opt. Mater. Express 3(10), 1674–1686 (2013).
    [Crossref]
  16. A. Daskalova, C. S. R. Nathala, I. Bliznakova, E. Stoyanova, A. Zhelyazkova, T. Ganz, S. Lueftenegger, and W. Husinsky, “Controlling the porosity of collagen, gelatin and elastin biomaterials by ultrashort laser pulses,” Appl. Surf. Sci. 292, 367–377 (2014).
  17. S. Yada and M. Terakawa, “Femtosecond laser induced periodic surface structure on poly-L-lactic acid,” Opt. Express 23(5), 5694–5703 (2015).
    [Crossref] [PubMed]
  18. I. Martín-Fabiani, E. Rebollar, S. Pérez, D. R. Rueda, M. C. García-Gutiérrez, A. Szymczyk, Z. Roslaniec, M. Castillejo, and T. A. Ezquerra, “Laser-induced periodic surface structures nanofabricated on poly(trimethylene terephthalate) spin-coated films,” Langmuir 28(20), 7938–7945 (2012).
    [Crossref] [PubMed]
  19. S. Eaton, H. Zhang, P. Herman, F. Yoshino, L. Shah, J. Bovatsek, and A. Arai, “Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate,” Opt. Express 13(12), 4708–4716 (2005).
    [Crossref] [PubMed]
  20. S. M. Eaton, H. Zhang, M. L. Ng, J. Li, W. J. Chen, S. Ho, and P. R. Herman, “Transition from thermal diffusion to heat accumulation in high repetition rate femtosecond laser writing of buried optical waveguides,” Opt. Express 16(13), 9443–9458 (2008).
    [Crossref] [PubMed]
  21. H.-S. Kim and H.-J. Kim, “Enhanced hydrolysis resistance of biodegradable polymers and bio-composites,” Polym. Degrad. Stabil. 93(8), 1544–1553 (2008).
    [Crossref]
  22. K. L. Choo, Y. Ogawa, G. Kanbargi, V. Otra, L. M. Raff, and R. Komanduri, “Micromachining of silicon by short-pulse laser ablation in air and under water,” Mater. Sci. Eng. A 372(1-2), 145–162 (2004).
    [Crossref]
  23. V. N. Tokarev, S. Lazare, C. Belin, and D. Debarre, “Viscous flow and ablation pressure phenomena in nanosecond UV laser irradiation of polymers,” Appl. Phys., A Mater. Sci. Process. 79(4-6), 717–720 (2004).
    [Crossref]
  24. N. Vasanthan and O. Ly, “Effect of microstructure on hydrolytic degradation studies of poly (L-lactic acid) by FTIR spectroscopy and differential scanning calorimetry,” Polym. Degrad. Stabil. 94(9), 1364–1372 (2009).
    [Crossref]
  25. D. Garlotta, “A literature review of poly(lactic acid),” J. Polym. Environ. 9(2), 63–84 (2001).
    [Crossref]
  26. J. Morikawa, A. Orie, T. Hashimoto, and S. Juodkazis, “Thermal diffusivity in femtosecond-laser-structured micro-volumes of polymers,” Appl. Phys., A Mater. Sci. Process. 98(3), 551–556 (2010).
    [Crossref]
  27. G. Kister, G. Cassanas, and M. Vert, “Effects of morphology conformation and configuration on the IR and Raman spectra of various poly(lactic acid)s,” Polym. 39(2), 267–273 (1998).
    [Crossref]
  28. P. Taddei, A. Tinti, and G. Fini, “Vibrational spectroscopy of polymeric biomaterials,” J. Raman Spectrosc. 32(8), 619–629 (2001).
    [Crossref]
  29. D. Qin and R. T. Kean, “Crystallinity determination of polylactide by FT-Raman spectrometry,” Appl. Spectrosc. 52(4), 488–495 (1998).
    [Crossref]
  30. H. Y. Tan, E. Widjaja, F. Boey, and S. C. J. Loo, “Spectroscopy techniques for analyzing the hydrolysis of PLGA and PLLA,” J. Biomed. Mater. Res., Part B 91(1), 433–440 (2009).
    [Crossref] [PubMed]
  31. G. Polzonetti, M. V. Russo, A. Furlani, and G. Iucci, “Interaction of H2O, O2 and CO2 with the surface of polyphenylacetylene films: an XPS investigation,” Chem. Phys. Lett. 185(1–2), 105–110 (1991).
    [Crossref]
  32. C. Wochnowski, S. Metev, and G. Sepold, “UV–laser-assisted modification of the optical properties of polymethylmethacrylate,” Appl. Surf. Sci. 154–155, 706–711 (2000).
    [Crossref]
  33. C. Wochnowski, M. A. Shams Eldin, and S. Metev, “UV-laser-assisted degradation of poly(methylmethacrylate),” Polym. Degrad. Stabil. 89(2), 252–264 (2005).
    [Crossref]
  34. I. Elaboudi, S. Lazare, C. Belin, D. Talaga, and C. Labrugère, “Underwater excimer laser ablation of polymers,” Appl. Phys., A Mater. Sci. Process. 92(4), 743–748 (2008).
    [Crossref]

2015 (3)

W. Jia, Y. Luo, Y. Song, B. Liu, M. Hu, L. Chai, and C. Wang, “Laser micromachining of polymer,” Nanotech. Prec. Eng. 13, 205–210 (2015).

M. Malinauskas, L. Lukoševičius, S. Butkus, and D. Paipulas, “Femtosecond pulse light filament-assisted microfabrication of biodegradable polylactic acid (PLA) material,” J. Laser Micronanoeng. 10(2), 222–228 (2015).
[Crossref]

S. Yada and M. Terakawa, “Femtosecond laser induced periodic surface structure on poly-L-lactic acid,” Opt. Express 23(5), 5694–5703 (2015).
[Crossref] [PubMed]

2014 (6)

A. Daskalova, C. S. R. Nathala, I. Bliznakova, E. Stoyanova, A. Zhelyazkova, T. Ganz, S. Lueftenegger, and W. Husinsky, “Controlling the porosity of collagen, gelatin and elastin biomaterials by ultrashort laser pulses,” Appl. Surf. Sci. 292, 367–377 (2014).

S. Singh and S. Sharma, “Micromachining of polyurethane (PU) polymer using a KrFexcimerlaser (248 nm),” Appl. Surf. Sci. 321, 289–301 (2014).
[Crossref]

M. Malinauskas, S. Rekštytė, L. Lukoševičius, S. Butkus, E. Balčiunas, M. Pečiukaitytė, D. Baltriukienė, V. Bukelskienė, A. Butkevičius, P. Kucevičius, V. Rutkūnas, and S. Juodkazis, “3D microporous scaffolds manufactured via combination of fused filament fabrication and direct laser writing ablation,” Micromachines (Basel) 5(4), 839–858 (2014).
[Crossref]

B. Stępak, A. J. Antończak, K. Szustakiewicz, P. E. Kozioł, and K. M. Abramski, “Degradation of poly(L-lactide) under KrF excimer laser treatment,” Polym. Degrad. Stabil. 110, 156–164 (2014).
[Crossref]

A. J. Antończak, B. D. Stępak, K. Szustakiewicz, M. R. Wójcik, and K. M. Abramski, “Degradation of poly(L-lactide) under CO2 laser treatment above the ablation threshold,” Polym. Degrad. Stabil. 109, 97–105 (2014).
[Crossref]

B. Stępak, A. J. Antończak, M. Bartkowiak-Jowsa, J. Filipiak, C. Pezowicz, and K. M. Abramski, “Fabrication of a polymer-based biodegradable stent using a CO2 laser,” Arch. Civ. Mech. Eng. 14(2), 317–326 (2014).
[Crossref]

2013 (3)

R. Mariella, A. Rubenchik, M. Norton, and G. Donohue, “Laser comminution of submerged samples,” J. Appl. Phys. 114(1), 014904 (2013).
[Crossref]

