Abstract

We present a new approach to remove monolayer graphene transferred on top of a silicon-on-insulator (SOI) photonic integrated chip. Femtosecond laser ablation is used for the first time to remove graphene from SOI waveguides, whereas oxygen plasma etching through a metal mask is employed to peel off graphene from the grating couplers attached to the waveguides. We show by means of Raman spectroscopy and atomic force microscopy that the removal of graphene is successful with minimal damage to the underlying SOI waveguides. Finally, we employ both removal techniques to measure the contribution of graphene to the loss of grating-coupled graphene-covered SOI waveguides using the cut-back method.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Low-loss submicrometer silicon-on-insulator rib waveguides and corner mirrors

S. Lardenois, D. Pascal, L. Vivien, E. Cassan, S. Laval, R. Orobtchouk, M. Heitzmann, N. Bouzaida, and L. Mollard
Opt. Lett. 28(13) 1150-1152 (2003)

Narrowband silicon waveguide Bragg reflector achieved by highly ordered graphene oxide gratings

Yung-Jr Hung, Ya-Ching Liang, Chia-Wei Huang, Jyun-Fu Shih, Shih Hu, Tzu-Hsiang Yen, Chia-Wei Kao, and Chun-Hu Chen
Opt. Lett. 42(22) 4768-4771 (2017)

Design and fabrication of surface trimmed silicon-on-insulator waveguide with adiabatic spot-size converters

Sujith Chandran, Meenatchi Sundaram, Sreevatsa Kurudi, and Bijoy Krishna Das
Appl. Opt. 56(6) 1708-1716 (2017)

References

  • View by:
  • |
  • |
  • |

  1. J.L. Cheng, N. Vermeulen, and J.E. Sipe, “Third order optical nonlinearity of graphene,” New J. Phys. 16, 053014 (2014).
    [Crossref]
  2. J.L. Cheng, N. Vermeulen, and J.E. Sipe, “DC current induced second order optical nonlinearity in graphene,” Opt. Express 22, 15868–15876 (2014).
    [Crossref] [PubMed]
  3. Z. Cheng, H. K. Tsang, X. Wang, K. Xu, and J.-B. Xu, “In-plane optical absorption and free carrier absorption in graphene-on-silicon waveguides,” IEEE J. Sel. Top. Quant. Electron. 20, 4400106 (2014).
  4. Y. Ye, L. Gan, L. Dai, Y. Dai, X. Guo, H. Meng, B. Yu, Z. Shi, K. Shang, and G. Qin, “A simple and scalable graphene patterning method and its application in CdSe nanobelt/graphene Schottky junction solar cells,” Nanoscale 3, 1477–1481 (2011).
    [Crossref] [PubMed]
  5. K.S. Kim, Y. Zhao, H. Jang, S.Y. Lee, J.M. Kim, K.S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi, and B.H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature 457, 706–710 (2009).
    [Crossref] [PubMed]
  6. A. Pirkle, J. Chan, A. Venugopal, D. Hinojos, C.W. Magnuson, S. McDonnell, L. Colombo, E.M. Vogel, R.S. Ruoff, and R.M. Wallace, “The effect of chemical residues on the physical and electrical properties of chemical vapor deposited graphene transferred to SiO2,” Appl. Phys. Lett. 99, 122108 (2011).
    [Crossref]
  7. S.-C. Jeon, Y.-S. Kim, and D.-K. Lee, “Fabrication of a graphene nanoribbon with electron beam lithography using a XR-1541/PMMA lift-off process,” Trans. Electr. Electron. Mat. 11, 190–193 (2010).
    [Crossref]
  8. R. Sahin, E. Simsek, and S. Akturk, “Nanoscale patterning of graphene through femtosecond laser ablation,” Appl. Phys. Lett. 104, 053118 (2014).
    [Crossref]
  9. F. Wakaya, T. Kurihara, S. Abo, and M. Takai, “Ultra-violet laser processing of graphene on SiO2/Si,” Microelectron. Eng. 110358–360 (2013).
    [Crossref]
  10. I. Bobrinetskiy, A.V. Emelianov, N. Otero, and P.M. Romero, “Patterned graphene ablation and two-photon functionalization by picosecond laser pulses in ambient conditions,” Appl. Phys. Lett. 107, 043104 (2015).
    [Crossref]
  11. R. Sahin, S. Akturk, and E. Simsek, “Quantifying the quality of femtosecond laser ablation of graphene,” Appl. Phys. A 116555–560 (2014).
    [Crossref]
  12. T. Ciuk, I. Pasternak, A. Krajewska, J. Sobieski, P. Caban, J. Szmidt, and W. Strupinski, “Properties of chemical vapor deposition graphene transferred by high-speed electrochemical delamination,” J. Phys. Chem. C 117, 20833–20837 (2013).
    [Crossref]
  13. A. Gupta, G. Chen, P. Joshi, S. Tadigadapa, and P.C. Eklund, “Raman scattering from high-frequency phonons in supported n-graphene layer films,” Nano Lett. 6, 2667–2673 (2006).
    [Crossref] [PubMed]
  14. A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K.S. Novoselov, S. Roth, and A.K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97, 189401 (2006).
    [Crossref]
  15. C. Casiraghi, S. Pisana, K.S. Novoselov, A.K. Geim, and A.C. Ferrari, “Raman fingerprint of charged impurities in graphene,” Appl. Phys. Lett. 91, 233108 (2007).
    [Crossref]
  16. D.S. Lee, C. Riedl, B. Krauss, K. von Klitzing, U. Starke, and J.H. Smet, “Raman spectra of epitaxial graphene on SiC and of epitaxial graphene transferred to SiO2,” Nano Lett. 9, 4320–4325 (2008).
    [Crossref]
  17. H. Cao, Q. Yu, L.A. Jauregui, J. Tian, W. Wu, Z. Liu, R. Jalilian, D.K. Benjamin, Z. Jiang, J. Bao, S.S.S. Pei, and Y.P. Chen, “Electronic transport in chemical vapor deposited graphene synthesized on Cu: quantum Hall effect and weak localization,” Appl. Phys. Lett. 96, 122106 (2010).
    [Crossref]
  18. Y.Y. Wang, Z.H. Ni, T. Yu, Z.X. Shen, H.M. Wang, Y.H. Wu, W. Chen, and A.T.S. Wee, “Raman studies of monolayer graphene: the substrate effect,” J. Phys. Chem. C 112, 10637–10640 (2008).
    [Crossref]
  19. D. Graf, F. Molitor, K. Ensslin, C. Stampfer, A. Jungen, C. Hierold, and L. Wirtz, “Spatially resolved Raman spectroscopy of single- and few-layer graphene,” Nano Lett. 7, 238–242 (2007).
    [Crossref] [PubMed]
  20. J.M. Liu, “Simple technique for measurements of pulsed Gaussian-beam spot sizes,” Opt. Lett. 7, 196–198 (1982).
    [Crossref] [PubMed]
  21. W. Zhang, L. Li, Z.B. Wang, A.A. Pena, D.J. Whitehead, M.L. Zhong, Z. Lin, and H.W. Zhu, “Ti:Sapphire femtosecond laser direct micro-cutting and profiling of graphene,” Appl. Phys. A 109, 291–297 (2012).
    [Crossref]
  22. J. Hoffman, J. Chrzanowska, S. Kucharski, T. Moscicki, I.N. Mihailescu, C. Ristoscu, and Z. Szymanski, “The effect of laser wavelength on the ablation rate of carbon,” Appl. Phys. A 117, 395–400 (2014).
    [Crossref]
  23. H. Al-Mumen, F. Rao, W. Li, and L. Dong, “Singular sheet etching of graphene with oxygen plasma,” Nano-Micro Lett 6, 116–124 (2014).
    [Crossref]
  24. I. Childres, L.A. Jauregui, J. Tian, and Y.P. Chen, “Effect of oxygen plasma etching on graphene studied using Raman spectroscopy and electronic transport measurements,” New J. Phys. 13, 025008 (2011).
    [Crossref]
  25. Y.A. Vlasov and S.J. McNab, “Losses in single-mode silicon-on-insulator strip waveguides and bends,” Opt. Express 12, 1622–1631 (2014).
    [Crossref]
  26. H. Li, Y. Anugrah, S.J. Koester, and M. Li, “Optical absorption in graphene integrated on Silicon waveguides,” Appl. Phys. Lett. 101, 111110 (2012).
    [Crossref]

