Abstract

We present the improved structure and operating principle of a spectrophotometric mean that allows us for the recording of the transmittance of a thin-film filter over an ultra-wide range of optical densities (from 0 to 11) between 400 and 1000 nm. The operation of this apparatus is based on the combined use of a high power supercontinuum laser source, a tunable volume hologram filter, a standard monochromator and a scientific grade CCD camera. The experimentally recorded noise floor is in good accordance with the optical density values given by the theoretical approach. A demonstration of the sensitivity gain provided by this new set-up with respect to standard spectrophotometric means is performed via the characterization of various types of filters (band-pass, long-pass, short-pass, and notch).

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Broadband spectral transmittance measurements of complex thin-film filters with optical densities of up to 12

Simona Liukaityte, Michel Lequime, Myriam Zerrad, Thomas Begou, and Claude Amra
Opt. Lett. 40(14) 3225-3228 (2015)

Use of heterodyne detection to measure optical transmittance over a wide range

Alan L. Migdall, B. Roop, Y. C. Zheng, J. E. Hardis, and Gu Jun Xia
Appl. Opt. 29(34) 5136-5144 (1990)

Transmittance measurements for filters of optical density between one and ten

Z. M. Zhang, T. R. Gentile, A. L. Migdall, and R. U. Datla
Appl. Opt. 36(34) 8889-8895 (1997)

References

  • View by:
  • |
  • |
  • |

  1. J. W. Lichtman and J. A. Conchello, “Fluorescence microscopy,” Nat. Methods 2, 910–919 (2005).
    [Crossref] [PubMed]
  2. T. Erdogan and V. Mizrahi, “Thin-film filters for Raman spectroscopy,” Spectroscopy 19, 113–116 (2004).
  3. A. L. Migdall, B. Roop, Y. C. Zheng, J. E. Hardis, and G. J. Xia, “Use of heterodyne detection to measure optical transmittance over a wide range,” Appl. Opt. 29, 5136–5144 (1990).
    [Crossref] [PubMed]
  4. Z. M. Zhang, L. M. Hanssen, and R. U. Datla, “High-optical-density out-of-band spectral transmittance measurements of bandpass filters,” Opt. Lett. 20, 1077–1079 (1995).
    [Crossref] [PubMed]
  5. Z. M. Zhang, T. R. Gentile, A. L. Migdall, and R. U. Datla, “Transmittance measurements for filters of optical density between one and ten,” Appl. Opt. 36, 8889–8895 (1997).
    [Crossref]
  6. M. Ziter, G. Carver, S. Locknar, T. Upton, and B. Johnson, “Laser-based assessment of optical interference filters with sharp spectral edges and high optical density,” Surf. Coat. Tech. 241, 54–58 (2014).
    [Crossref]
  7. S. Liukaityte, M. Lequime, M. Zerrad, T. Begou, and C. Amra, “Broadband spectral transmittance measurements of complex thin-film filters with optical densities of up to 12,” Opt. Lett. 40, 3225–3228 (2015).
    [Crossref] [PubMed]

2015 (1)

2014 (1)

M. Ziter, G. Carver, S. Locknar, T. Upton, and B. Johnson, “Laser-based assessment of optical interference filters with sharp spectral edges and high optical density,” Surf. Coat. Tech. 241, 54–58 (2014).
[Crossref]

2005 (1)

J. W. Lichtman and J. A. Conchello, “Fluorescence microscopy,” Nat. Methods 2, 910–919 (2005).
[Crossref] [PubMed]

2004 (1)

T. Erdogan and V. Mizrahi, “Thin-film filters for Raman spectroscopy,” Spectroscopy 19, 113–116 (2004).

1997 (1)

1995 (1)

1990 (1)

Amra, C.

Begou, T.

Carver, G.

M. Ziter, G. Carver, S. Locknar, T. Upton, and B. Johnson, “Laser-based assessment of optical interference filters with sharp spectral edges and high optical density,” Surf. Coat. Tech. 241, 54–58 (2014).
[Crossref]

Conchello, J. A.

J. W. Lichtman and J. A. Conchello, “Fluorescence microscopy,” Nat. Methods 2, 910–919 (2005).
[Crossref] [PubMed]

Datla, R. U.

Erdogan, T.

T. Erdogan and V. Mizrahi, “Thin-film filters for Raman spectroscopy,” Spectroscopy 19, 113–116 (2004).

Gentile, T. R.

Hanssen, L. M.

Hardis, J. E.

Johnson, B.

M. Ziter, G. Carver, S. Locknar, T. Upton, and B. Johnson, “Laser-based assessment of optical interference filters with sharp spectral edges and high optical density,” Surf. Coat. Tech. 241, 54–58 (2014).
[Crossref]

Lequime, M.

Lichtman, J. W.

J. W. Lichtman and J. A. Conchello, “Fluorescence microscopy,” Nat. Methods 2, 910–919 (2005).
[Crossref] [PubMed]

Liukaityte, S.

Locknar, S.

M. Ziter, G. Carver, S. Locknar, T. Upton, and B. Johnson, “Laser-based assessment of optical interference filters with sharp spectral edges and high optical density,” Surf. Coat. Tech. 241, 54–58 (2014).
[Crossref]

Migdall, A. L.

Mizrahi, V.

T. Erdogan and V. Mizrahi, “Thin-film filters for Raman spectroscopy,” Spectroscopy 19, 113–116 (2004).

Roop, B.

Upton, T.

M. Ziter, G. Carver, S. Locknar, T. Upton, and B. Johnson, “Laser-based assessment of optical interference filters with sharp spectral edges and high optical density,” Surf. Coat. Tech. 241, 54–58 (2014).
[Crossref]

Xia, G. J.