P. Slepička, I. Michaljaničová, P. Sajdl, P. Fitl, and V. Švorčík, “Surface ablation of PLLA induced by KrF excimer laser,” Appl. Surf. Sci. 283, 438–444 (2013).
[Crossref]

R. Buividas, S. Rekštytė, M. Malinauskas, and S. Juodkazis, “Nano-groove and 3D fabrication by controlled avalanche using femtosecond laser pulses,” Opt. Mater. Express 3(10), 1674–1686 (2013).
[Crossref]

2012 (2)

I. Martín-Fabiani, E. Rebollar, S. Pérez, D. R. Rueda, M. C. García-Gutiérrez, A. Szymczyk, Z. Roslaniec, M. Castillejo, and T. A. Ezquerra, “Laser-induced periodic surface structures nanofabricated on poly(trimethylene terephthalate) spin-coated films,” Langmuir 28(20), 7938–7945 (2012).
[Crossref] [PubMed]

P. Rytlewski, W. Mróz, M. Żenkiewicz, J. Czwartos, and B. Budner, “Laser induced surface modification of polylactide,” J. Mater. Process. Technol. 212(8), 1700–1704 (2012).
[Crossref]

2010 (2)

C. Dowding and J. Lawrence, “Effects of closed immersion filtered water flow velocity on the ablation threshold of bisphenol A polycarbonate during excimer laser machining,” Appl. Surf. Sci. 256(12), 3705–3713 (2010).
[Crossref]

J. Morikawa, A. Orie, T. Hashimoto, and S. Juodkazis, “Thermal diffusivity in femtosecond-laser-structured micro-volumes of polymers,” Appl. Phys., A Mater. Sci. Process. 98(3), 551–556 (2010).
[Crossref]

2009 (2)

N. Vasanthan and O. Ly, “Effect of microstructure on hydrolytic degradation studies of poly (L-lactic acid) by FTIR spectroscopy and differential scanning calorimetry,” Polym. Degrad. Stabil. 94(9), 1364–1372 (2009).
[Crossref]

H. Y. Tan, E. Widjaja, F. Boey, and S. C. J. Loo, “Spectroscopy techniques for analyzing the hydrolysis of PLGA and PLLA,” J. Biomed. Mater. Res., Part B 91(1), 433–440 (2009).
[Crossref] [PubMed]

2008 (4)

S. M. Eaton, H. Zhang, M. L. Ng, J. Li, W. J. Chen, S. Ho, and P. R. Herman, “Transition from thermal diffusion to heat accumulation in high repetition rate femtosecond laser writing of buried optical waveguides,” Opt. Express 16(13), 9443–9458 (2008).
[Crossref] [PubMed]

I. Elaboudi, S. Lazare, C. Belin, D. Talaga, and C. Labrugère, “Underwater excimer laser ablation of polymers,” Appl. Phys., A Mater. Sci. Process. 92(4), 743–748 (2008).
[Crossref]

I. Elaboudi, S. Lazare, C. Belin, D. Talaga, and C. Labrugère, “Underwater excimer laser ablation of polymers,” Appl. Phys., A Mater. Sci. Process. 92(4), 743–748 (2008).
[Crossref]

H.-S. Kim and H.-J. Kim, “Enhanced hydrolysis resistance of biodegradable polymers and bio-composites,” Polym. Degrad. Stabil. 93(8), 1544–1553 (2008).
[Crossref]

2005 (2)

2004 (2)

K. L. Choo, Y. Ogawa, G. Kanbargi, V. Otra, L. M. Raff, and R. Komanduri, “Micromachining of silicon by short-pulse laser ablation in air and under water,” Mater. Sci. Eng. A 372(1-2), 145–162 (2004).
[Crossref]

V. N. Tokarev, S. Lazare, C. Belin, and D. Debarre, “Viscous flow and ablation pressure phenomena in nanosecond UV laser irradiation of polymers,” Appl. Phys., A Mater. Sci. Process. 79(4-6), 717–720 (2004).
[Crossref]

2001 (2)

P. Taddei, A. Tinti, and G. Fini, “Vibrational spectroscopy of polymeric biomaterials,” J. Raman Spectrosc. 32(8), 619–629 (2001).
[Crossref]

D. Garlotta, “A literature review of poly(lactic acid),” J. Polym. Environ. 9(2), 63–84 (2001).
[Crossref]

2000 (1)

C. Wochnowski, S. Metev, and G. Sepold, “UV–laser-assisted modification of the optical properties of polymethylmethacrylate,” Appl. Surf. Sci. 154–155, 706–711 (2000).
[Crossref]

1999 (1)

T.-C. Chang and P. A. Molian, “Excimer pulsed laser ablation of polymers in air and liquids for micromachining applications,” J. Manuf. Process. 1(1), 1–17 (1999).
[Crossref]

1998 (2)

D. Qin and R. T. Kean, “Crystallinity determination of polylactide by FT-Raman spectrometry,” Appl. Spectrosc. 52(4), 488–495 (1998).
[Crossref]

G. Kister, G. Cassanas, and M. Vert, “Effects of morphology conformation and configuration on the IR and Raman spectra of various poly(lactic acid)s,” Polym. 39(2), 267–273 (1998).
[Crossref]

1991 (1)

G. Polzonetti, M. V. Russo, A. Furlani, and G. Iucci, “Interaction of H2O, O2 and CO2 with the surface of polyphenylacetylene films: an XPS investigation,” Chem. Phys. Lett. 185(1–2), 105–110 (1991).
[Crossref]

1990 (1)

R. Fabbro, J. Fournier, P. Ballard, D. Devaux, and J. Virmont, “Physical study of laser produced plasma in confined geometry,” J. Appl. Phys. 68(2), 775–784 (1990).
[Crossref]

Abramski, K. M.

B. Stępak, A. J. Antończak, K. Szustakiewicz, P. E. Kozioł, and K. M. Abramski, “Degradation of poly(L-lactide) under KrF excimer laser treatment,” Polym. Degrad. Stabil. 110, 156–164 (2014).
[Crossref]

B. Stępak, A. J. Antończak, M. Bartkowiak-Jowsa, J. Filipiak, C. Pezowicz, and K. M. Abramski, “Fabrication of a polymer-based biodegradable stent using a CO2 laser,” Arch. Civ. Mech. Eng. 14(2), 317–326 (2014).
[Crossref]

A. J. Antończak, B. D. Stępak, K. Szustakiewicz, M. R. Wójcik, and K. M. Abramski, “Degradation of poly(L-lactide) under CO2 laser treatment above the ablation threshold,” Polym. Degrad. Stabil. 109, 97–105 (2014).
[Crossref]

Antonczak, A. J.

B. Stępak, A. J. Antończak, M. Bartkowiak-Jowsa, J. Filipiak, C. Pezowicz, and K. M. Abramski, “Fabrication of a polymer-based biodegradable stent using a CO2 laser,” Arch. Civ. Mech. Eng. 14(2), 317–326 (2014).
[Crossref]

A. J. Antończak, B. D. Stępak, K. Szustakiewicz, M. R. Wójcik, and K. M. Abramski, “Degradation of poly(L-lactide) under CO2 laser treatment above the ablation threshold,” Polym. Degrad. Stabil. 109, 97–105 (2014).
[Crossref]

B. Stępak, A. J. Antończak, K. Szustakiewicz, P. E. Kozioł, and K. M. Abramski, “Degradation of poly(L-lactide) under KrF excimer laser treatment,” Polym. Degrad. Stabil. 110, 156–164 (2014).
[Crossref]

Arai, A.

Balciunas, E.

M. Malinauskas, S. Rekštytė, L. Lukoševičius, S. Butkus, E. Balčiunas, M. Pečiukaitytė, D. Baltriukienė, V. Bukelskienė, A. Butkevičius, P. Kucevičius, V. Rutkūnas, and S. Juodkazis, “3D microporous scaffolds manufactured via combination of fused filament fabrication and direct laser writing ablation,” Micromachines (Basel) 5(4), 839–858 (2014).
[Crossref]

Ballard, P.