2015 (1)

I. Bobrinetskiy, A.V. Emelianov, N. Otero, and P.M. Romero, “Patterned graphene ablation and two-photon functionalization by picosecond laser pulses in ambient conditions,” Appl. Phys. Lett. 107, 043104 (2015).
[Crossref]

2014 (8)

R. Sahin, S. Akturk, and E. Simsek, “Quantifying the quality of femtosecond laser ablation of graphene,” Appl. Phys. A 116555–560 (2014).
[Crossref]

Z. Cheng, H. K. Tsang, X. Wang, K. Xu, and J.-B. Xu, “In-plane optical absorption and free carrier absorption in graphene-on-silicon waveguides,” IEEE J. Sel. Top. Quant. Electron. 20, 4400106 (2014).

R. Sahin, E. Simsek, and S. Akturk, “Nanoscale patterning of graphene through femtosecond laser ablation,” Appl. Phys. Lett. 104, 053118 (2014).
[Crossref]

J. Hoffman, J. Chrzanowska, S. Kucharski, T. Moscicki, I.N. Mihailescu, C. Ristoscu, and Z. Szymanski, “The effect of laser wavelength on the ablation rate of carbon,” Appl. Phys. A 117, 395–400 (2014).
[Crossref]

H. Al-Mumen, F. Rao, W. Li, and L. Dong, “Singular sheet etching of graphene with oxygen plasma,” Nano-Micro Lett 6, 116–124 (2014).
[Crossref]

J.L. Cheng, N. Vermeulen, and J.E. Sipe, “Third order optical nonlinearity of graphene,” New J. Phys. 16, 053014 (2014).
[Crossref]

Y.A. Vlasov and S.J. McNab, “Losses in single-mode silicon-on-insulator strip waveguides and bends,” Opt. Express 12, 1622–1631 (2014).
[Crossref]

J.L. Cheng, N. Vermeulen, and J.E. Sipe, “DC current induced second order optical nonlinearity in graphene,” Opt. Express 22, 15868–15876 (2014).
[Crossref] [PubMed]

2013 (2)

F. Wakaya, T. Kurihara, S. Abo, and M. Takai, “Ultra-violet laser processing of graphene on SiO2/Si,” Microelectron. Eng. 110358–360 (2013).
[Crossref]

T. Ciuk, I. Pasternak, A. Krajewska, J. Sobieski, P. Caban, J. Szmidt, and W. Strupinski, “Properties of chemical vapor deposition graphene transferred by high-speed electrochemical delamination,” J. Phys. Chem. C 117, 20833–20837 (2013).
[Crossref]

2012 (2)

H. Li, Y. Anugrah, S.J. Koester, and M. Li, “Optical absorption in graphene integrated on Silicon waveguides,” Appl. Phys. Lett. 101, 111110 (2012).
[Crossref]

