Abstract

We present experimental investigations on the generation of radially polarized laser beams excited by a ring-shaped pump intensity distribution in combination with polarizing grating waveguide mirrors in an Yb:YAG thin-disk laser resonator. Hollow optical fiber components were implemented in the pump beam path to transform the commonly used flattop pumping distribution into a ring-shaped distribution. The investigation was focused on finding the optimum mode overlap between the ring-shaped pump spot and the excited first order Laguerre-Gaussian (LG01) doughnut mode. The power, efficiency and polarization state of the emitted laser beam as well as the thermal behavior of the disk was compared to that obtained with a standard flattop pumping distribution. A maximum output power of 107 W with a high optical efficiency of 41.2% was achieved by implementing a 300 mm long specially manufactured hollow fiber into the pump beam path. Additionally it was found that at a pump power of 280 W the maximum temperature increase is about 21% below the one observed with standard homogeneous pumping.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High-power radially polarized Yb:YAG thin-disk laser with high efficiency

Marwan Abdou Ahmed, Matthias Haefner, Moritz Vogel, Christof Pruss, Andreas Voss, Wolfgang Osten, and Thomas Graf
Opt. Express 19(6) 5093-5103 (2011)

Highly-efficient continuous-wave intra-cavity frequency-doubled Yb:LuAG thin-disk laser with 1 kW of output power

Tom Dietrich, Stefan Piehler, Martin Rumpel, Philippe Villeval, Dominique Lupinski, Marwan Abdou-Ahmed, and Thomas Graf
Opt. Express 25(5) 4917-4925 (2017)

High power Er:YAG laser with radially-polarized Laguerre-Gaussian (LG01) mode output

