Abstract

Spectral analysis is essential for measuring and monitoring advanced optical communication systems and the characterization of active and passive devices like amplifiers, filters and especially frequency combs. Conventional devices have a limited resolution or tuning range. Therefore, the true spectral shape of the signal remains hidden. In this work, a small part of the signal under test is preselected with help of the polarization pulling effect of stimulated Brillouin scattering where all unwanted spectral components are suppressed. Subsequently, this part is analyzed more deeply through heterodyne detection. Thereby, the local oscillator is generated from a narrow linewidth fiber laser which acts also as pump wave for Brillouin scattering. By scanning the pump wave together with the local oscillator through the signal spectrum, the whole signal is measured. The method is tunable over a broad wavelength range, is not affected by unwanted mixing products and utilizes a conventional narrow bandwidth photo diode. First proof of concept experiments show the measurement of the power spectral density function with a resolution in the attometer or lower kilohertz range at 1550 nm.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Enhancement of spectral resolution and optical rejection ratio of Brillouin optical spectral analysis using polarization pulling

Stefan Preussler, Avi Zadok, Andrzej Wiatrek, Moshe Tur, and Thomas Schneider
Opt. Express 20(13) 14734-14745 (2012)

Brillouin induced self-heterodyne technique for narrow line width measurement

P. Sevillano, J. Subías, C. Heras, J. Pelayo, and F. Villuendas
Opt. Express 18(14) 15201-15206 (2010)

Investigation and development of a high spectral resolution coherent optical spectrum analysis system

Kunpeng Feng, Jiwen Cui, Hong Dang, Shiyuan Zhao, Weidong Wu, and Jiubin Tan
Opt. Express 24(22) 25389-25402 (2016)