W. Zhang, L. Li, Z.B. Wang, A.A. Pena, D.J. Whitehead, M.L. Zhong, Z. Lin, and H.W. Zhu, “Ti:Sapphire femtosecond laser direct micro-cutting and profiling of graphene,” Appl. Phys. A 109, 291–297 (2012).
[Crossref]

2011 (3)

Y. Ye, L. Gan, L. Dai, Y. Dai, X. Guo, H. Meng, B. Yu, Z. Shi, K. Shang, and G. Qin, “A simple and scalable graphene patterning method and its application in CdSe nanobelt/graphene Schottky junction solar cells,” Nanoscale 3, 1477–1481 (2011).
[Crossref] [PubMed]

A. Pirkle, J. Chan, A. Venugopal, D. Hinojos, C.W. Magnuson, S. McDonnell, L. Colombo, E.M. Vogel, R.S. Ruoff, and R.M. Wallace, “The effect of chemical residues on the physical and electrical properties of chemical vapor deposited graphene transferred to SiO2,” Appl. Phys. Lett. 99, 122108 (2011).
[Crossref]

I. Childres, L.A. Jauregui, J. Tian, and Y.P. Chen, “Effect of oxygen plasma etching on graphene studied using Raman spectroscopy and electronic transport measurements,” New J. Phys. 13, 025008 (2011).
[Crossref]

2010 (2)

H. Cao, Q. Yu, L.A. Jauregui, J. Tian, W. Wu, Z. Liu, R. Jalilian, D.K. Benjamin, Z. Jiang, J. Bao, S.S.S. Pei, and Y.P. Chen, “Electronic transport in chemical vapor deposited graphene synthesized on Cu: quantum Hall effect and weak localization,” Appl. Phys. Lett. 96, 122106 (2010).
[Crossref]

S.-C. Jeon, Y.-S. Kim, and D.-K. Lee, “Fabrication of a graphene nanoribbon with electron beam lithography using a XR-1541/PMMA lift-off process,” Trans. Electr. Electron. Mat. 11, 190–193 (2010).
[Crossref]

2009 (1)

K.S. Kim, Y. Zhao, H. Jang, S.Y. Lee, J.M. Kim, K.S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi, and B.H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature 457, 706–710 (2009).
[Crossref] [PubMed]

2008 (2)

Y.Y. Wang, Z.H. Ni, T. Yu, Z.X. Shen, H.M. Wang, Y.H. Wu, W. Chen, and A.T.S. Wee, “Raman studies of monolayer graphene: the substrate effect,” J. Phys. Chem. C 112, 10637–10640 (2008).
[Crossref]

D.S. Lee, C. Riedl, B. Krauss, K. von Klitzing, U. Starke, and J.H. Smet, “Raman spectra of epitaxial graphene on SiC and of epitaxial graphene transferred to SiO2,” Nano Lett. 9, 4320–4325 (2008).
[Crossref]

2007 (2)

C. Casiraghi, S. Pisana, K.S. Novoselov, A.K. Geim, and A.C. Ferrari, “Raman fingerprint of charged impurities in graphene,” Appl. Phys. Lett. 91, 233108 (2007).
[Crossref]

D. Graf, F. Molitor, K. Ensslin, C. Stampfer, A. Jungen, C. Hierold, and L. Wirtz, “Spatially resolved Raman spectroscopy of single- and few-layer graphene,” Nano Lett. 7, 238–242 (2007).
[Crossref] [PubMed]

2006 (2)

A. Gupta, G. Chen, P. Joshi, S. Tadigadapa, and P.C. Eklund, “Raman scattering from high-frequency phonons in supported n-graphene layer films,” Nano Lett. 6, 2667–2673 (2006).
[Crossref] [PubMed]

A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K.S. Novoselov, S. Roth, and A.K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97, 189401 (2006).
[Crossref]

1982 (1)

Abo, S.

F. Wakaya, T. Kurihara, S. Abo, and M. Takai, “Ultra-violet laser processing of graphene on SiO2/Si,” Microelectron. Eng. 110358–360 (2013).
[Crossref]

Ahn, J.-H.

K.S. Kim, Y. Zhao, H. Jang, S.Y. Lee, J.M. Kim, K.S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi, and B.H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature 457, 706–710 (2009).
[Crossref] [PubMed]

Akturk, S.

R. Sahin, E. Simsek, and S. Akturk, “Nanoscale patterning of graphene through femtosecond laser ablation,” Appl. Phys. Lett. 104, 053118 (2014).
[Crossref]

R. Sahin, S. Akturk, and E. Simsek, “Quantifying the quality of femtosecond laser ablation of graphene,” Appl. Phys. A 116555–560 (2014).
[Crossref]

Al-Mumen, H.

H. Al-Mumen, F. Rao, W. Li, and L. Dong, “Singular sheet etching of graphene with oxygen plasma,” Nano-Micro Lett 6, 116–124 (2014).
[Crossref]

Anugrah, Y.

H. Li, Y. Anugrah, S.J. Koester, and M. Li, “Optical absorption in graphene integrated on Silicon waveguides,” Appl. Phys. Lett. 101, 111110 (2012).
[Crossref]

Bao, J.

H. Cao, Q. Yu, L.A. Jauregui, J. Tian, W. Wu, Z. Liu, R. Jalilian, D.K. Benjamin, Z. Jiang, J. Bao, S.S.S. Pei, and Y.P. Chen, “Electronic transport in chemical vapor deposited graphene synthesized on Cu: quantum Hall effect and weak localization,” Appl. Phys. Lett. 96, 122106 (2010).
[Crossref]

Benjamin, D.K.