J. W. Kim, J. I. Mackenzie, J. R. Hayes, and W. A. Clarkson
Opt. Express 19(15) 14526-14531 (2011)

References

  • View by:
  • |
  • |
  • |

  1. V. Niziev and A. Nesterov, “Influence of beam polarization on laser cutting efficiency,” Appl. Phys. 32(13), 1455–1461 (1999).
  2. A. Weber, A. Michalowksi, M. A. Ahmed, V. Onuseit, V. Rominger, M. Kraus, and T. Graf, “Effects of radial and tangential polarization in laser material processing,” Physics Procedia 12(A), 21–30 (2011).
    [Crossref]
  3. M. Kraus, M. A. Ahmed, A. Michalowksi, A. Voss, R. Weber, and T. Graf, “Microdrilling in steel using ultrashort pulsed laser beams with radial and azimuthal polarization,” Opt. Express 18(21), 22305–22313 (2010).
    [Crossref] [PubMed]
  4. R. Dorn, S. Quabis, and G. Leuchs, “Focusing a radially polarized light beam to a significantly smaller spot size,” arXiv preprint physics/0310007 (2003).
  5. G. M. Lerman and U. Levy, “Tight focusing of spatially variant vector optical fields with elliptical symmetry of linear polarization,” Opt. Lett. 32(15), 2194–2196 (2007).
    [Crossref] [PubMed]
  6. Z. Zhang, J. Pu, and X. Wang, “Tight focusing of radially and azimuthally polarized vortex beams through a uniaxial birefringent crystal,” Appl. Opt. 47(12), 1963–1967 (2008).
    [Crossref] [PubMed]
  7. B. Tian and J. Pu, “Tight focusing of a double-ring-shaped, azimuthally polarized beam,” Opt. Lett. 36(11), 2014–2016 (2011).
    [Crossref] [PubMed]
  8. T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Forces in optical tweezers with radially and azimuthally polarized trapping beams,” Opt. Lett. 33(2), 122–124 (2008).
    [Crossref] [PubMed]
  9. S. C. Tidwell, G. H. Kim, and W. D. Kimura, “Efficient radially polarized laser beam generation with a double interferometer,” Appl. Opt. 32(27), 5222–5229 (1993).
    [Crossref] [PubMed]
  10. Z. Bomzon, G. Biener, V. Kleiner, and E. Hasman, “Radially and azimuthally polarized beams generated by space-variant dielectric subwavelength gratings,” Opt. Lett. 27(5), 285–287 (2007).
    [Crossref] [PubMed]
  11. G. Machavariani, Y. Lumer, I. Moshe, A. Meir, and S. Jackel, “Efficient extracavity generation of radially and azimuthally polarized beams,” Opt. Lett. 32(11), 1468–1470 (2007).
    [Crossref] [PubMed]
  12. M. A. Ahmed, M. Vogel, A. Voss, and T. Graf, “A 1-kW radially polarized thin-disk laser,” in Proceedings of IEEE Lasers and Electro-Optics and the European Quantum Electronics Conference (IEEE, 2009), 10834335.
  13. Z. Bomzon and E. Hasman, “The formation of laser beams with pure azimuthal or radial polarization,” Appl. Phys. Lett. 77(21), 3322–3324 (2000).
    [Crossref]
  14. D. Delbeke, R. Baets, and P. Muys, “Polarization-selective beam splitter based on a highly efficient simple binary diffraction grating,” Appl. Phys. Lett. 77(33), 6157–6165 (2004).
  15. M. Endo, “Azimuthally polarized 1 kW CO 2 laser with a triple-axicon retroreflector optical resonator,” Opt. Lett. 33(15), 1771–1773 (2008).
    [Crossref] [PubMed]
  16. Y. Kozawa, S. Sato, T. Sato, Y. Inoue, Y. Ohtera, and S. Kawakami, “Cylindrical vector laser beam generated by the use of a photonic crystal mirror,” Appl. Phys. Express 1(2), 022008 (2008).
    [Crossref]
  17. M. A. Ahmed, J. Schulz, A. Voss, O. Parriaux, J.-C. Pommier, and T. Graf, “Radially polarized 3 kW beam from a CO2 laser with an intracavity resonant grating mirror,” Opt. Lett. 32(13), 1824–1826 (2007).
    [Crossref] [PubMed]
  18. M. Rumpel, M. Haefner, T. Schoder, C. Pruss, A. Voss, W. Osten, M. A. Ahmed, and T. Graf, “Circular grating waveguide structures for intracavity generation of azimuthal polarization in a thin-disk laser,” Opt. Lett. 37(10), 1763–1765 (2012).
    [Crossref] [PubMed]
  19. M. A. Ahmed, M. Haefner, M. Vogel, C. Pruss, A. Voss, W. Osten, and T. Graf, “High-power radially polarized Yb: YAG thin-disk laser with high efficiency,” Opt. Express 19(6), 5093–5103 (2009).
    [Crossref]
  20. J. W. Kim, J. I. Mackenzie, J. R. Hayes, and W. A. Clarkson, “High power Er:YAG laser with radially-polarized Laguerre-Gaussian (LG01) mode output,” Opt. Express 19(15), 14526–14531 (2011).
    [Crossref] [PubMed]
  21. M. Huonker, C. Schmitz, and A. Voss, “Laserverstaerkeranordnung,” Europaeische Patentanmeldung, EP1 178 579 A2, 2002.
  22. M. Larionov, Kontaktierung und Charakterisierung von Kristallen fuer Scheibenlaser (Herbert Utz Verlag, 2009, Vol. 53).

2012 (1)

2011 (3)

2010 (1)

2009 (1)

2008 (4)

2007 (4)

2004 (1)

D. Delbeke, R. Baets, and P. Muys, “Polarization-selective beam splitter based on a highly efficient simple binary diffraction grating,” Appl. Phys. Lett. 77(33), 6157–6165 (2004).

2000 (1)

Z. Bomzon and E. Hasman, “The formation of laser beams with pure azimuthal or radial polarization,” Appl. Phys. Lett. 77(21), 3322–3324 (2000).
[Crossref]

1999 (1)

V. Niziev and A. Nesterov, “Influence of beam polarization on laser cutting efficiency,” Appl. Phys. 32(13), 1455–1461 (1999).

1993 (1)

Ahmed, M. A.

Baets, R.

D. Delbeke, R. Baets, and P. Muys, “Polarization-selective beam splitter based on a highly efficient simple binary diffraction grating,” Appl. Phys. Lett. 77(33), 6157–6165 (2004).

Biener, G.

Bomzon, Z.

Z. Bomzon, G. Biener, V. Kleiner, and E. Hasman, “Radially and azimuthally polarized beams generated by space-variant dielectric subwavelength gratings,” Opt. Lett. 27(5), 285–287 (2007).
[Crossref] [PubMed]

Z. Bomzon and E. Hasman, “The formation of laser beams with pure azimuthal or radial polarization,” Appl. Phys. Lett. 77(21), 3322–3324 (2000).
[Crossref]

Clarkson, W. A.

Delbeke, D.

D. Delbeke, R. Baets, and P. Muys, “Polarization-selective beam splitter based on a highly efficient simple binary diffraction grating,” Appl. Phys. Lett. 77(33), 6157–6165 (2004).