References

  • View by:
  • |
  • |
  • |

  1. S. Preussler, N. Wenzel, and T. Schneider, “Flat, rectangular frequency comb generation with tunable bandwidth and frequency spacing,” Opt. Lett. 39(6), 1637–1640 (2014).
    [Crossref] [PubMed]
  2. S. Preußler, N. Wenzel, R. Braun, N. Owschimikow, C. Vogel, A. Deninger, A. Zadok, U. Woggon, and T. Schneider, “Generation of ultra-narrow, stable and tunable millimeter- and terahertz- waves with very low phase noise,” Opt. Express 21(20), 23950–23962 (2013).
    [Crossref]
  3. S. Preussler, N. Wenzel, and T. Schneider, “Flexible Nyquist pulse sequence generation with variable bandwidth and repetition rate,” IEEE Photonics J. 6(4), 1–8 (2014).
    [Crossref]
  4. M. A. Soto, M. Alem, M. A. Shoaie, A. Vedadi, C. Brès, L. Thévenaz, and T. Schneider, “Optical sinc-shaped Nyquist pulses of exceptional quality,” Nat. Commun. 4, 2898 (2014).
  5. V. R. Supradeepa, C. M. Long, R. Wu, F. Ferdous, E. Hamidi, D. E. Leaird, and A. M. Weiner, “Comb-based radiofrequency photonic filters with rapid tunability and high selectivity,” Nat. Photonics 6, 186–194 (2012).
    [Crossref]
  6. M. Song, C. M. Long, R. Wu, D. Seo, D. E. Leaird, and A. M. Weiner, “Reconfigurable and tunable flat-top microwave photonic filters utilizing optical frequency combs,” IEEE Photonics Technol. Lett. 23(21), 1618–1620 (2011).
    [Crossref]
  7. E. Hamidi, D. E. Leaird, and A. M. Weiner, “Tunable programmable microwave photonic filters based on an optical frequency comb,” IEEE Trans. Microw. Theory Techn. 58(11), 3269–3278 (2010).
    [Crossref]
  8. S. Preußler, K. Jamshidi, A. Wiatrek, R. Henker, C. Bunge, and T. Schneider, “Quasi-light-storage based on time-frequency coherence,” Opt. Express 17(18), 15790–15798 (2009).
    [Crossref]
  9. T. Schneider, K. Jamshidi, and S. Preußler, “Quasi-light storage: a method for the tunable storage of optical packets with a potential delay-bandwidth product of several thousand bits,” J. Lightwave Technol. 28(17), 2586–2592 (2010).
    [Crossref]
  10. M. Takamoto, F. Hong, R. Higashi, and H. Katori, “An optical lattice clock,” Nature 435, 321–324 (2005).
    [Crossref] [PubMed]
  11. Agilent Technologies, Optical Spectrum Analysis, Application Note 1550-4 (1996).
  12. Apex Technologies, Ultra High Resolution OSA/OCSA for Characterizing and Evaluating Optical Frequency Comb Sources,” (2013).
  13. T. Schneider, “Wavelength and line width measurement of optical sources with femtometre resolution,” Electron. Lett. 41(22), 1234 (2005).
    [Crossref]
  14. J.M.S. Domingo, J. Pelayo, F. Villuendas, C.D. Heras, and E. Pellejer, “Very high resolution optical spectrometry by stimulated Brillouin scattering,” Photonics Technol. Lett. 17(4), 855–857 (2005).
    [Crossref]
  15. R. W. Boyd, Nonlinear Optics (Academic, 2003).
  16. S. Preußler, A. Wiatrek, K. Jamshidi, and T. Schneider, “Brillouin scattering gain bandwidth reduction down to 3.4 MHz,” Opt. Express 19(9), 8565–8570 (2011).
    [Crossref]
  17. A. Wiatrek, S. Preußler, K. Jamshidi, and T. Schneider, “Frequency domain aperture for the gain bandwidth reduction of stimulated Brillouin scattering,” Opt. Lett. 37(5), 930–932 (2012).
    [Crossref] [PubMed]
  18. S. Preußler and T. Schneider, “Bandwidth reduction in a multistage Brillouin system,” Opt. Lett. 37(19), 4122–4124 (2012).
    [Crossref]
  19. S. Preussler, A. Zadok, A. Wiatrek, M. Tur, and T. Schneider, “Enhancement of spectral resolution and optical rejection ratio of Brillouin optical spectral analysis using polarization pulling,” Opt. Express 20(13), 14734–14745 (2012).
    [Crossref] [PubMed]
  20. A. Wise, M. Tur, and A. Zadok, “Sharp tunable optical filters based on the polarization attributes of stimulated Brillouin scattering,” Opt. Express 19(22), 21945–21955 (2011).
    [Crossref] [PubMed]
  21. Y. Dong, T. Jiang, L. Teng, H. Zhang, L. Chen, X. Bao, and Z. Lu, “Sub-MHz ultrahigh-resolution optical spectrometry based on Brillouin dynamic gratings,” Opt. Lett. 39(10), 2967–2970 (2014).
    [Crossref] [PubMed]
  22. A. Yeniay, J. Delavaux, and J. Toulouse, “Spontaneous and stimulated Brillouin scattering gain spectra in optical fibers,” J. Lightwave Technol. 20(8), 1425–1432 (2002).
    [Crossref]
  23. S. Treff, S. Preussler, and T. Schneider, “Measuring the spectra of advanced optical signals with an extension of an electrical network analyzer,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper JW2A.20.
    [Crossref]
  24. W. Liang, V. S. Ilchenko, D. Eliyahu, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “Ultralow noise miniature external cavity semiconductor laser,” Nat. Commun. 6, 7371 (2015).
    [Crossref] [PubMed]
  25. H. Al-Taiy, N. Wenzel, S. Preußler, J. Klinger, and T. Schneider, “Ultra-narrow linewidth, stable and tunable laser source for optical communication systems and spectroscopy,” Opt. Lett. 39(20), 5826–5829 (2014).
    [Crossref] [PubMed]
  26. S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84(22), 5102–5105 (2000).
    [Crossref] [PubMed]

2015 (1)

W. Liang, V. S. Ilchenko, D. Eliyahu, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “Ultralow noise miniature external cavity semiconductor laser,” Nat. Commun. 6, 7371 (2015).
[Crossref] [PubMed]

2014 (5)

2013 (1)

2012 (4)

2011 (3)

2010 (2)

E. Hamidi, D. E. Leaird, and A. M. Weiner, “Tunable programmable microwave photonic filters based on an optical frequency comb,” IEEE Trans. Microw. Theory Techn. 58(11), 3269–3278 (2010).
[Crossref]

T. Schneider, K. Jamshidi, and S. Preußler, “Quasi-light storage: a method for the tunable storage of optical packets with a potential delay-bandwidth product of several thousand bits,” J. Lightwave Technol. 28(17), 2586–2592 (2010).
[Crossref]