H. Cao, Q. Yu, L.A. Jauregui, J. Tian, W. Wu, Z. Liu, R. Jalilian, D.K. Benjamin, Z. Jiang, J. Bao, S.S.S. Pei, and Y.P. Chen, “Electronic transport in chemical vapor deposited graphene synthesized on Cu: quantum Hall effect and weak localization,” Appl. Phys. Lett. 96, 122106 (2010).
[Crossref]

Bobrinetskiy, I.

I. Bobrinetskiy, A.V. Emelianov, N. Otero, and P.M. Romero, “Patterned graphene ablation and two-photon functionalization by picosecond laser pulses in ambient conditions,” Appl. Phys. Lett. 107, 043104 (2015).
[Crossref]

Caban, P.

T. Ciuk, I. Pasternak, A. Krajewska, J. Sobieski, P. Caban, J. Szmidt, and W. Strupinski, “Properties of chemical vapor deposition graphene transferred by high-speed electrochemical delamination,” J. Phys. Chem. C 117, 20833–20837 (2013).
[Crossref]

Cao, H.

H. Cao, Q. Yu, L.A. Jauregui, J. Tian, W. Wu, Z. Liu, R. Jalilian, D.K. Benjamin, Z. Jiang, J. Bao, S.S.S. Pei, and Y.P. Chen, “Electronic transport in chemical vapor deposited graphene synthesized on Cu: quantum Hall effect and weak localization,” Appl. Phys. Lett. 96, 122106 (2010).
[Crossref]

Casiraghi, C.

C. Casiraghi, S. Pisana, K.S. Novoselov, A.K. Geim, and A.C. Ferrari, “Raman fingerprint of charged impurities in graphene,” Appl. Phys. Lett. 91, 233108 (2007).
[Crossref]

A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K.S. Novoselov, S. Roth, and A.K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97, 189401 (2006).
[Crossref]

Chan, J.

A. Pirkle, J. Chan, A. Venugopal, D. Hinojos, C.W. Magnuson, S. McDonnell, L. Colombo, E.M. Vogel, R.S. Ruoff, and R.M. Wallace, “The effect of chemical residues on the physical and electrical properties of chemical vapor deposited graphene transferred to SiO2,” Appl. Phys. Lett. 99, 122108 (2011).
[Crossref]

Chen, G.

A. Gupta, G. Chen, P. Joshi, S. Tadigadapa, and P.C. Eklund, “Raman scattering from high-frequency phonons in supported n-graphene layer films,” Nano Lett. 6, 2667–2673 (2006).
[Crossref] [PubMed]

Chen, W.

Y.Y. Wang, Z.H. Ni, T. Yu, Z.X. Shen, H.M. Wang, Y.H. Wu, W. Chen, and A.T.S. Wee, “Raman studies of monolayer graphene: the substrate effect,” J. Phys. Chem. C 112, 10637–10640 (2008).
[Crossref]

Chen, Y.P.

I. Childres, L.A. Jauregui, J. Tian, and Y.P. Chen, “Effect of oxygen plasma etching on graphene studied using Raman spectroscopy and electronic transport measurements,” New J. Phys. 13, 025008 (2011).
[Crossref]

H. Cao, Q. Yu, L.A. Jauregui, J. Tian, W. Wu, Z. Liu, R. Jalilian, D.K. Benjamin, Z. Jiang, J. Bao, S.S.S. Pei, and Y.P. Chen, “Electronic transport in chemical vapor deposited graphene synthesized on Cu: quantum Hall effect and weak localization,” Appl. Phys. Lett. 96, 122106 (2010).
[Crossref]

Cheng, J.L.

J.L. Cheng, N. Vermeulen, and J.E. Sipe, “Third order optical nonlinearity of graphene,” New J. Phys. 16, 053014 (2014).
[Crossref]

J.L. Cheng, N. Vermeulen, and J.E. Sipe, “DC current induced second order optical nonlinearity in graphene,” Opt. Express 22, 15868–15876 (2014).
[Crossref] [PubMed]

Cheng, Z.

Z. Cheng, H. K. Tsang, X. Wang, K. Xu, and J.-B. Xu, “In-plane optical absorption and free carrier absorption in graphene-on-silicon waveguides,” IEEE J. Sel. Top. Quant. Electron. 20, 4400106 (2014).

Childres, I.

I. Childres, L.A. Jauregui, J. Tian, and Y.P. Chen, “Effect of oxygen plasma etching on graphene studied using Raman spectroscopy and electronic transport measurements,” New J. Phys. 13, 025008 (2011).
[Crossref]

Choi, J.-Y.

K.S. Kim, Y. Zhao, H. Jang, S.Y. Lee, J.M. Kim, K.S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi, and B.H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature 457, 706–710 (2009).
[Crossref] [PubMed]

Chrzanowska, J.

J. Hoffman, J. Chrzanowska, S. Kucharski, T. Moscicki, I.N. Mihailescu, C. Ristoscu, and Z. Szymanski, “The effect of laser wavelength on the ablation rate of carbon,” Appl. Phys. A 117, 395–400 (2014).
[Crossref]

Ciuk, T.

T. Ciuk, I. Pasternak, A. Krajewska, J. Sobieski, P. Caban, J. Szmidt, and W. Strupinski, “Properties of chemical vapor deposition graphene transferred by high-speed electrochemical delamination,” J. Phys. Chem. C 117, 20833–20837 (2013).
[Crossref]

Colombo, L.

A. Pirkle, J. Chan, A. Venugopal, D. Hinojos, C.W. Magnuson, S. McDonnell, L. Colombo, E.M. Vogel, R.S. Ruoff, and R.M. Wallace, “The effect of chemical residues on the physical and electrical properties of chemical vapor deposited graphene transferred to SiO2,” Appl. Phys. Lett. 99, 122108 (2011).
[Crossref]

Dai, L.