R. Fabbro, J. Fournier, P. Ballard, D. Devaux, and J. Virmont, “Physical study of laser produced plasma in confined geometry,” J. Appl. Phys. 68(2), 775–784 (1990).
[Crossref]

Baltriukiene, D.

M. Malinauskas, S. Rekštytė, L. Lukoševičius, S. Butkus, E. Balčiunas, M. Pečiukaitytė, D. Baltriukienė, V. Bukelskienė, A. Butkevičius, P. Kucevičius, V. Rutkūnas, and S. Juodkazis, “3D microporous scaffolds manufactured via combination of fused filament fabrication and direct laser writing ablation,” Micromachines (Basel) 5(4), 839–858 (2014).
[Crossref]

Bartkowiak-Jowsa, M.

B. Stępak, A. J. Antończak, M. Bartkowiak-Jowsa, J. Filipiak, C. Pezowicz, and K. M. Abramski, “Fabrication of a polymer-based biodegradable stent using a CO2 laser,” Arch. Civ. Mech. Eng. 14(2), 317–326 (2014).
[Crossref]

Belin, C.

I. Elaboudi, S. Lazare, C. Belin, D. Talaga, and C. Labrugère, “Underwater excimer laser ablation of polymers,” Appl. Phys., A Mater. Sci. Process. 92(4), 743–748 (2008).
[Crossref]

I. Elaboudi, S. Lazare, C. Belin, D. Talaga, and C. Labrugère, “Underwater excimer laser ablation of polymers,” Appl. Phys., A Mater. Sci. Process. 92(4), 743–748 (2008).
[Crossref]

V. N. Tokarev, S. Lazare, C. Belin, and D. Debarre, “Viscous flow and ablation pressure phenomena in nanosecond UV laser irradiation of polymers,” Appl. Phys., A Mater. Sci. Process. 79(4-6), 717–720 (2004).
[Crossref]

Bliznakova, I.

A. Daskalova, C. S. R. Nathala, I. Bliznakova, E. Stoyanova, A. Zhelyazkova, T. Ganz, S. Lueftenegger, and W. Husinsky, “Controlling the porosity of collagen, gelatin and elastin biomaterials by ultrashort laser pulses,” Appl. Surf. Sci. 292, 367–377 (2014).

Boey, F.

H. Y. Tan, E. Widjaja, F. Boey, and S. C. J. Loo, “Spectroscopy techniques for analyzing the hydrolysis of PLGA and PLLA,” J. Biomed. Mater. Res., Part B 91(1), 433–440 (2009).
[Crossref] [PubMed]

Bovatsek, J.

Budner, B.

P. Rytlewski, W. Mróz, M. Żenkiewicz, J. Czwartos, and B. Budner, “Laser induced surface modification of polylactide,” J. Mater. Process. Technol. 212(8), 1700–1704 (2012).
[Crossref]

Buividas, R.

Bukelskiene, V.

M. Malinauskas, S. Rekštytė, L. Lukoševičius, S. Butkus, E. Balčiunas, M. Pečiukaitytė, D. Baltriukienė, V. Bukelskienė, A. Butkevičius, P. Kucevičius, V. Rutkūnas, and S. Juodkazis, “3D microporous scaffolds manufactured via combination of fused filament fabrication and direct laser writing ablation,” Micromachines (Basel) 5(4), 839–858 (2014).
[Crossref]

Butkevicius, A.

M. Malinauskas, S. Rekštytė, L. Lukoševičius, S. Butkus, E. Balčiunas, M. Pečiukaitytė, D. Baltriukienė, V. Bukelskienė, A. Butkevičius, P. Kucevičius, V. Rutkūnas, and S. Juodkazis, “3D microporous scaffolds manufactured via combination of fused filament fabrication and direct laser writing ablation,” Micromachines (Basel) 5(4), 839–858 (2014).
[Crossref]

Butkus, S.

M. Malinauskas, L. Lukoševičius, S. Butkus, and D. Paipulas, “Femtosecond pulse light filament-assisted microfabrication of biodegradable polylactic acid (PLA) material,” J. Laser Micronanoeng. 10(2), 222–228 (2015).
[Crossref]

M. Malinauskas, S. Rekštytė, L. Lukoševičius, S. Butkus, E. Balčiunas, M. Pečiukaitytė, D. Baltriukienė, V. Bukelskienė, A. Butkevičius, P. Kucevičius, V. Rutkūnas, and S. Juodkazis, “3D microporous scaffolds manufactured via combination of fused filament fabrication and direct laser writing ablation,” Micromachines (Basel) 5(4), 839–858 (2014).
[Crossref]

Cassanas, G.

G. Kister, G. Cassanas, and M. Vert, “Effects of morphology conformation and configuration on the IR and Raman spectra of various poly(lactic acid)s,” Polym. 39(2), 267–273 (1998).
[Crossref]

Castillejo, M.

I. Martín-Fabiani, E. Rebollar, S. Pérez, D. R. Rueda, M. C. García-Gutiérrez, A. Szymczyk, Z. Roslaniec, M. Castillejo, and T. A. Ezquerra, “Laser-induced periodic surface structures nanofabricated on poly(trimethylene terephthalate) spin-coated films,” Langmuir 28(20), 7938–7945 (2012).
[Crossref] [PubMed]

Chai, L.

W. Jia, Y. Luo, Y. Song, B. Liu, M. Hu, L. Chai, and C. Wang, “Laser micromachining of polymer,” Nanotech. Prec. Eng. 13, 205–210 (2015).

Chang, T.-C.

T.-C. Chang and P. A. Molian, “Excimer pulsed laser ablation of polymers in air and liquids for micromachining applications,” J. Manuf. Process. 1(1), 1–17 (1999).
[Crossref]

Chen, W. J.

Choo, K. L.

K. L. Choo, Y. Ogawa, G. Kanbargi, V. Otra, L. M. Raff, and R. Komanduri, “Micromachining of silicon by short-pulse laser ablation in air and under water,” Mater. Sci. Eng. A 372(1-2), 145–162 (2004).
[Crossref]

Czwartos, J.

P. Rytlewski, W. Mróz, M. Żenkiewicz, J. Czwartos, and B. Budner, “Laser induced surface modification of polylactide,” J. Mater. Process. Technol. 212(8), 1700–1704 (2012).
[Crossref]

Daskalova, A.

A. Daskalova, C. S. R. Nathala, I. Bliznakova, E. Stoyanova, A. Zhelyazkova, T. Ganz, S. Lueftenegger, and W. Husinsky, “Controlling the porosity of collagen, gelatin and elastin biomaterials by ultrashort laser pulses,” Appl. Surf. Sci. 292, 367–377 (2014).

Debarre, D.

V. N. Tokarev, S. Lazare, C. Belin, and D. Debarre, “Viscous flow and ablation pressure phenomena in nanosecond UV laser irradiation of polymers,” Appl. Phys., A Mater. Sci. Process. 79(4-6), 717–720 (2004).
[Crossref]

Devaux, D.

R. Fabbro, J. Fournier, P. Ballard, D. Devaux, and J. Virmont, “Physical study of laser produced plasma in confined geometry,” J. Appl. Phys. 68(2), 775–784 (1990).
[Crossref]

Donohue, G.

R. Mariella, A. Rubenchik, M. Norton, and G. Donohue, “Laser comminution of submerged samples,” J. Appl. Phys. 114(1), 014904 (2013).
[Crossref]

Dowding, C.

C. Dowding and J. Lawrence, “Effects of closed immersion filtered water flow velocity on the ablation threshold of bisphenol A polycarbonate during excimer laser machining,” Appl. Surf. Sci. 256(12), 3705–3713 (2010).
[Crossref]

Eaton, S.

Eaton, S. M.

Elaboudi, I.