Dorn, R.

R. Dorn, S. Quabis, and G. Leuchs, “Focusing a radially polarized light beam to a significantly smaller spot size,” arXiv preprint physics/0310007 (2003).

Endo, M.

Graf, T.

Haefner, M.

Hasman, E.

Z. Bomzon, G. Biener, V. Kleiner, and E. Hasman, “Radially and azimuthally polarized beams generated by space-variant dielectric subwavelength gratings,” Opt. Lett. 27(5), 285–287 (2007).
[Crossref] [PubMed]

Z. Bomzon and E. Hasman, “The formation of laser beams with pure azimuthal or radial polarization,” Appl. Phys. Lett. 77(21), 3322–3324 (2000).
[Crossref]

Hayes, J. R.

Heckenberg, N. R.

Huonker, M.

M. Huonker, C. Schmitz, and A. Voss, “Laserverstaerkeranordnung,” Europaeische Patentanmeldung, EP1 178 579 A2, 2002.

Inoue, Y.

Y. Kozawa, S. Sato, T. Sato, Y. Inoue, Y. Ohtera, and S. Kawakami, “Cylindrical vector laser beam generated by the use of a photonic crystal mirror,” Appl. Phys. Express 1(2), 022008 (2008).
[Crossref]

Jackel, S.

Kawakami, S.

Y. Kozawa, S. Sato, T. Sato, Y. Inoue, Y. Ohtera, and S. Kawakami, “Cylindrical vector laser beam generated by the use of a photonic crystal mirror,” Appl. Phys. Express 1(2), 022008 (2008).
[Crossref]

Kim, G. H.

Kim, J. W.

Kimura, W. D.

Kleiner, V.

Kozawa, Y.

Y. Kozawa, S. Sato, T. Sato, Y. Inoue, Y. Ohtera, and S. Kawakami, “Cylindrical vector laser beam generated by the use of a photonic crystal mirror,” Appl. Phys. Express 1(2), 022008 (2008).
[Crossref]

Kraus, M.

A. Weber, A. Michalowksi, M. A. Ahmed, V. Onuseit, V. Rominger, M. Kraus, and T. Graf, “Effects of radial and tangential polarization in laser material processing,” Physics Procedia 12(A), 21–30 (2011).
[Crossref]

M. Kraus, M. A. Ahmed, A. Michalowksi, A. Voss, R. Weber, and T. Graf, “Microdrilling in steel using ultrashort pulsed laser beams with radial and azimuthal polarization,” Opt. Express 18(21), 22305–22313 (2010).
[Crossref] [PubMed]

Larionov, M.

M. Larionov, Kontaktierung und Charakterisierung von Kristallen fuer Scheibenlaser (Herbert Utz Verlag, 2009, Vol. 53).

Lerman, G. M.

Leuchs, G.

R. Dorn, S. Quabis, and G. Leuchs, “Focusing a radially polarized light beam to a significantly smaller spot size,” arXiv preprint physics/0310007 (2003).

Levy, U.

Lumer, Y.

Machavariani, G.

Mackenzie, J. I.

Meir, A.

Michalowksi, A.

A. Weber, A. Michalowksi, M. A. Ahmed, V. Onuseit, V. Rominger, M. Kraus, and T. Graf, “Effects of radial and tangential polarization in laser material processing,” Physics Procedia 12(A), 21–30 (2011).
[Crossref]

M. Kraus, M. A. Ahmed, A. Michalowksi, A. Voss, R. Weber, and T. Graf, “Microdrilling in steel using ultrashort pulsed laser beams with radial and azimuthal polarization,” Opt. Express 18(21), 22305–22313 (2010).
[Crossref] [PubMed]

Moshe, I.

Muys, P.

D. Delbeke, R. Baets, and P. Muys, “Polarization-selective beam splitter based on a highly efficient simple binary diffraction grating,” Appl. Phys. Lett. 77(33), 6157–6165 (2004).

Nesterov, A.

V. Niziev and A. Nesterov, “Influence of beam polarization on laser cutting efficiency,” Appl. Phys. 32(13), 1455–1461 (1999).

Nieminen, T. A.

Niziev, V.

V. Niziev and A. Nesterov, “Influence of beam polarization on laser cutting efficiency,” Appl. Phys. 32(13), 1455–1461 (1999).

Ohtera, Y.

Y. Kozawa, S. Sato, T. Sato, Y. Inoue, Y. Ohtera, and S. Kawakami, “Cylindrical vector laser beam generated by the use of a photonic crystal mirror,” Appl. Phys. Express 1(2), 022008 (2008).
[Crossref]

Onuseit, V.