Y. Ye, L. Gan, L. Dai, Y. Dai, X. Guo, H. Meng, B. Yu, Z. Shi, K. Shang, and G. Qin, “A simple and scalable graphene patterning method and its application in CdSe nanobelt/graphene Schottky junction solar cells,” Nanoscale 3, 1477–1481 (2011).
[Crossref] [PubMed]

Dai, Y.

Y. Ye, L. Gan, L. Dai, Y. Dai, X. Guo, H. Meng, B. Yu, Z. Shi, K. Shang, and G. Qin, “A simple and scalable graphene patterning method and its application in CdSe nanobelt/graphene Schottky junction solar cells,” Nanoscale 3, 1477–1481 (2011).
[Crossref] [PubMed]

Dong, L.

H. Al-Mumen, F. Rao, W. Li, and L. Dong, “Singular sheet etching of graphene with oxygen plasma,” Nano-Micro Lett 6, 116–124 (2014).
[Crossref]

Eklund, P.C.

A. Gupta, G. Chen, P. Joshi, S. Tadigadapa, and P.C. Eklund, “Raman scattering from high-frequency phonons in supported n-graphene layer films,” Nano Lett. 6, 2667–2673 (2006).
[Crossref] [PubMed]

Emelianov, A.V.

I. Bobrinetskiy, A.V. Emelianov, N. Otero, and P.M. Romero, “Patterned graphene ablation and two-photon functionalization by picosecond laser pulses in ambient conditions,” Appl. Phys. Lett. 107, 043104 (2015).
[Crossref]

Ensslin, K.

D. Graf, F. Molitor, K. Ensslin, C. Stampfer, A. Jungen, C. Hierold, and L. Wirtz, “Spatially resolved Raman spectroscopy of single- and few-layer graphene,” Nano Lett. 7, 238–242 (2007).
[Crossref] [PubMed]

Ferrari, A.C.

C. Casiraghi, S. Pisana, K.S. Novoselov, A.K. Geim, and A.C. Ferrari, “Raman fingerprint of charged impurities in graphene,” Appl. Phys. Lett. 91, 233108 (2007).
[Crossref]

A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K.S. Novoselov, S. Roth, and A.K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97, 189401 (2006).
[Crossref]

Gan, L.

Y. Ye, L. Gan, L. Dai, Y. Dai, X. Guo, H. Meng, B. Yu, Z. Shi, K. Shang, and G. Qin, “A simple and scalable graphene patterning method and its application in CdSe nanobelt/graphene Schottky junction solar cells,” Nanoscale 3, 1477–1481 (2011).
[Crossref] [PubMed]

Geim, A.K.

C. Casiraghi, S. Pisana, K.S. Novoselov, A.K. Geim, and A.C. Ferrari, “Raman fingerprint of charged impurities in graphene,” Appl. Phys. Lett. 91, 233108 (2007).
[Crossref]

A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K.S. Novoselov, S. Roth, and A.K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97, 189401 (2006).
[Crossref]

Graf, D.

D. Graf, F. Molitor, K. Ensslin, C. Stampfer, A. Jungen, C. Hierold, and L. Wirtz, “Spatially resolved Raman spectroscopy of single- and few-layer graphene,” Nano Lett. 7, 238–242 (2007).
[Crossref] [PubMed]

Guo, X.

Y. Ye, L. Gan, L. Dai, Y. Dai, X. Guo, H. Meng, B. Yu, Z. Shi, K. Shang, and G. Qin, “A simple and scalable graphene patterning method and its application in CdSe nanobelt/graphene Schottky junction solar cells,” Nanoscale 3, 1477–1481 (2011).
[Crossref] [PubMed]

Gupta, A.

A. Gupta, G. Chen, P. Joshi, S. Tadigadapa, and P.C. Eklund, “Raman scattering from high-frequency phonons in supported n-graphene layer films,” Nano Lett. 6, 2667–2673 (2006).
[Crossref] [PubMed]

Hierold, C.

D. Graf, F. Molitor, K. Ensslin, C. Stampfer, A. Jungen, C. Hierold, and L. Wirtz, “Spatially resolved Raman spectroscopy of single- and few-layer graphene,” Nano Lett. 7, 238–242 (2007).
[Crossref] [PubMed]

Hinojos, D.

A. Pirkle, J. Chan, A. Venugopal, D. Hinojos, C.W. Magnuson, S. McDonnell, L. Colombo, E.M. Vogel, R.S. Ruoff, and R.M. Wallace, “The effect of chemical residues on the physical and electrical properties of chemical vapor deposited graphene transferred to SiO2,” Appl. Phys. Lett. 99, 122108 (2011).
[Crossref]

Hoffman, J.

J. Hoffman, J. Chrzanowska, S. Kucharski, T. Moscicki, I.N. Mihailescu, C. Ristoscu, and Z. Szymanski, “The effect of laser wavelength on the ablation rate of carbon,” Appl. Phys. A 117, 395–400 (2014).
[Crossref]

Hong, B.H.

K.S. Kim, Y. Zhao, H. Jang, S.Y. Lee, J.M. Kim, K.S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi, and B.H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature 457, 706–710 (2009).
[Crossref] [PubMed]

Jalilian, R.

H. Cao, Q. Yu, L.A. Jauregui, J. Tian, W. Wu, Z. Liu, R. Jalilian, D.K. Benjamin, Z. Jiang, J. Bao, S.S.S. Pei, and Y.P. Chen, “Electronic transport in chemical vapor deposited graphene synthesized on Cu: quantum Hall effect and weak localization,” Appl. Phys. Lett. 96, 122106 (2010).
[Crossref]

Jang, H.

K.S. Kim, Y. Zhao, H. Jang, S.Y. Lee, J.M. Kim, K.S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi, and B.H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature 457, 706–710 (2009).
[Crossref] [PubMed]

Jauregui, L.A.