I. Elaboudi, S. Lazare, C. Belin, D. Talaga, and C. Labrugère, “Underwater excimer laser ablation of polymers,” Appl. Phys., A Mater. Sci. Process. 92(4), 743–748 (2008).
[Crossref]

I. Elaboudi, S. Lazare, C. Belin, D. Talaga, and C. Labrugère, “Underwater excimer laser ablation of polymers,” Appl. Phys., A Mater. Sci. Process. 92(4), 743–748 (2008).
[Crossref]

Ezquerra, T. A.

I. Martín-Fabiani, E. Rebollar, S. Pérez, D. R. Rueda, M. C. García-Gutiérrez, A. Szymczyk, Z. Roslaniec, M. Castillejo, and T. A. Ezquerra, “Laser-induced periodic surface structures nanofabricated on poly(trimethylene terephthalate) spin-coated films,” Langmuir 28(20), 7938–7945 (2012).
[Crossref] [PubMed]

Fabbro, R.

R. Fabbro, J. Fournier, P. Ballard, D. Devaux, and J. Virmont, “Physical study of laser produced plasma in confined geometry,” J. Appl. Phys. 68(2), 775–784 (1990).
[Crossref]

Filipiak, J.

B. Stępak, A. J. Antończak, M. Bartkowiak-Jowsa, J. Filipiak, C. Pezowicz, and K. M. Abramski, “Fabrication of a polymer-based biodegradable stent using a CO2 laser,” Arch. Civ. Mech. Eng. 14(2), 317–326 (2014).
[Crossref]

Fini, G.

P. Taddei, A. Tinti, and G. Fini, “Vibrational spectroscopy of polymeric biomaterials,” J. Raman Spectrosc. 32(8), 619–629 (2001).
[Crossref]

Fitl, P.

P. Slepička, I. Michaljaničová, P. Sajdl, P. Fitl, and V. Švorčík, “Surface ablation of PLLA induced by KrF excimer laser,” Appl. Surf. Sci. 283, 438–444 (2013).
[Crossref]

Fournier, J.

R. Fabbro, J. Fournier, P. Ballard, D. Devaux, and J. Virmont, “Physical study of laser produced plasma in confined geometry,” J. Appl. Phys. 68(2), 775–784 (1990).
[Crossref]

Furlani, A.

G. Polzonetti, M. V. Russo, A. Furlani, and G. Iucci, “Interaction of H2O, O2 and CO2 with the surface of polyphenylacetylene films: an XPS investigation,” Chem. Phys. Lett. 185(1–2), 105–110 (1991).
[Crossref]

Ganz, T.

A. Daskalova, C. S. R. Nathala, I. Bliznakova, E. Stoyanova, A. Zhelyazkova, T. Ganz, S. Lueftenegger, and W. Husinsky, “Controlling the porosity of collagen, gelatin and elastin biomaterials by ultrashort laser pulses,” Appl. Surf. Sci. 292, 367–377 (2014).

García-Gutiérrez, M. C.

I. Martín-Fabiani, E. Rebollar, S. Pérez, D. R. Rueda, M. C. García-Gutiérrez, A. Szymczyk, Z. Roslaniec, M. Castillejo, and T. A. Ezquerra, “Laser-induced periodic surface structures nanofabricated on poly(trimethylene terephthalate) spin-coated films,” Langmuir 28(20), 7938–7945 (2012).
[Crossref] [PubMed]

Garlotta, D.

D. Garlotta, “A literature review of poly(lactic acid),” J. Polym. Environ. 9(2), 63–84 (2001).
[Crossref]

Hashimoto, T.

J. Morikawa, A. Orie, T. Hashimoto, and S. Juodkazis, “Thermal diffusivity in femtosecond-laser-structured micro-volumes of polymers,” Appl. Phys., A Mater. Sci. Process. 98(3), 551–556 (2010).
[Crossref]

Herman, P.

Herman, P. R.

Ho, S.

Hu, M.

W. Jia, Y. Luo, Y. Song, B. Liu, M. Hu, L. Chai, and C. Wang, “Laser micromachining of polymer,” Nanotech. Prec. Eng. 13, 205–210 (2015).

Husinsky, W.

A. Daskalova, C. S. R. Nathala, I. Bliznakova, E. Stoyanova, A. Zhelyazkova, T. Ganz, S. Lueftenegger, and W. Husinsky, “Controlling the porosity of collagen, gelatin and elastin biomaterials by ultrashort laser pulses,” Appl. Surf. Sci. 292, 367–377 (2014).

Iucci, G.

G. Polzonetti, M. V. Russo, A. Furlani, and G. Iucci, “Interaction of H2O, O2 and CO2 with the surface of polyphenylacetylene films: an XPS investigation,” Chem. Phys. Lett. 185(1–2), 105–110 (1991).
[Crossref]

Jia, W.

W. Jia, Y. Luo, Y. Song, B. Liu, M. Hu, L. Chai, and C. Wang, “Laser micromachining of polymer,” Nanotech. Prec. Eng. 13, 205–210 (2015).

Juodkazis, S.

M. Malinauskas, S. Rekštytė, L. Lukoševičius, S. Butkus, E. Balčiunas, M. Pečiukaitytė, D. Baltriukienė, V. Bukelskienė, A. Butkevičius, P. Kucevičius, V. Rutkūnas, and S. Juodkazis, “3D microporous scaffolds manufactured via combination of fused filament fabrication and direct laser writing ablation,” Micromachines (Basel) 5(4), 839–858 (2014).
[Crossref]

R. Buividas, S. Rekštytė, M. Malinauskas, and S. Juodkazis, “Nano-groove and 3D fabrication by controlled avalanche using femtosecond laser pulses,” Opt. Mater. Express 3(10), 1674–1686 (2013).
[Crossref]

J. Morikawa, A. Orie, T. Hashimoto, and S. Juodkazis, “Thermal diffusivity in femtosecond-laser-structured micro-volumes of polymers,” Appl. Phys., A Mater. Sci. Process. 98(3), 551–556 (2010).
[Crossref]

Kanbargi, G.

K. L. Choo, Y. Ogawa, G. Kanbargi, V. Otra, L. M. Raff, and R. Komanduri, “Micromachining of silicon by short-pulse laser ablation in air and under water,” Mater. Sci. Eng. A 372(1-2), 145–162 (2004).
[Crossref]

Kean, R. T.

Kim, H.-J.

H.-S. Kim and H.-J. Kim, “Enhanced hydrolysis resistance of biodegradable polymers and bio-composites,” Polym. Degrad. Stabil. 93(8), 1544–1553 (2008).
[Crossref]

Kim, H.-S.

H.-S. Kim and H.-J. Kim, “Enhanced hydrolysis resistance of biodegradable polymers and bio-composites,” Polym. Degrad. Stabil. 93(8), 1544–1553 (2008).
[Crossref]

Kister, G.

G. Kister, G. Cassanas, and M. Vert, “Effects of morphology conformation and configuration on the IR and Raman spectra of various poly(lactic acid)s,” Polym. 39(2), 267–273 (1998).
[Crossref]

Komanduri, R.

K. L. Choo, Y. Ogawa, G. Kanbargi, V. Otra, L. M. Raff, and R. Komanduri, “Micromachining of silicon by short-pulse laser ablation in air and under water,” Mater. Sci. Eng. A 372(1-2), 145–162 (2004).
[Crossref]

Koziol, P. E.

B. Stępak, A. J. Antończak, K. Szustakiewicz, P. E. Kozioł, and K. M. Abramski, “Degradation of poly(L-lactide) under KrF excimer laser treatment,” Polym. Degrad. Stabil. 110, 156–164 (2014).
[Crossref]

Kucevicius, P.

M. Malinauskas, S. Rekštytė, L. Lukoševičius, S. Butkus, E. Balčiunas, M. Pečiukaitytė, D. Baltriukienė, V. Bukelskienė, A. Butkevičius, P. Kucevičius, V. Rutkūnas, and S. Juodkazis, “3D microporous scaffolds manufactured via combination of fused filament fabrication and direct laser writing ablation,” Micromachines (Basel) 5(4), 839–858 (2014).
[Crossref]

Labrugère, C.