2009 (1)

2005 (3)

M. Takamoto, F. Hong, R. Higashi, and H. Katori, “An optical lattice clock,” Nature 435, 321–324 (2005).
[Crossref] [PubMed]

T. Schneider, “Wavelength and line width measurement of optical sources with femtometre resolution,” Electron. Lett. 41(22), 1234 (2005).
[Crossref]

J.M.S. Domingo, J. Pelayo, F. Villuendas, C.D. Heras, and E. Pellejer, “Very high resolution optical spectrometry by stimulated Brillouin scattering,” Photonics Technol. Lett. 17(4), 855–857 (2005).
[Crossref]

2002 (1)

2000 (1)

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84(22), 5102–5105 (2000).
[Crossref] [PubMed]

Alem, M.

M. A. Soto, M. Alem, M. A. Shoaie, A. Vedadi, C. Brès, L. Thévenaz, and T. Schneider, “Optical sinc-shaped Nyquist pulses of exceptional quality,” Nat. Commun. 4, 2898 (2014).

Al-Taiy, H.

Bao, X.

Boyd, R. W.

R. W. Boyd, Nonlinear Optics (Academic, 2003).

Braun, R.

Brès, C.

M. A. Soto, M. Alem, M. A. Shoaie, A. Vedadi, C. Brès, L. Thévenaz, and T. Schneider, “Optical sinc-shaped Nyquist pulses of exceptional quality,” Nat. Commun. 4, 2898 (2014).

Bunge, C.

Chen, L.

Cundiff, S. T.

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84(22), 5102–5105 (2000).
[Crossref] [PubMed]

Delavaux, J.

Deninger, A.

Diddams, S. A.

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84(22), 5102–5105 (2000).
[Crossref] [PubMed]

Domingo, J.M.S.

J.M.S. Domingo, J. Pelayo, F. Villuendas, C.D. Heras, and E. Pellejer, “Very high resolution optical spectrometry by stimulated Brillouin scattering,” Photonics Technol. Lett. 17(4), 855–857 (2005).
[Crossref]

Dong, Y.

Eliyahu, D.

W. Liang, V. S. Ilchenko, D. Eliyahu, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “Ultralow noise miniature external cavity semiconductor laser,” Nat. Commun. 6, 7371 (2015).
[Crossref] [PubMed]

Ferdous, F.

V. R. Supradeepa, C. M. Long, R. Wu, F. Ferdous, E. Hamidi, D. E. Leaird, and A. M. Weiner, “Comb-based radiofrequency photonic filters with rapid tunability and high selectivity,” Nat. Photonics 6, 186–194 (2012).
[Crossref]

Hall, J. L.

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84(22), 5102–5105 (2000).
[Crossref] [PubMed]

Hamidi, E.

V. R. Supradeepa, C. M. Long, R. Wu, F. Ferdous, E. Hamidi, D. E. Leaird, and A. M. Weiner, “Comb-based radiofrequency photonic filters with rapid tunability and high selectivity,” Nat. Photonics 6, 186–194 (2012).
[Crossref]

E. Hamidi, D. E. Leaird, and A. M. Weiner, “Tunable programmable microwave photonic filters based on an optical frequency comb,” IEEE Trans. Microw. Theory Techn. 58(11), 3269–3278 (2010).
[Crossref]

Hänsch, T. W.

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84(22), 5102–5105 (2000).
[Crossref] [PubMed]

Henker, R.

Heras, C.D.

J.M.S. Domingo, J. Pelayo, F. Villuendas, C.D. Heras, and E. Pellejer, “Very high resolution optical spectrometry by stimulated Brillouin scattering,” Photonics Technol. Lett. 17(4), 855–857 (2005).
[Crossref]

Higashi, R.

M. Takamoto, F. Hong, R. Higashi, and H. Katori, “An optical lattice clock,” Nature 435, 321–324 (2005).
[Crossref] [PubMed]

Holzwarth, R.

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84(22), 5102–5105 (2000).
[Crossref] [PubMed]

Hong, F.

M. Takamoto, F. Hong, R. Higashi, and H. Katori, “An optical lattice clock,” Nature 435, 321–324 (2005).
[Crossref] [PubMed]

Ilchenko, V. S.