I. Childres, L.A. Jauregui, J. Tian, and Y.P. Chen, “Effect of oxygen plasma etching on graphene studied using Raman spectroscopy and electronic transport measurements,” New J. Phys. 13, 025008 (2011).
[Crossref]

H. Cao, Q. Yu, L.A. Jauregui, J. Tian, W. Wu, Z. Liu, R. Jalilian, D.K. Benjamin, Z. Jiang, J. Bao, S.S.S. Pei, and Y.P. Chen, “Electronic transport in chemical vapor deposited graphene synthesized on Cu: quantum Hall effect and weak localization,” Appl. Phys. Lett. 96, 122106 (2010).
[Crossref]

Jeon, S.-C.

S.-C. Jeon, Y.-S. Kim, and D.-K. Lee, “Fabrication of a graphene nanoribbon with electron beam lithography using a XR-1541/PMMA lift-off process,” Trans. Electr. Electron. Mat. 11, 190–193 (2010).
[Crossref]

Jiang, D.

A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K.S. Novoselov, S. Roth, and A.K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97, 189401 (2006).
[Crossref]

Jiang, Z.

H. Cao, Q. Yu, L.A. Jauregui, J. Tian, W. Wu, Z. Liu, R. Jalilian, D.K. Benjamin, Z. Jiang, J. Bao, S.S.S. Pei, and Y.P. Chen, “Electronic transport in chemical vapor deposited graphene synthesized on Cu: quantum Hall effect and weak localization,” Appl. Phys. Lett. 96, 122106 (2010).
[Crossref]

Joshi, P.

A. Gupta, G. Chen, P. Joshi, S. Tadigadapa, and P.C. Eklund, “Raman scattering from high-frequency phonons in supported n-graphene layer films,” Nano Lett. 6, 2667–2673 (2006).
[Crossref] [PubMed]

Jungen, A.

D. Graf, F. Molitor, K. Ensslin, C. Stampfer, A. Jungen, C. Hierold, and L. Wirtz, “Spatially resolved Raman spectroscopy of single- and few-layer graphene,” Nano Lett. 7, 238–242 (2007).
[Crossref] [PubMed]

Kim, J.M.

K.S. Kim, Y. Zhao, H. Jang, S.Y. Lee, J.M. Kim, K.S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi, and B.H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature 457, 706–710 (2009).
[Crossref] [PubMed]

Kim, K.S.

K.S. Kim, Y. Zhao, H. Jang, S.Y. Lee, J.M. Kim, K.S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi, and B.H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature 457, 706–710 (2009).
[Crossref] [PubMed]

K.S. Kim, Y. Zhao, H. Jang, S.Y. Lee, J.M. Kim, K.S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi, and B.H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature 457, 706–710 (2009).
[Crossref] [PubMed]

Kim, P.

K.S. Kim, Y. Zhao, H. Jang, S.Y. Lee, J.M. Kim, K.S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi, and B.H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature 457, 706–710 (2009).
[Crossref] [PubMed]

Kim, Y.-S.

S.-C. Jeon, Y.-S. Kim, and D.-K. Lee, “Fabrication of a graphene nanoribbon with electron beam lithography using a XR-1541/PMMA lift-off process,” Trans. Electr. Electron. Mat. 11, 190–193 (2010).
[Crossref]

Koester, S.J.

H. Li, Y. Anugrah, S.J. Koester, and M. Li, “Optical absorption in graphene integrated on Silicon waveguides,” Appl. Phys. Lett. 101, 111110 (2012).
[Crossref]

Krajewska, A.

T. Ciuk, I. Pasternak, A. Krajewska, J. Sobieski, P. Caban, J. Szmidt, and W. Strupinski, “Properties of chemical vapor deposition graphene transferred by high-speed electrochemical delamination,” J. Phys. Chem. C 117, 20833–20837 (2013).
[Crossref]

Krauss, B.

D.S. Lee, C. Riedl, B. Krauss, K. von Klitzing, U. Starke, and J.H. Smet, “Raman spectra of epitaxial graphene on SiC and of epitaxial graphene transferred to SiO2,” Nano Lett. 9, 4320–4325 (2008).
[Crossref]

Kucharski, S.

J. Hoffman, J. Chrzanowska, S. Kucharski, T. Moscicki, I.N. Mihailescu, C. Ristoscu, and Z. Szymanski, “The effect of laser wavelength on the ablation rate of carbon,” Appl. Phys. A 117, 395–400 (2014).
[Crossref]

Kurihara, T.

F. Wakaya, T. Kurihara, S. Abo, and M. Takai, “Ultra-violet laser processing of graphene on SiO2/Si,” Microelectron. Eng. 110358–360 (2013).
[Crossref]

Lazzeri, M.

A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K.S. Novoselov, S. Roth, and A.K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97, 189401 (2006).
[Crossref]

Lee, D.-K.

S.-C. Jeon, Y.-S. Kim, and D.-K. Lee, “Fabrication of a graphene nanoribbon with electron beam lithography using a XR-1541/PMMA lift-off process,” Trans. Electr. Electron. Mat. 11, 190–193 (2010).
[Crossref]

Lee, D.S.

D.S. Lee, C. Riedl, B. Krauss, K. von Klitzing, U. Starke, and J.H. Smet, “Raman spectra of epitaxial graphene on SiC and of epitaxial graphene transferred to SiO2,” Nano Lett. 9, 4320–4325 (2008).
[Crossref]

Lee, S.Y.

K.S. Kim, Y. Zhao, H. Jang, S.Y. Lee, J.M. Kim, K.S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi, and B.H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature 457, 706–710 (2009).
[Crossref] [PubMed]

Li, H.