I. Elaboudi, S. Lazare, C. Belin, D. Talaga, and C. Labrugère, “Underwater excimer laser ablation of polymers,” Appl. Phys., A Mater. Sci. Process. 92(4), 743–748 (2008).
[Crossref]

I. Elaboudi, S. Lazare, C. Belin, D. Talaga, and C. Labrugère, “Underwater excimer laser ablation of polymers,” Appl. Phys., A Mater. Sci. Process. 92(4), 743–748 (2008).
[Crossref]

Lawrence, J.

C. Dowding and J. Lawrence, “Effects of closed immersion filtered water flow velocity on the ablation threshold of bisphenol A polycarbonate during excimer laser machining,” Appl. Surf. Sci. 256(12), 3705–3713 (2010).
[Crossref]

Lazare, S.

I. Elaboudi, S. Lazare, C. Belin, D. Talaga, and C. Labrugère, “Underwater excimer laser ablation of polymers,” Appl. Phys., A Mater. Sci. Process. 92(4), 743–748 (2008).
[Crossref]

I. Elaboudi, S. Lazare, C. Belin, D. Talaga, and C. Labrugère, “Underwater excimer laser ablation of polymers,” Appl. Phys., A Mater. Sci. Process. 92(4), 743–748 (2008).
[Crossref]

V. N. Tokarev, S. Lazare, C. Belin, and D. Debarre, “Viscous flow and ablation pressure phenomena in nanosecond UV laser irradiation of polymers,” Appl. Phys., A Mater. Sci. Process. 79(4-6), 717–720 (2004).
[Crossref]

Li, J.

Liu, B.

W. Jia, Y. Luo, Y. Song, B. Liu, M. Hu, L. Chai, and C. Wang, “Laser micromachining of polymer,” Nanotech. Prec. Eng. 13, 205–210 (2015).

Loo, S. C. J.

H. Y. Tan, E. Widjaja, F. Boey, and S. C. J. Loo, “Spectroscopy techniques for analyzing the hydrolysis of PLGA and PLLA,” J. Biomed. Mater. Res., Part B 91(1), 433–440 (2009).
[Crossref] [PubMed]

Lueftenegger, S.

A. Daskalova, C. S. R. Nathala, I. Bliznakova, E. Stoyanova, A. Zhelyazkova, T. Ganz, S. Lueftenegger, and W. Husinsky, “Controlling the porosity of collagen, gelatin and elastin biomaterials by ultrashort laser pulses,” Appl. Surf. Sci. 292, 367–377 (2014).

Lukoševicius, L.

M. Malinauskas, L. Lukoševičius, S. Butkus, and D. Paipulas, “Femtosecond pulse light filament-assisted microfabrication of biodegradable polylactic acid (PLA) material,” J. Laser Micronanoeng. 10(2), 222–228 (2015).
[Crossref]

M. Malinauskas, S. Rekštytė, L. Lukoševičius, S. Butkus, E. Balčiunas, M. Pečiukaitytė, D. Baltriukienė, V. Bukelskienė, A. Butkevičius, P. Kucevičius, V. Rutkūnas, and S. Juodkazis, “3D microporous scaffolds manufactured via combination of fused filament fabrication and direct laser writing ablation,” Micromachines (Basel) 5(4), 839–858 (2014).
[Crossref]

Luo, Y.

W. Jia, Y. Luo, Y. Song, B. Liu, M. Hu, L. Chai, and C. Wang, “Laser micromachining of polymer,” Nanotech. Prec. Eng. 13, 205–210 (2015).

Ly, O.

N. Vasanthan and O. Ly, “Effect of microstructure on hydrolytic degradation studies of poly (L-lactic acid) by FTIR spectroscopy and differential scanning calorimetry,” Polym. Degrad. Stabil. 94(9), 1364–1372 (2009).
[Crossref]

Malinauskas, M.

M. Malinauskas, L. Lukoševičius, S. Butkus, and D. Paipulas, “Femtosecond pulse light filament-assisted microfabrication of biodegradable polylactic acid (PLA) material,” J. Laser Micronanoeng. 10(2), 222–228 (2015).
[Crossref]

M. Malinauskas, S. Rekštytė, L. Lukoševičius, S. Butkus, E. Balčiunas, M. Pečiukaitytė, D. Baltriukienė, V. Bukelskienė, A. Butkevičius, P. Kucevičius, V. Rutkūnas, and S. Juodkazis, “3D microporous scaffolds manufactured via combination of fused filament fabrication and direct laser writing ablation,” Micromachines (Basel) 5(4), 839–858 (2014).
[Crossref]

R. Buividas, S. Rekštytė, M. Malinauskas, and S. Juodkazis, “Nano-groove and 3D fabrication by controlled avalanche using femtosecond laser pulses,” Opt. Mater. Express 3(10), 1674–1686 (2013).
[Crossref]

Mariella, R.

R. Mariella, A. Rubenchik, M. Norton, and G. Donohue, “Laser comminution of submerged samples,” J. Appl. Phys. 114(1), 014904 (2013).
[Crossref]

Martín-Fabiani, I.

I. Martín-Fabiani, E. Rebollar, S. Pérez, D. R. Rueda, M. C. García-Gutiérrez, A. Szymczyk, Z. Roslaniec, M. Castillejo, and T. A. Ezquerra, “Laser-induced periodic surface structures nanofabricated on poly(trimethylene terephthalate) spin-coated films,” Langmuir 28(20), 7938–7945 (2012).
[Crossref] [PubMed]

Metev, S.

C. Wochnowski, M. A. Shams Eldin, and S. Metev, “UV-laser-assisted degradation of poly(methylmethacrylate),” Polym. Degrad. Stabil. 89(2), 252–264 (2005).
[Crossref]

C. Wochnowski, S. Metev, and G. Sepold, “UV–laser-assisted modification of the optical properties of polymethylmethacrylate,” Appl. Surf. Sci. 154–155, 706–711 (2000).
[Crossref]

Michaljanicová, I.

P. Slepička, I. Michaljaničová, P. Sajdl, P. Fitl, and V. Švorčík, “Surface ablation of PLLA induced by KrF excimer laser,” Appl. Surf. Sci. 283, 438–444 (2013).
[Crossref]

Molian, P. A.

T.-C. Chang and P. A. Molian, “Excimer pulsed laser ablation of polymers in air and liquids for micromachining applications,” J. Manuf. Process. 1(1), 1–17 (1999).
[Crossref]

Morikawa, J.

J. Morikawa, A. Orie, T. Hashimoto, and S. Juodkazis, “Thermal diffusivity in femtosecond-laser-structured micro-volumes of polymers,” Appl. Phys., A Mater. Sci. Process. 98(3), 551–556 (2010).
[Crossref]

Mróz, W.

P. Rytlewski, W. Mróz, M. Żenkiewicz, J. Czwartos, and B. Budner, “Laser induced surface modification of polylactide,” J. Mater. Process. Technol. 212(8), 1700–1704 (2012).
[Crossref]

Nathala, C. S. R.

A. Daskalova, C. S. R. Nathala, I. Bliznakova, E. Stoyanova, A. Zhelyazkova, T. Ganz, S. Lueftenegger, and W. Husinsky, “Controlling the porosity of collagen, gelatin and elastin biomaterials by ultrashort laser pulses,” Appl. Surf. Sci. 292, 367–377 (2014).

Ng, M. L.

Norton, M.

R. Mariella, A. Rubenchik, M. Norton, and G. Donohue, “Laser comminution of submerged samples,” J. Appl. Phys. 114(1), 014904 (2013).
[Crossref]

Ogawa, Y.

K. L. Choo, Y. Ogawa, G. Kanbargi, V. Otra, L. M. Raff, and R. Komanduri, “Micromachining of silicon by short-pulse laser ablation in air and under water,” Mater. Sci. Eng. A 372(1-2), 145–162 (2004).
[Crossref]

Orie, A.

J. Morikawa, A. Orie, T. Hashimoto, and S. Juodkazis, “Thermal diffusivity in femtosecond-laser-structured micro-volumes of polymers,” Appl. Phys., A Mater. Sci. Process. 98(3), 551–556 (2010).
[Crossref]

Otra, V.