W. Liang, V. S. Ilchenko, D. Eliyahu, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “Ultralow noise miniature external cavity semiconductor laser,” Nat. Commun. 6, 7371 (2015).
[Crossref] [PubMed]

Jamshidi, K.

Jiang, T.

Jones, D. J.

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84(22), 5102–5105 (2000).
[Crossref] [PubMed]

Katori, H.

M. Takamoto, F. Hong, R. Higashi, and H. Katori, “An optical lattice clock,” Nature 435, 321–324 (2005).
[Crossref] [PubMed]

Klinger, J.

Leaird, D. E.

V. R. Supradeepa, C. M. Long, R. Wu, F. Ferdous, E. Hamidi, D. E. Leaird, and A. M. Weiner, “Comb-based radiofrequency photonic filters with rapid tunability and high selectivity,” Nat. Photonics 6, 186–194 (2012).
[Crossref]

M. Song, C. M. Long, R. Wu, D. Seo, D. E. Leaird, and A. M. Weiner, “Reconfigurable and tunable flat-top microwave photonic filters utilizing optical frequency combs,” IEEE Photonics Technol. Lett. 23(21), 1618–1620 (2011).
[Crossref]

E. Hamidi, D. E. Leaird, and A. M. Weiner, “Tunable programmable microwave photonic filters based on an optical frequency comb,” IEEE Trans. Microw. Theory Techn. 58(11), 3269–3278 (2010).
[Crossref]

Liang, W.

W. Liang, V. S. Ilchenko, D. Eliyahu, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “Ultralow noise miniature external cavity semiconductor laser,” Nat. Commun. 6, 7371 (2015).
[Crossref] [PubMed]

Long, C. M.

V. R. Supradeepa, C. M. Long, R. Wu, F. Ferdous, E. Hamidi, D. E. Leaird, and A. M. Weiner, “Comb-based radiofrequency photonic filters with rapid tunability and high selectivity,” Nat. Photonics 6, 186–194 (2012).
[Crossref]

M. Song, C. M. Long, R. Wu, D. Seo, D. E. Leaird, and A. M. Weiner, “Reconfigurable and tunable flat-top microwave photonic filters utilizing optical frequency combs,” IEEE Photonics Technol. Lett. 23(21), 1618–1620 (2011).
[Crossref]

Lu, Z.

Maleki, L.

W. Liang, V. S. Ilchenko, D. Eliyahu, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “Ultralow noise miniature external cavity semiconductor laser,” Nat. Commun. 6, 7371 (2015).
[Crossref] [PubMed]

Matsko, A. B.

W. Liang, V. S. Ilchenko, D. Eliyahu, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “Ultralow noise miniature external cavity semiconductor laser,” Nat. Commun. 6, 7371 (2015).
[Crossref] [PubMed]

Owschimikow, N.

Pelayo, J.

J.M.S. Domingo, J. Pelayo, F. Villuendas, C.D. Heras, and E. Pellejer, “Very high resolution optical spectrometry by stimulated Brillouin scattering,” Photonics Technol. Lett. 17(4), 855–857 (2005).
[Crossref]

Pellejer, E.

J.M.S. Domingo, J. Pelayo, F. Villuendas, C.D. Heras, and E. Pellejer, “Very high resolution optical spectrometry by stimulated Brillouin scattering,” Photonics Technol. Lett. 17(4), 855–857 (2005).
[Crossref]

Preussler, S.

S. Preussler, N. Wenzel, and T. Schneider, “Flat, rectangular frequency comb generation with tunable bandwidth and frequency spacing,” Opt. Lett. 39(6), 1637–1640 (2014).
[Crossref] [PubMed]

S. Preussler, N. Wenzel, and T. Schneider, “Flexible Nyquist pulse sequence generation with variable bandwidth and repetition rate,” IEEE Photonics J. 6(4), 1–8 (2014).
[Crossref]

Preußler, S.

Preussler, S.

Preußler, S.

Preussler, S.

S. Treff, S. Preussler, and T. Schneider, “Measuring the spectra of advanced optical signals with an extension of an electrical network analyzer,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper JW2A.20.
[Crossref]

Ranka, J. K.

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84(22), 5102–5105 (2000).
[Crossref] [PubMed]

Savchenkov, A. A.

W. Liang, V. S. Ilchenko, D. Eliyahu, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “Ultralow noise miniature external cavity semiconductor laser,” Nat. Commun. 6, 7371 (2015).
[Crossref] [PubMed]

Schneider, T.