H. Li, Y. Anugrah, S.J. Koester, and M. Li, “Optical absorption in graphene integrated on Silicon waveguides,” Appl. Phys. Lett. 101, 111110 (2012).
[Crossref]

Li, L.

W. Zhang, L. Li, Z.B. Wang, A.A. Pena, D.J. Whitehead, M.L. Zhong, Z. Lin, and H.W. Zhu, “Ti:Sapphire femtosecond laser direct micro-cutting and profiling of graphene,” Appl. Phys. A 109, 291–297 (2012).
[Crossref]

Li, M.

H. Li, Y. Anugrah, S.J. Koester, and M. Li, “Optical absorption in graphene integrated on Silicon waveguides,” Appl. Phys. Lett. 101, 111110 (2012).
[Crossref]

Li, W.

H. Al-Mumen, F. Rao, W. Li, and L. Dong, “Singular sheet etching of graphene with oxygen plasma,” Nano-Micro Lett 6, 116–124 (2014).
[Crossref]

Lin, Z.

W. Zhang, L. Li, Z.B. Wang, A.A. Pena, D.J. Whitehead, M.L. Zhong, Z. Lin, and H.W. Zhu, “Ti:Sapphire femtosecond laser direct micro-cutting and profiling of graphene,” Appl. Phys. A 109, 291–297 (2012).
[Crossref]

Liu, J.M.

Liu, Z.

H. Cao, Q. Yu, L.A. Jauregui, J. Tian, W. Wu, Z. Liu, R. Jalilian, D.K. Benjamin, Z. Jiang, J. Bao, S.S.S. Pei, and Y.P. Chen, “Electronic transport in chemical vapor deposited graphene synthesized on Cu: quantum Hall effect and weak localization,” Appl. Phys. Lett. 96, 122106 (2010).
[Crossref]

Magnuson, C.W.

A. Pirkle, J. Chan, A. Venugopal, D. Hinojos, C.W. Magnuson, S. McDonnell, L. Colombo, E.M. Vogel, R.S. Ruoff, and R.M. Wallace, “The effect of chemical residues on the physical and electrical properties of chemical vapor deposited graphene transferred to SiO2,” Appl. Phys. Lett. 99, 122108 (2011).
[Crossref]

Mauri, F.

A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K.S. Novoselov, S. Roth, and A.K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97, 189401 (2006).
[Crossref]

McDonnell, S.

A. Pirkle, J. Chan, A. Venugopal, D. Hinojos, C.W. Magnuson, S. McDonnell, L. Colombo, E.M. Vogel, R.S. Ruoff, and R.M. Wallace, “The effect of chemical residues on the physical and electrical properties of chemical vapor deposited graphene transferred to SiO2,” Appl. Phys. Lett. 99, 122108 (2011).
[Crossref]

McNab, S.J.

Meng, H.

Y. Ye, L. Gan, L. Dai, Y. Dai, X. Guo, H. Meng, B. Yu, Z. Shi, K. Shang, and G. Qin, “A simple and scalable graphene patterning method and its application in CdSe nanobelt/graphene Schottky junction solar cells,” Nanoscale 3, 1477–1481 (2011).
[Crossref] [PubMed]

Meyer, J.C.

A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K.S. Novoselov, S. Roth, and A.K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97, 189401 (2006).
[Crossref]

Mihailescu, I.N.

J. Hoffman, J. Chrzanowska, S. Kucharski, T. Moscicki, I.N. Mihailescu, C. Ristoscu, and Z. Szymanski, “The effect of laser wavelength on the ablation rate of carbon,” Appl. Phys. A 117, 395–400 (2014).
[Crossref]

Molitor, F.

D. Graf, F. Molitor, K. Ensslin, C. Stampfer, A. Jungen, C. Hierold, and L. Wirtz, “Spatially resolved Raman spectroscopy of single- and few-layer graphene,” Nano Lett. 7, 238–242 (2007).
[Crossref] [PubMed]

Moscicki, T.

J. Hoffman, J. Chrzanowska, S. Kucharski, T. Moscicki, I.N. Mihailescu, C. Ristoscu, and Z. Szymanski, “The effect of laser wavelength on the ablation rate of carbon,” Appl. Phys. A 117, 395–400 (2014).
[Crossref]

Ni, Z.H.

Y.Y. Wang, Z.H. Ni, T. Yu, Z.X. Shen, H.M. Wang, Y.H. Wu, W. Chen, and A.T.S. Wee, “Raman studies of monolayer graphene: the substrate effect,” J. Phys. Chem. C 112, 10637–10640 (2008).
[Crossref]

Novoselov, K.S.

C. Casiraghi, S. Pisana, K.S. Novoselov, A.K. Geim, and A.C. Ferrari, “Raman fingerprint of charged impurities in graphene,” Appl. Phys. Lett. 91, 233108 (2007).
[Crossref]

A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K.S. Novoselov, S. Roth, and A.K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97, 189401 (2006).
[Crossref]

Otero, N.

I. Bobrinetskiy, A.V. Emelianov, N. Otero, and P.M. Romero, “Patterned graphene ablation and two-photon functionalization by picosecond laser pulses in ambient conditions,” Appl. Phys. Lett. 107, 043104 (2015).
[Crossref]

Pasternak, I.

T. Ciuk, I. Pasternak, A. Krajewska, J. Sobieski, P. Caban, J. Szmidt, and W. Strupinski, “Properties of chemical vapor deposition graphene transferred by high-speed electrochemical delamination,” J. Phys. Chem. C 117, 20833–20837 (2013).
[Crossref]

Pei, S.S.S.