K. L. Choo, Y. Ogawa, G. Kanbargi, V. Otra, L. M. Raff, and R. Komanduri, “Micromachining of silicon by short-pulse laser ablation in air and under water,” Mater. Sci. Eng. A 372(1-2), 145–162 (2004).
[Crossref]

Paipulas, D.

M. Malinauskas, L. Lukoševičius, S. Butkus, and D. Paipulas, “Femtosecond pulse light filament-assisted microfabrication of biodegradable polylactic acid (PLA) material,” J. Laser Micronanoeng. 10(2), 222–228 (2015).
[Crossref]

Peciukaityte, M.

M. Malinauskas, S. Rekštytė, L. Lukoševičius, S. Butkus, E. Balčiunas, M. Pečiukaitytė, D. Baltriukienė, V. Bukelskienė, A. Butkevičius, P. Kucevičius, V. Rutkūnas, and S. Juodkazis, “3D microporous scaffolds manufactured via combination of fused filament fabrication and direct laser writing ablation,” Micromachines (Basel) 5(4), 839–858 (2014).
[Crossref]

Pérez, S.

I. Martín-Fabiani, E. Rebollar, S. Pérez, D. R. Rueda, M. C. García-Gutiérrez, A. Szymczyk, Z. Roslaniec, M. Castillejo, and T. A. Ezquerra, “Laser-induced periodic surface structures nanofabricated on poly(trimethylene terephthalate) spin-coated films,” Langmuir 28(20), 7938–7945 (2012).
[Crossref] [PubMed]

Pezowicz, C.

B. Stępak, A. J. Antończak, M. Bartkowiak-Jowsa, J. Filipiak, C. Pezowicz, and K. M. Abramski, “Fabrication of a polymer-based biodegradable stent using a CO2 laser,” Arch. Civ. Mech. Eng. 14(2), 317–326 (2014).
[Crossref]

Polzonetti, G.

G. Polzonetti, M. V. Russo, A. Furlani, and G. Iucci, “Interaction of H2O, O2 and CO2 with the surface of polyphenylacetylene films: an XPS investigation,” Chem. Phys. Lett. 185(1–2), 105–110 (1991).
[Crossref]

Qin, D.

Raff, L. M.

K. L. Choo, Y. Ogawa, G. Kanbargi, V. Otra, L. M. Raff, and R. Komanduri, “Micromachining of silicon by short-pulse laser ablation in air and under water,” Mater. Sci. Eng. A 372(1-2), 145–162 (2004).
[Crossref]

Rebollar, E.

I. Martín-Fabiani, E. Rebollar, S. Pérez, D. R. Rueda, M. C. García-Gutiérrez, A. Szymczyk, Z. Roslaniec, M. Castillejo, and T. A. Ezquerra, “Laser-induced periodic surface structures nanofabricated on poly(trimethylene terephthalate) spin-coated films,” Langmuir 28(20), 7938–7945 (2012).
[Crossref] [PubMed]

Rekštyte, S.

M. Malinauskas, S. Rekštytė, L. Lukoševičius, S. Butkus, E. Balčiunas, M. Pečiukaitytė, D. Baltriukienė, V. Bukelskienė, A. Butkevičius, P. Kucevičius, V. Rutkūnas, and S. Juodkazis, “3D microporous scaffolds manufactured via combination of fused filament fabrication and direct laser writing ablation,” Micromachines (Basel) 5(4), 839–858 (2014).
[Crossref]

R. Buividas, S. Rekštytė, M. Malinauskas, and S. Juodkazis, “Nano-groove and 3D fabrication by controlled avalanche using femtosecond laser pulses,” Opt. Mater. Express 3(10), 1674–1686 (2013).
[Crossref]

Roslaniec, Z.

I. Martín-Fabiani, E. Rebollar, S. Pérez, D. R. Rueda, M. C. García-Gutiérrez, A. Szymczyk, Z. Roslaniec, M. Castillejo, and T. A. Ezquerra, “Laser-induced periodic surface structures nanofabricated on poly(trimethylene terephthalate) spin-coated films,” Langmuir 28(20), 7938–7945 (2012).
[Crossref] [PubMed]

Rubenchik, A.

R. Mariella, A. Rubenchik, M. Norton, and G. Donohue, “Laser comminution of submerged samples,” J. Appl. Phys. 114(1), 014904 (2013).
[Crossref]

Rueda, D. R.

I. Martín-Fabiani, E. Rebollar, S. Pérez, D. R. Rueda, M. C. García-Gutiérrez, A. Szymczyk, Z. Roslaniec, M. Castillejo, and T. A. Ezquerra, “Laser-induced periodic surface structures nanofabricated on poly(trimethylene terephthalate) spin-coated films,” Langmuir 28(20), 7938–7945 (2012).
[Crossref] [PubMed]

Russo, M. V.

G. Polzonetti, M. V. Russo, A. Furlani, and G. Iucci, “Interaction of H2O, O2 and CO2 with the surface of polyphenylacetylene films: an XPS investigation,” Chem. Phys. Lett. 185(1–2), 105–110 (1991).
[Crossref]

Rutkunas, V.

M. Malinauskas, S. Rekštytė, L. Lukoševičius, S. Butkus, E. Balčiunas, M. Pečiukaitytė, D. Baltriukienė, V. Bukelskienė, A. Butkevičius, P. Kucevičius, V. Rutkūnas, and S. Juodkazis, “3D microporous scaffolds manufactured via combination of fused filament fabrication and direct laser writing ablation,” Micromachines (Basel) 5(4), 839–858 (2014).
[Crossref]

Rytlewski, P.

P. Rytlewski, W. Mróz, M. Żenkiewicz, J. Czwartos, and B. Budner, “Laser induced surface modification of polylactide,” J. Mater. Process. Technol. 212(8), 1700–1704 (2012).
[Crossref]

Sajdl, P.

P. Slepička, I. Michaljaničová, P. Sajdl, P. Fitl, and V. Švorčík, “Surface ablation of PLLA induced by KrF excimer laser,” Appl. Surf. Sci. 283, 438–444 (2013).
[Crossref]

Sepold, G.

C. Wochnowski, S. Metev, and G. Sepold, “UV–laser-assisted modification of the optical properties of polymethylmethacrylate,” Appl. Surf. Sci. 154–155, 706–711 (2000).
[Crossref]

Shah, L.

Shams Eldin, M. A.

C. Wochnowski, M. A. Shams Eldin, and S. Metev, “UV-laser-assisted degradation of poly(methylmethacrylate),” Polym. Degrad. Stabil. 89(2), 252–264 (2005).
[Crossref]

Sharma, S.

S. Singh and S. Sharma, “Micromachining of polyurethane (PU) polymer using a KrFexcimerlaser (248 nm),” Appl. Surf. Sci. 321, 289–301 (2014).
[Crossref]

Singh, S.

S. Singh and S. Sharma, “Micromachining of polyurethane (PU) polymer using a KrFexcimerlaser (248 nm),” Appl. Surf. Sci. 321, 289–301 (2014).
[Crossref]

Slepicka, P.

P. Slepička, I. Michaljaničová, P. Sajdl, P. Fitl, and V. Švorčík, “Surface ablation of PLLA induced by KrF excimer laser,” Appl. Surf. Sci. 283, 438–444 (2013).
[Crossref]

Song, Y.

W. Jia, Y. Luo, Y. Song, B. Liu, M. Hu, L. Chai, and C. Wang, “Laser micromachining of polymer,” Nanotech. Prec. Eng. 13, 205–210 (2015).

Stepak, B.