Zerrad, M.

Zhang, Z. M.

Zheng, Y. C.

Ziter, M.

M. Ziter, G. Carver, S. Locknar, T. Upton, and B. Johnson, “Laser-based assessment of optical interference filters with sharp spectral edges and high optical density,” Surf. Coat. Tech. 241, 54–58 (2014).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Examples of rejection level measurements provided by optical thin-film filters manufacturers [left: long-pass filter from THORLABS, reference FELH0750; right: short-pass filter from SEMROCK, reference FF01-680-SP-25].

Fig. 2
Fig. 2

Schematic representation of the thin-film filter rejection levels measurement set-up (NKT EXB-6: supercontinuum laser source; LLTF: tunable volume hologram filter; OSD: order sorting device; SH: shutter; BS: beam splitter; ODF1: optical density flip 1; ODF2: optical density flip 2; ODFW: optical density filter wheel; ORC: output reflective collimator; FOL1: fiber optic link 1; TRC: transmitter reflective collimator; TFF: thin-film filter; RRC: receiving reflective collimator; FOL2: fiber optic link 2; SR-193i-B1: motorized Czerny-Turner monochromator; FOL3: fiber optic link 3; FOC: fiber optic coupler; PIXIS 1024B: scientific grade CCD camera; OD_R: reference optical density; RC_R: reference reflective collimator; FOL_R: reference fiber optic link; FEMTO OE-200-SI: variable gain photoreceiver).

Fig. 3
Fig. 3

Normalized spectral power density of the filtered source at the output of the LLTF (blue line, central wavelength λ0 = 450 nm; red line, central wavelength λ0 = 950 nm).

Fig. 4
Fig. 4

Time-chart of the light flux acquisition.

Fig. 5
Fig. 5

Data files obtained at the end of an acquisition: (a) Camera image file, including, near the center, a magnified view of the extremity of the FOL3; (b) Photoreceiver data file.

Fig. 6
Fig. 6

Evolution of the measurement channel SNR with respect to the TFF optical density (semi-logarithmic units).

Fig. 7
Fig. 7

Comparison between experimental and theoretical noise floor (blue circles: experimental data; continuous red line: theoretical data corresponding to a SNR of 1).

Fig. 8
Fig. 8

Power spectral density of the filtered source: with LLTF only (continuous red line); with LLTF and Shamrock monochromator (blue circles).

Fig. 9
Fig. 9

OD spectral dependence of the TFF used to qualify both setups (light blue line, design data; red line, computed data for LLTF only; dark blue line, computed data for LLTF + Shamrock).

Fig. 10
Fig. 10

Experimental results obtained on the FRESNEL band-pass filter (light blue line: theoretical data; green line: Perkin-Elmer Lambda 1050; blue circles: Set-Up 2; black circles: Set-up 2 noise floor).

Fig. 11
Fig. 11

Experimental results obtained on the FRESNEL band-pass filter (Perkin-Elmer Lambda 1050; blue circles: Set-Up 2).

Fig. 12
Fig. 12

Experimental results obtained on the THORLABS long-pass filter (green line: manufacturer data; blue circles: experimental data recorded with Set-Up 2; black circles: noise floor of Set-Up 2).

Fig. 13
Fig. 13

Experimental results obtained on the SEMROCK short-pass filter (green line: manufacturer data; blue circles: experimental data recorded with Set-Up 2; black circles: noise floor of Set-Up 2).

Fig. 14
Fig. 14

Experimental results obtained on the SEMROCK notch filter (green line: manufacturer data; blue circles: experimental data recorded with Set-Up 2; black circles: noise floor of Set-Up 2).

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

F ( λ ) = 10 OD ( λ ) S C S R ( λ )
S T = 0.7 × 2 16 × N 45000 × N
T F ( λ ) = F TFF ( λ ) F BL ( λ )
m ¯ = m ¯ DC + η C ( λ ) α ( λ ) T F ( λ ) × 10 OD ( λ ) P ( λ ) N h ν τ λ = m ¯ DC + m ¯ λ
M = 2 16 m ¯ FWC + M 0
S C = { S T for T F T c S T T F T c for T F < T c
T c ( λ ) = [ τ λ ] BL 100 10 [ O D ] BL
σ m 2 = m ¯ + I DC τ λ + σ RN 2 = m ¯ + σ 0 2
σ S C 2 = ( 2 16 FWC ) 2 [ N m ¯ + N c σ 0 2 ]
FWC = 100000 e I DC = 0.001 e / s @ 70 ° C operation σ RN = 9 e rms @ 2 - MHz digitization
SNR C = S C σ S C = N × 0.7 FWC S c S T N × 0.7 FWC S C S T + N c σ RN 2
V = G S [ I DC + S β ( λ ) P ( λ ) ] = G S [ I DC + I λ ] with S = e η R ( λ ) h ν
σ V 2 = ( G S ) 2 σ I 2 = ( G S ) 2 [ S 2 NEP 2 B + 2 e I λ B ] = G 2 [ NEP 2 + 2 e β ( λ ) P ( λ ) S ] B
S R = f τ λ G I λ S = f τ λ G β ( λ ) P ( λ )
σ S R 2 = G 2 f [ ( τ λ + 0.2 ) NEP 2 + τ λ 2 e β ( λ ) P ( λ ) S ] B
SNR R = f τ λ β ( λ ) P ( λ ) B ( τ λ + 0.2 ) NEP 2 + τ λ 2 e β ( λ ) P ( λ ) S

Metrics