A. Weber, A. Michalowksi, M. A. Ahmed, V. Onuseit, V. Rominger, M. Kraus, and T. Graf, “Effects of radial and tangential polarization in laser material processing,” Physics Procedia 12(A), 21–30 (2011).
[Crossref]

Osten, W.

Parriaux, O.

Pommier, J.-C.

Pruss, C.

Pu, J.

Quabis, S.

R. Dorn, S. Quabis, and G. Leuchs, “Focusing a radially polarized light beam to a significantly smaller spot size,” arXiv preprint physics/0310007 (2003).

Rominger, V.

A. Weber, A. Michalowksi, M. A. Ahmed, V. Onuseit, V. Rominger, M. Kraus, and T. Graf, “Effects of radial and tangential polarization in laser material processing,” Physics Procedia 12(A), 21–30 (2011).
[Crossref]

Rubinsztein-Dunlop, H.

Rumpel, M.

Sato, S.

Y. Kozawa, S. Sato, T. Sato, Y. Inoue, Y. Ohtera, and S. Kawakami, “Cylindrical vector laser beam generated by the use of a photonic crystal mirror,” Appl. Phys. Express 1(2), 022008 (2008).
[Crossref]

Sato, T.

Y. Kozawa, S. Sato, T. Sato, Y. Inoue, Y. Ohtera, and S. Kawakami, “Cylindrical vector laser beam generated by the use of a photonic crystal mirror,” Appl. Phys. Express 1(2), 022008 (2008).
[Crossref]

Schmitz, C.

M. Huonker, C. Schmitz, and A. Voss, “Laserverstaerkeranordnung,” Europaeische Patentanmeldung, EP1 178 579 A2, 2002.

Schoder, T.

Schulz, J.

Tian, B.

Tidwell, S. C.

Vogel, M.

M. A. Ahmed, M. Haefner, M. Vogel, C. Pruss, A. Voss, W. Osten, and T. Graf, “High-power radially polarized Yb: YAG thin-disk laser with high efficiency,” Opt. Express 19(6), 5093–5103 (2009).
[Crossref]

M. A. Ahmed, M. Vogel, A. Voss, and T. Graf, “A 1-kW radially polarized thin-disk laser,” in Proceedings of IEEE Lasers and Electro-Optics and the European Quantum Electronics Conference (IEEE, 2009), 10834335.

Voss, A.

Wang, X.

Weber, A.

A. Weber, A. Michalowksi, M. A. Ahmed, V. Onuseit, V. Rominger, M. Kraus, and T. Graf, “Effects of radial and tangential polarization in laser material processing,” Physics Procedia 12(A), 21–30 (2011).
[Crossref]

Weber, R.

Zhang, Z.

Appl. Opt. (2)

Appl. Phys. (1)

V. Niziev and A. Nesterov, “Influence of beam polarization on laser cutting efficiency,” Appl. Phys. 32(13), 1455–1461 (1999).

Appl. Phys. Express (1)

Y. Kozawa, S. Sato, T. Sato, Y. Inoue, Y. Ohtera, and S. Kawakami, “Cylindrical vector laser beam generated by the use of a photonic crystal mirror,” Appl. Phys. Express 1(2), 022008 (2008).
[Crossref]

Appl. Phys. Lett. (2)

Z. Bomzon and E. Hasman, “The formation of laser beams with pure azimuthal or radial polarization,” Appl. Phys. Lett. 77(21), 3322–3324 (2000).
[Crossref]

D. Delbeke, R. Baets, and P. Muys, “Polarization-selective beam splitter based on a highly efficient simple binary diffraction grating,” Appl. Phys. Lett. 77(33), 6157–6165 (2004).

Opt. Express (3)

Opt. Lett. (8)

Z. Bomzon, G. Biener, V. Kleiner, and E. Hasman, “Radially and azimuthally polarized beams generated by space-variant dielectric subwavelength gratings,” Opt. Lett. 27(5), 285–287 (2007).
[Crossref] [PubMed]

G. Machavariani, Y. Lumer, I. Moshe, A. Meir, and S. Jackel, “Efficient extracavity generation of radially and azimuthally polarized beams,” Opt. Lett. 32(11), 1468–1470 (2007).
[Crossref] [PubMed]

M. Endo, “Azimuthally polarized 1 kW CO 2 laser with a triple-axicon retroreflector optical resonator,” Opt. Lett. 33(15), 1771–1773 (2008).
[Crossref] [PubMed]