H. Al-Taiy, N. Wenzel, S. Preußler, J. Klinger, and T. Schneider, “Ultra-narrow linewidth, stable and tunable laser source for optical communication systems and spectroscopy,” Opt. Lett. 39(20), 5826–5829 (2014).
[Crossref] [PubMed]

S. Preussler, N. Wenzel, and T. Schneider, “Flat, rectangular frequency comb generation with tunable bandwidth and frequency spacing,” Opt. Lett. 39(6), 1637–1640 (2014).
[Crossref] [PubMed]

S. Preussler, N. Wenzel, and T. Schneider, “Flexible Nyquist pulse sequence generation with variable bandwidth and repetition rate,” IEEE Photonics J. 6(4), 1–8 (2014).
[Crossref]

M. A. Soto, M. Alem, M. A. Shoaie, A. Vedadi, C. Brès, L. Thévenaz, and T. Schneider, “Optical sinc-shaped Nyquist pulses of exceptional quality,” Nat. Commun. 4, 2898 (2014).

S. Preußler, N. Wenzel, R. Braun, N. Owschimikow, C. Vogel, A. Deninger, A. Zadok, U. Woggon, and T. Schneider, “Generation of ultra-narrow, stable and tunable millimeter- and terahertz- waves with very low phase noise,” Opt. Express 21(20), 23950–23962 (2013).
[Crossref]

S. Preußler and T. Schneider, “Bandwidth reduction in a multistage Brillouin system,” Opt. Lett. 37(19), 4122–4124 (2012).
[Crossref]

A. Wiatrek, S. Preußler, K. Jamshidi, and T. Schneider, “Frequency domain aperture for the gain bandwidth reduction of stimulated Brillouin scattering,” Opt. Lett. 37(5), 930–932 (2012).
[Crossref] [PubMed]

S. Preussler, A. Zadok, A. Wiatrek, M. Tur, and T. Schneider, “Enhancement of spectral resolution and optical rejection ratio of Brillouin optical spectral analysis using polarization pulling,” Opt. Express 20(13), 14734–14745 (2012).
[Crossref] [PubMed]

S. Preußler, A. Wiatrek, K. Jamshidi, and T. Schneider, “Brillouin scattering gain bandwidth reduction down to 3.4 MHz,” Opt. Express 19(9), 8565–8570 (2011).
[Crossref]

T. Schneider, K. Jamshidi, and S. Preußler, “Quasi-light storage: a method for the tunable storage of optical packets with a potential delay-bandwidth product of several thousand bits,” J. Lightwave Technol. 28(17), 2586–2592 (2010).
[Crossref]

S. Preußler, K. Jamshidi, A. Wiatrek, R. Henker, C. Bunge, and T. Schneider, “Quasi-light-storage based on time-frequency coherence,” Opt. Express 17(18), 15790–15798 (2009).
[Crossref]

T. Schneider, “Wavelength and line width measurement of optical sources with femtometre resolution,” Electron. Lett. 41(22), 1234 (2005).
[Crossref]

S. Treff, S. Preussler, and T. Schneider, “Measuring the spectra of advanced optical signals with an extension of an electrical network analyzer,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper JW2A.20.
[Crossref]

Seidel, D.

W. Liang, V. S. Ilchenko, D. Eliyahu, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “Ultralow noise miniature external cavity semiconductor laser,” Nat. Commun. 6, 7371 (2015).
[Crossref] [PubMed]

Seo, D.

M. Song, C. M. Long, R. Wu, D. Seo, D. E. Leaird, and A. M. Weiner, “Reconfigurable and tunable flat-top microwave photonic filters utilizing optical frequency combs,” IEEE Photonics Technol. Lett. 23(21), 1618–1620 (2011).
[Crossref]

Shoaie, M. A.

M. A. Soto, M. Alem, M. A. Shoaie, A. Vedadi, C. Brès, L. Thévenaz, and T. Schneider, “Optical sinc-shaped Nyquist pulses of exceptional quality,” Nat. Commun. 4, 2898 (2014).

Song, M.

M. Song, C. M. Long, R. Wu, D. Seo, D. E. Leaird, and A. M. Weiner, “Reconfigurable and tunable flat-top microwave photonic filters utilizing optical frequency combs,” IEEE Photonics Technol. Lett. 23(21), 1618–1620 (2011).
[Crossref]

Soto, M. A.