B. Stępak, A. J. Antończak, K. Szustakiewicz, P. E. Kozioł, and K. M. Abramski, “Degradation of poly(L-lactide) under KrF excimer laser treatment,” Polym. Degrad. Stabil. 110, 156–164 (2014).
[Crossref]

B. Stępak, A. J. Antończak, M. Bartkowiak-Jowsa, J. Filipiak, C. Pezowicz, and K. M. Abramski, “Fabrication of a polymer-based biodegradable stent using a CO2 laser,” Arch. Civ. Mech. Eng. 14(2), 317–326 (2014).
[Crossref]

Stepak, B. D.

A. J. Antończak, B. D. Stępak, K. Szustakiewicz, M. R. Wójcik, and K. M. Abramski, “Degradation of poly(L-lactide) under CO2 laser treatment above the ablation threshold,” Polym. Degrad. Stabil. 109, 97–105 (2014).
[Crossref]

Stoyanova, E.

A. Daskalova, C. S. R. Nathala, I. Bliznakova, E. Stoyanova, A. Zhelyazkova, T. Ganz, S. Lueftenegger, and W. Husinsky, “Controlling the porosity of collagen, gelatin and elastin biomaterials by ultrashort laser pulses,” Appl. Surf. Sci. 292, 367–377 (2014).

Švorcík, V.

P. Slepička, I. Michaljaničová, P. Sajdl, P. Fitl, and V. Švorčík, “Surface ablation of PLLA induced by KrF excimer laser,” Appl. Surf. Sci. 283, 438–444 (2013).
[Crossref]

Szustakiewicz, K.

A. J. Antończak, B. D. Stępak, K. Szustakiewicz, M. R. Wójcik, and K. M. Abramski, “Degradation of poly(L-lactide) under CO2 laser treatment above the ablation threshold,” Polym. Degrad. Stabil. 109, 97–105 (2014).
[Crossref]

B. Stępak, A. J. Antończak, K. Szustakiewicz, P. E. Kozioł, and K. M. Abramski, “Degradation of poly(L-lactide) under KrF excimer laser treatment,” Polym. Degrad. Stabil. 110, 156–164 (2014).
[Crossref]

Szymczyk, A.

I. Martín-Fabiani, E. Rebollar, S. Pérez, D. R. Rueda, M. C. García-Gutiérrez, A. Szymczyk, Z. Roslaniec, M. Castillejo, and T. A. Ezquerra, “Laser-induced periodic surface structures nanofabricated on poly(trimethylene terephthalate) spin-coated films,” Langmuir 28(20), 7938–7945 (2012).
[Crossref] [PubMed]

Taddei, P.

P. Taddei, A. Tinti, and G. Fini, “Vibrational spectroscopy of polymeric biomaterials,” J. Raman Spectrosc. 32(8), 619–629 (2001).
[Crossref]

Talaga, D.

I. Elaboudi, S. Lazare, C. Belin, D. Talaga, and C. Labrugère, “Underwater excimer laser ablation of polymers,” Appl. Phys., A Mater. Sci. Process. 92(4), 743–748 (2008).
[Crossref]

I. Elaboudi, S. Lazare, C. Belin, D. Talaga, and C. Labrugère, “Underwater excimer laser ablation of polymers,” Appl. Phys., A Mater. Sci. Process. 92(4), 743–748 (2008).
[Crossref]

Tan, H. Y.

H. Y. Tan, E. Widjaja, F. Boey, and S. C. J. Loo, “Spectroscopy techniques for analyzing the hydrolysis of PLGA and PLLA,” J. Biomed. Mater. Res., Part B 91(1), 433–440 (2009).
[Crossref] [PubMed]

Terakawa, M.

Tinti, A.

P. Taddei, A. Tinti, and G. Fini, “Vibrational spectroscopy of polymeric biomaterials,” J. Raman Spectrosc. 32(8), 619–629 (2001).
[Crossref]

Tokarev, V. N.

V. N. Tokarev, S. Lazare, C. Belin, and D. Debarre, “Viscous flow and ablation pressure phenomena in nanosecond UV laser irradiation of polymers,” Appl. Phys., A Mater. Sci. Process. 79(4-6), 717–720 (2004).
[Crossref]

Vasanthan, N.

N. Vasanthan and O. Ly, “Effect of microstructure on hydrolytic degradation studies of poly (L-lactic acid) by FTIR spectroscopy and differential scanning calorimetry,” Polym. Degrad. Stabil. 94(9), 1364–1372 (2009).
[Crossref]

Vert, M.

G. Kister, G. Cassanas, and M. Vert, “Effects of morphology conformation and configuration on the IR and Raman spectra of various poly(lactic acid)s,” Polym. 39(2), 267–273 (1998).
[Crossref]

Virmont, J.

R. Fabbro, J. Fournier, P. Ballard, D. Devaux, and J. Virmont, “Physical study of laser produced plasma in confined geometry,” J. Appl. Phys. 68(2), 775–784 (1990).
[Crossref]

Wang, C.

W. Jia, Y. Luo, Y. Song, B. Liu, M. Hu, L. Chai, and C. Wang, “Laser micromachining of polymer,” Nanotech. Prec. Eng. 13, 205–210 (2015).

Widjaja, E.

H. Y. Tan, E. Widjaja, F. Boey, and S. C. J. Loo, “Spectroscopy techniques for analyzing the hydrolysis of PLGA and PLLA,” J. Biomed. Mater. Res., Part B 91(1), 433–440 (2009).
[Crossref] [PubMed]

Wochnowski, C.

C. Wochnowski, M. A. Shams Eldin, and S. Metev, “UV-laser-assisted degradation of poly(methylmethacrylate),” Polym. Degrad. Stabil. 89(2), 252–264 (2005).
[Crossref]

C. Wochnowski, S. Metev, and G. Sepold, “UV–laser-assisted modification of the optical properties of polymethylmethacrylate,” Appl. Surf. Sci. 154–155, 706–711 (2000).
[Crossref]

Wójcik, M. R.

A. J. Antończak, B. D. Stępak, K. Szustakiewicz, M. R. Wójcik, and K. M. Abramski, “Degradation of poly(L-lactide) under CO2 laser treatment above the ablation threshold,” Polym. Degrad. Stabil. 109, 97–105 (2014).
[Crossref]

Yada, S.

Yoshino, F.

Zenkiewicz, M.

P. Rytlewski, W. Mróz, M. Żenkiewicz, J. Czwartos, and B. Budner, “Laser induced surface modification of polylactide,” J. Mater. Process. Technol. 212(8), 1700–1704 (2012).
[Crossref]

Zhang, H.

Zhelyazkova, A.

A. Daskalova, C. S. R. Nathala, I. Bliznakova, E. Stoyanova, A. Zhelyazkova, T. Ganz, S. Lueftenegger, and W. Husinsky, “Controlling the porosity of collagen, gelatin and elastin biomaterials by ultrashort laser pulses,” Appl. Surf. Sci. 292, 367–377 (2014).

Appl. Phys., A Mater. Sci. Process. (4)

I. Elaboudi, S. Lazare, C. Belin, D. Talaga, and C. Labrugère, “Underwater excimer laser ablation of polymers,” Appl. Phys., A Mater. Sci. Process. 92(4), 743–748 (2008).
[Crossref]

V. N. Tokarev, S. Lazare, C. Belin, and D. Debarre, “Viscous flow and ablation pressure phenomena in nanosecond UV laser irradiation of polymers,” Appl. Phys., A Mater. Sci. Process. 79(4-6), 717–720 (2004).
[Crossref]

J. Morikawa, A. Orie, T. Hashimoto, and S. Juodkazis, “Thermal diffusivity in femtosecond-laser-structured micro-volumes of polymers,” Appl. Phys., A Mater. Sci. Process. 98(3), 551–556 (2010).
[Crossref]

I. Elaboudi, S. Lazare, C. Belin, D. Talaga, and C. Labrugère, “Underwater excimer laser ablation of polymers,” Appl. Phys., A Mater. Sci. Process. 92(4), 743–748 (2008).
[Crossref]

Appl. Spectrosc. (1)

Appl. Surf. Sci. (5)

C. Wochnowski, S. Metev, and G. Sepold, “UV–laser-assisted modification of the optical properties of polymethylmethacrylate,” Appl. Surf. Sci. 154–155, 706–711 (2000).
[Crossref]

A. Daskalova, C. S. R. Nathala, I. Bliznakova, E. Stoyanova, A. Zhelyazkova, T. Ganz, S. Lueftenegger, and W. Husinsky, “Controlling the porosity of collagen, gelatin and elastin biomaterials by ultrashort laser pulses,” Appl. Surf. Sci. 292, 367–377 (2014).