B. Tian and J. Pu, “Tight focusing of a double-ring-shaped, azimuthally polarized beam,” Opt. Lett. 36(11), 2014–2016 (2011).
[Crossref] [PubMed]

T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Forces in optical tweezers with radially and azimuthally polarized trapping beams,” Opt. Lett. 33(2), 122–124 (2008).
[Crossref] [PubMed]

M. A. Ahmed, J. Schulz, A. Voss, O. Parriaux, J.-C. Pommier, and T. Graf, “Radially polarized 3 kW beam from a CO2 laser with an intracavity resonant grating mirror,” Opt. Lett. 32(13), 1824–1826 (2007).
[Crossref] [PubMed]

M. Rumpel, M. Haefner, T. Schoder, C. Pruss, A. Voss, W. Osten, M. A. Ahmed, and T. Graf, “Circular grating waveguide structures for intracavity generation of azimuthal polarization in a thin-disk laser,” Opt. Lett. 37(10), 1763–1765 (2012).
[Crossref] [PubMed]

G. M. Lerman and U. Levy, “Tight focusing of spatially variant vector optical fields with elliptical symmetry of linear polarization,” Opt. Lett. 32(15), 2194–2196 (2007).
[Crossref] [PubMed]

Physics Procedia (1)

A. Weber, A. Michalowksi, M. A. Ahmed, V. Onuseit, V. Rominger, M. Kraus, and T. Graf, “Effects of radial and tangential polarization in laser material processing,” Physics Procedia 12(A), 21–30 (2011).
[Crossref]

Other (4)

R. Dorn, S. Quabis, and G. Leuchs, “Focusing a radially polarized light beam to a significantly smaller spot size,” arXiv preprint physics/0310007 (2003).

M. A. Ahmed, M. Vogel, A. Voss, and T. Graf, “A 1-kW radially polarized thin-disk laser,” in Proceedings of IEEE Lasers and Electro-Optics and the European Quantum Electronics Conference (IEEE, 2009), 10834335.

M. Huonker, C. Schmitz, and A. Voss, “Laserverstaerkeranordnung,” Europaeische Patentanmeldung, EP1 178 579 A2, 2002.

M. Larionov, Kontaktierung und Charakterisierung von Kristallen fuer Scheibenlaser (Herbert Utz Verlag, 2009, Vol. 53).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Sketch of the geometry of the used hollow beam-shaping fibers; a) hollow capillary and b) collapsed capillary.

Fig. 2
Fig. 2

Comparison between the oscillating ring mode (black line) and the ring-shaped intensity distribution generated by the hollow capillary (a.) and the collapsed fiber (b.).

Fig. 3
Fig. 3

Experimental setup for the LG01 mode Yb:YAG laser resonator.

Fig. 4
Fig. 4

Wavelength dependence of the spectral reflectivity distribution for TE and TM polarization at normal incidence (a). The reflectivity of the GWM was measured by a probe beam collimated on the structured surface with the circular grating as sketched on the right hand side (b). The orientation of the probe beams polarization is indicated by the red arrow. The reflectivity of the original HR coating was measured by probing the mirror surface outside the structured area.

Fig. 5
Fig. 5

Output power (left) and optical efficiency (right) of the radially polarized thin-disk lases pumped either by a flattop or by ring-shaped pumping distribution as generated by the fiber-optic beam shaper (whose cross-sections are shown on the very right).

Fig. 6
Fig. 6

Far field intensity distribution of the output beam (a.) as generated by the laser pumped through capillary #4 and analysis of its polarization distribution as transmitted through a rotating linear polarizer (b.).

Fig. 7
Fig. 7

Distribution of the fluorescence emitted from the thin-disk laser crystal either homogeneously pumped by a flattop pumping distribution (a) or by the ring-shaped distribution produced by capillary #4.

Fig. 8
Fig. 8

Cross-section of the temperature measurement on the front surface of the thin-disk laser crystal for a pump power of 225 W (a) and comparison of the measured temperatures as a function of the pump power measured at pos. a and pos. b (b).

Tables (2)

Tables Icon

Table 1 Geometrical parameters for the simulation of the hollow capillary (first row) and the collapsed fiber capillary (second row) with the same diameter ratio DI/DO.

Tables Icon

Table 2 Geometrical parameters used for the experimental comparison of the performance of the radially polarized laser with flattop and ring-shaped pumping.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

F = 1 | I Pumpspot I Ringmode | I Pumpspot

Metrics