M. A. Soto, M. Alem, M. A. Shoaie, A. Vedadi, C. Brès, L. Thévenaz, and T. Schneider, “Optical sinc-shaped Nyquist pulses of exceptional quality,” Nat. Commun. 4, 2898 (2014).

Supradeepa, V. R.

V. R. Supradeepa, C. M. Long, R. Wu, F. Ferdous, E. Hamidi, D. E. Leaird, and A. M. Weiner, “Comb-based radiofrequency photonic filters with rapid tunability and high selectivity,” Nat. Photonics 6, 186–194 (2012).
[Crossref]

Takamoto, M.

M. Takamoto, F. Hong, R. Higashi, and H. Katori, “An optical lattice clock,” Nature 435, 321–324 (2005).
[Crossref] [PubMed]

Teng, L.

Thévenaz, L.

M. A. Soto, M. Alem, M. A. Shoaie, A. Vedadi, C. Brès, L. Thévenaz, and T. Schneider, “Optical sinc-shaped Nyquist pulses of exceptional quality,” Nat. Commun. 4, 2898 (2014).

Toulouse, J.

Treff, S.

S. Treff, S. Preussler, and T. Schneider, “Measuring the spectra of advanced optical signals with an extension of an electrical network analyzer,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper JW2A.20.
[Crossref]

Tur, M.

Udem, T.

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84(22), 5102–5105 (2000).
[Crossref] [PubMed]

Vedadi, A.

M. A. Soto, M. Alem, M. A. Shoaie, A. Vedadi, C. Brès, L. Thévenaz, and T. Schneider, “Optical sinc-shaped Nyquist pulses of exceptional quality,” Nat. Commun. 4, 2898 (2014).

Villuendas, F.

J.M.S. Domingo, J. Pelayo, F. Villuendas, C.D. Heras, and E. Pellejer, “Very high resolution optical spectrometry by stimulated Brillouin scattering,” Photonics Technol. Lett. 17(4), 855–857 (2005).
[Crossref]

Vogel, C.

Weiner, A. M.

V. R. Supradeepa, C. M. Long, R. Wu, F. Ferdous, E. Hamidi, D. E. Leaird, and A. M. Weiner, “Comb-based radiofrequency photonic filters with rapid tunability and high selectivity,” Nat. Photonics 6, 186–194 (2012).
[Crossref]

M. Song, C. M. Long, R. Wu, D. Seo, D. E. Leaird, and A. M. Weiner, “Reconfigurable and tunable flat-top microwave photonic filters utilizing optical frequency combs,” IEEE Photonics Technol. Lett. 23(21), 1618–1620 (2011).
[Crossref]

E. Hamidi, D. E. Leaird, and A. M. Weiner, “Tunable programmable microwave photonic filters based on an optical frequency comb,” IEEE Trans. Microw. Theory Techn. 58(11), 3269–3278 (2010).
[Crossref]

Wenzel, N.

Wiatrek, A.

Windeler, R. S.

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84(22), 5102–5105 (2000).
[Crossref] [PubMed]

Wise, A.

Woggon, U.

Wu, R.

V. R. Supradeepa, C. M. Long, R. Wu, F. Ferdous, E. Hamidi, D. E. Leaird, and A. M. Weiner, “Comb-based radiofrequency photonic filters with rapid tunability and high selectivity,” Nat. Photonics 6, 186–194 (2012).
[Crossref]

M. Song, C. M. Long, R. Wu, D. Seo, D. E. Leaird, and A. M. Weiner, “Reconfigurable and tunable flat-top microwave photonic filters utilizing optical frequency combs,” IEEE Photonics Technol. Lett. 23(21), 1618–1620 (2011).
[Crossref]

Ye, J.

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84(22), 5102–5105 (2000).
[Crossref] [PubMed]

Yeniay, A.

Zadok, A.

Zhang, H.