S. Singh and S. Sharma, “Micromachining of polyurethane (PU) polymer using a KrFexcimerlaser (248 nm),” Appl. Surf. Sci. 321, 289–301 (2014).
[Crossref]

P. Slepička, I. Michaljaničová, P. Sajdl, P. Fitl, and V. Švorčík, “Surface ablation of PLLA induced by KrF excimer laser,” Appl. Surf. Sci. 283, 438–444 (2013).
[Crossref]

C. Dowding and J. Lawrence, “Effects of closed immersion filtered water flow velocity on the ablation threshold of bisphenol A polycarbonate during excimer laser machining,” Appl. Surf. Sci. 256(12), 3705–3713 (2010).
[Crossref]

Arch. Civ. Mech. Eng. (1)

B. Stępak, A. J. Antończak, M. Bartkowiak-Jowsa, J. Filipiak, C. Pezowicz, and K. M. Abramski, “Fabrication of a polymer-based biodegradable stent using a CO2 laser,” Arch. Civ. Mech. Eng. 14(2), 317–326 (2014).
[Crossref]

Chem. Phys. Lett. (1)

G. Polzonetti, M. V. Russo, A. Furlani, and G. Iucci, “Interaction of H2O, O2 and CO2 with the surface of polyphenylacetylene films: an XPS investigation,” Chem. Phys. Lett. 185(1–2), 105–110 (1991).
[Crossref]

J. Appl. Phys. (2)

R. Mariella, A. Rubenchik, M. Norton, and G. Donohue, “Laser comminution of submerged samples,” J. Appl. Phys. 114(1), 014904 (2013).
[Crossref]

R. Fabbro, J. Fournier, P. Ballard, D. Devaux, and J. Virmont, “Physical study of laser produced plasma in confined geometry,” J. Appl. Phys. 68(2), 775–784 (1990).
[Crossref]

J. Biomed. Mater. Res., Part B (1)

H. Y. Tan, E. Widjaja, F. Boey, and S. C. J. Loo, “Spectroscopy techniques for analyzing the hydrolysis of PLGA and PLLA,” J. Biomed. Mater. Res., Part B 91(1), 433–440 (2009).
[Crossref] [PubMed]

J. Laser Micronanoeng. (1)

M. Malinauskas, L. Lukoševičius, S. Butkus, and D. Paipulas, “Femtosecond pulse light filament-assisted microfabrication of biodegradable polylactic acid (PLA) material,” J. Laser Micronanoeng. 10(2), 222–228 (2015).
[Crossref]

J. Manuf. Process. (1)

T.-C. Chang and P. A. Molian, “Excimer pulsed laser ablation of polymers in air and liquids for micromachining applications,” J. Manuf. Process. 1(1), 1–17 (1999).
[Crossref]

J. Mater. Process. Technol. (1)

P. Rytlewski, W. Mróz, M. Żenkiewicz, J. Czwartos, and B. Budner, “Laser induced surface modification of polylactide,” J. Mater. Process. Technol. 212(8), 1700–1704 (2012).
[Crossref]

J. Polym. Environ. (1)

D. Garlotta, “A literature review of poly(lactic acid),” J. Polym. Environ. 9(2), 63–84 (2001).
[Crossref]

J. Raman Spectrosc. (1)

P. Taddei, A. Tinti, and G. Fini, “Vibrational spectroscopy of polymeric biomaterials,” J. Raman Spectrosc. 32(8), 619–629 (2001).
[Crossref]

Langmuir (1)

I. Martín-Fabiani, E. Rebollar, S. Pérez, D. R. Rueda, M. C. García-Gutiérrez, A. Szymczyk, Z. Roslaniec, M. Castillejo, and T. A. Ezquerra, “Laser-induced periodic surface structures nanofabricated on poly(trimethylene terephthalate) spin-coated films,” Langmuir 28(20), 7938–7945 (2012).
[Crossref] [PubMed]

Mater. Sci. Eng. A (1)

K. L. Choo, Y. Ogawa, G. Kanbargi, V. Otra, L. M. Raff, and R. Komanduri, “Micromachining of silicon by short-pulse laser ablation in air and under water,” Mater. Sci. Eng. A 372(1-2), 145–162 (2004).
[Crossref]

Micromachines (Basel) (1)

M. Malinauskas, S. Rekštytė, L. Lukoševičius, S. Butkus, E. Balčiunas, M. Pečiukaitytė, D. Baltriukienė, V. Bukelskienė, A. Butkevičius, P. Kucevičius, V. Rutkūnas, and S. Juodkazis, “3D microporous scaffolds manufactured via combination of fused filament fabrication and direct laser writing ablation,” Micromachines (Basel) 5(4), 839–858 (2014).
[Crossref]

Nanotech. Prec. Eng. (1)

W. Jia, Y. Luo, Y. Song, B. Liu, M. Hu, L. Chai, and C. Wang, “Laser micromachining of polymer,” Nanotech. Prec. Eng. 13, 205–210 (2015).

Opt. Express (3)

Opt. Mater. Express (1)

Polym. (1)

G. Kister, G. Cassanas, and M. Vert, “Effects of morphology conformation and configuration on the IR and Raman spectra of various poly(lactic acid)s,” Polym. 39(2), 267–273 (1998).
[Crossref]

Polym. Degrad. Stabil. (5)

N. Vasanthan and O. Ly, “Effect of microstructure on hydrolytic degradation studies of poly (L-lactic acid) by FTIR spectroscopy and differential scanning calorimetry,” Polym. Degrad. Stabil. 94(9), 1364–1372 (2009).
[Crossref]

C. Wochnowski, M. A. Shams Eldin, and S. Metev, “UV-laser-assisted degradation of poly(methylmethacrylate),” Polym. Degrad. Stabil. 89(2), 252–264 (2005).
[Crossref]

B. Stępak, A. J. Antończak, K. Szustakiewicz, P. E. Kozioł, and K. M. Abramski, “Degradation of poly(L-lactide) under KrF excimer laser treatment,” Polym. Degrad. Stabil. 110, 156–164 (2014).
[Crossref]

A. J. Antończak, B. D. Stępak, K. Szustakiewicz, M. R. Wójcik, and K. M. Abramski, “Degradation of poly(L-lactide) under CO2 laser treatment above the ablation threshold,” Polym. Degrad. Stabil. 109, 97–105 (2014).
[Crossref]

H.-S. Kim and H.-J. Kim, “Enhanced hydrolysis resistance of biodegradable polymers and bio-composites,” Polym. Degrad. Stabil. 93(8), 1544–1553 (2008).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 SEM images of laser (laser power 0.8W) ablated line in air at different laser scanning speeds, (a) 0.04mm/s, (b) 0.16mm/s
Fig. 2
Fig. 2 SEM images of laser line ablation in water at different laser scanning speeds, (a) 0.01 mm/s, (b) 0.16 mm/s
Fig. 3
Fig. 3 FTIR spectra of PLA before and after laser processing: (a) the pristine (black) and the laser ablation (red) in air, inset: the chemical structure of PLA, (b) the pristine (black) and the laser ablation (red) in water
Fig. 4
Fig. 4 Raman spectra of PLA surface before and after laser processing: (a) the pristine (black), the bottom (blue) and the rim (red) of laser ablated groove in air, (b) the pristine (black) and the bottom (red) of laser ablated groove in water
Fig. 5
Fig. 5 C1s XPS spectrum of PLA before and after laser ablation. (a) pristine (black) and laser ablation (red) in air, (b) detail spectrum of pristine PLA, (c) pristine (black) and laser ablation (green) in water.

Metrics