Electron. Lett. (1)

T. Schneider, “Wavelength and line width measurement of optical sources with femtometre resolution,” Electron. Lett. 41(22), 1234 (2005).
[Crossref]

IEEE Photonics J. (1)

S. Preussler, N. Wenzel, and T. Schneider, “Flexible Nyquist pulse sequence generation with variable bandwidth and repetition rate,” IEEE Photonics J. 6(4), 1–8 (2014).
[Crossref]

IEEE Photonics Technol. Lett. (1)

M. Song, C. M. Long, R. Wu, D. Seo, D. E. Leaird, and A. M. Weiner, “Reconfigurable and tunable flat-top microwave photonic filters utilizing optical frequency combs,” IEEE Photonics Technol. Lett. 23(21), 1618–1620 (2011).
[Crossref]

IEEE Trans. Microw. Theory Techn. (1)

E. Hamidi, D. E. Leaird, and A. M. Weiner, “Tunable programmable microwave photonic filters based on an optical frequency comb,” IEEE Trans. Microw. Theory Techn. 58(11), 3269–3278 (2010).
[Crossref]

J. Lightwave Technol. (2)

Nat. Commun. (2)

W. Liang, V. S. Ilchenko, D. Eliyahu, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “Ultralow noise miniature external cavity semiconductor laser,” Nat. Commun. 6, 7371 (2015).
[Crossref] [PubMed]

M. A. Soto, M. Alem, M. A. Shoaie, A. Vedadi, C. Brès, L. Thévenaz, and T. Schneider, “Optical sinc-shaped Nyquist pulses of exceptional quality,” Nat. Commun. 4, 2898 (2014).

Nat. Photonics (1)

V. R. Supradeepa, C. M. Long, R. Wu, F. Ferdous, E. Hamidi, D. E. Leaird, and A. M. Weiner, “Comb-based radiofrequency photonic filters with rapid tunability and high selectivity,” Nat. Photonics 6, 186–194 (2012).
[Crossref]

Nature (1)

M. Takamoto, F. Hong, R. Higashi, and H. Katori, “An optical lattice clock,” Nature 435, 321–324 (2005).
[Crossref] [PubMed]

Opt. Express (5)

Opt. Lett. (5)

Photonics Technol. Lett. (1)

J.M.S. Domingo, J. Pelayo, F. Villuendas, C.D. Heras, and E. Pellejer, “Very high resolution optical spectrometry by stimulated Brillouin scattering,” Photonics Technol. Lett. 17(4), 855–857 (2005).
[Crossref]

Phys. Rev. Lett. (1)

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84(22), 5102–5105 (2000).
[Crossref] [PubMed]

Other (4)

R. W. Boyd, Nonlinear Optics (Academic, 2003).

Agilent Technologies, Optical Spectrum Analysis, Application Note 1550-4 (1996).

Apex Technologies, Ultra High Resolution OSA/OCSA for Characterizing and Evaluating Optical Frequency Comb Sources,” (2013).

S. Treff, S. Preussler, and T. Schneider, “Measuring the spectra of advanced optical signals with an extension of an electrical network analyzer,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper JW2A.20.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Operation principle.
Fig. 2
Fig. 2 Illustration of the mixing products at the photodiode (gray and red) after the preselection with PPA-SBS and subsequent heterodyning, and the final measurement range of the ESA (blue).
Fig. 3
Fig. 3 The red curve shows the detailed measurement of a spectral part of the SUT from a 29−1 PRBS at a data rate of 1 Gbit/s within the SBS bandwidth (black curve). An incorrect setting of the polarization, which leads to unwanted mixing products, is illustrated by the gray line.
Fig. 4
Fig. 4 Experimental setup. FL: fiber laser, MZM: Mach-Zehnder modulator, WS: wave shaper, EDFA: erbium doped fiber amplifier, PC: polarization controller, PM: phase modulator, C: circulator, PBS: polarization beam spliter, PD: photodiode, ESA: electrical spectrum analyzer.
Fig. 5
Fig. 5 Measurement results for different systems. The blue curve shows the measurement with a conventional OSA and the red curve the measurement with a Brillouin OSA. All details of the spectrum under test are revealed in the gray curve.
Fig. 6
Fig. 6 Detailed part of a PRBS 29− 1 data signal at a data rate of 500 Mbps.
Fig. 7
Fig. 7 Measurement of the power spectral density of a frequency comb generated by a fs-laser with a conventional OSA (a). Detailed measurements of several lines of the comb are provided by a BOSA (red line in (b) and (c)) and the proposed method (black line) with a detailed measurement of 1 line in (c) that illustrates the resolution limits of both methods.

Metrics