H. Cao, Q. Yu, L.A. Jauregui, J. Tian, W. Wu, Z. Liu, R. Jalilian, D.K. Benjamin, Z. Jiang, J. Bao, S.S.S. Pei, and Y.P. Chen, “Electronic transport in chemical vapor deposited graphene synthesized on Cu: quantum Hall effect and weak localization,” Appl. Phys. Lett. 96, 122106 (2010).
[Crossref]

Pena, A.A.

W. Zhang, L. Li, Z.B. Wang, A.A. Pena, D.J. Whitehead, M.L. Zhong, Z. Lin, and H.W. Zhu, “Ti:Sapphire femtosecond laser direct micro-cutting and profiling of graphene,” Appl. Phys. A 109, 291–297 (2012).
[Crossref]

Pirkle, A.

A. Pirkle, J. Chan, A. Venugopal, D. Hinojos, C.W. Magnuson, S. McDonnell, L. Colombo, E.M. Vogel, R.S. Ruoff, and R.M. Wallace, “The effect of chemical residues on the physical and electrical properties of chemical vapor deposited graphene transferred to SiO2,” Appl. Phys. Lett. 99, 122108 (2011).
[Crossref]

Pisana, S.

C. Casiraghi, S. Pisana, K.S. Novoselov, A.K. Geim, and A.C. Ferrari, “Raman fingerprint of charged impurities in graphene,” Appl. Phys. Lett. 91, 233108 (2007).
[Crossref]

Piscanec, S.

A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K.S. Novoselov, S. Roth, and A.K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97, 189401 (2006).
[Crossref]

Qin, G.

Y. Ye, L. Gan, L. Dai, Y. Dai, X. Guo, H. Meng, B. Yu, Z. Shi, K. Shang, and G. Qin, “A simple and scalable graphene patterning method and its application in CdSe nanobelt/graphene Schottky junction solar cells,” Nanoscale 3, 1477–1481 (2011).
[Crossref] [PubMed]

Rao, F.

H. Al-Mumen, F. Rao, W. Li, and L. Dong, “Singular sheet etching of graphene with oxygen plasma,” Nano-Micro Lett 6, 116–124 (2014).
[Crossref]

Riedl, C.

D.S. Lee, C. Riedl, B. Krauss, K. von Klitzing, U. Starke, and J.H. Smet, “Raman spectra of epitaxial graphene on SiC and of epitaxial graphene transferred to SiO2,” Nano Lett. 9, 4320–4325 (2008).
[Crossref]

Ristoscu, C.

J. Hoffman, J. Chrzanowska, S. Kucharski, T. Moscicki, I.N. Mihailescu, C. Ristoscu, and Z. Szymanski, “The effect of laser wavelength on the ablation rate of carbon,” Appl. Phys. A 117, 395–400 (2014).
[Crossref]

Romero, P.M.

I. Bobrinetskiy, A.V. Emelianov, N. Otero, and P.M. Romero, “Patterned graphene ablation and two-photon functionalization by picosecond laser pulses in ambient conditions,” Appl. Phys. Lett. 107, 043104 (2015).
[Crossref]

Roth, S.

A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K.S. Novoselov, S. Roth, and A.K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97, 189401 (2006).
[Crossref]

Ruoff, R.S.

A. Pirkle, J. Chan, A. Venugopal, D. Hinojos, C.W. Magnuson, S. McDonnell, L. Colombo, E.M. Vogel, R.S. Ruoff, and R.M. Wallace, “The effect of chemical residues on the physical and electrical properties of chemical vapor deposited graphene transferred to SiO2,” Appl. Phys. Lett. 99, 122108 (2011).
[Crossref]

Sahin, R.

R. Sahin, S. Akturk, and E. Simsek, “Quantifying the quality of femtosecond laser ablation of graphene,” Appl. Phys. A 116555–560 (2014).
[Crossref]

R. Sahin, E. Simsek, and S. Akturk, “Nanoscale patterning of graphene through femtosecond laser ablation,” Appl. Phys. Lett. 104, 053118 (2014).
[Crossref]

Scardaci, V.

A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K.S. Novoselov, S. Roth, and A.K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97, 189401 (2006).
[Crossref]

Shang, K.

Y. Ye, L. Gan, L. Dai, Y. Dai, X. Guo, H. Meng, B. Yu, Z. Shi, K. Shang, and G. Qin, “A simple and scalable graphene patterning method and its application in CdSe nanobelt/graphene Schottky junction solar cells,” Nanoscale 3, 1477–1481 (2011).
[Crossref] [PubMed]

Shen, Z.X.

Y.Y. Wang, Z.H. Ni, T. Yu, Z.X. Shen, H.M. Wang, Y.H. Wu, W. Chen, and A.T.S. Wee, “Raman studies of monolayer graphene: the substrate effect,” J. Phys. Chem. C 112, 10637–10640 (2008).
[Crossref]

Shi, Z.

Y. Ye, L. Gan, L. Dai, Y. Dai, X. Guo, H. Meng, B. Yu, Z. Shi, K. Shang, and G. Qin, “A simple and scalable graphene patterning method and its application in CdSe nanobelt/graphene Schottky junction solar cells,” Nanoscale 3, 1477–1481 (2011).
[Crossref] [PubMed]

Simsek, E.

R. Sahin, E. Simsek, and S. Akturk, “Nanoscale patterning of graphene through femtosecond laser ablation,” Appl. Phys. Lett. 104, 053118 (2014).
[Crossref]

R. Sahin, S. Akturk, and E. Simsek, “Quantifying the quality of femtosecond laser ablation of graphene,” Appl. Phys. A 116555–560 (2014).
[Crossref]

Sipe, J.E.

J.L. Cheng, N. Vermeulen, and J.E. Sipe, “Third order optical nonlinearity of graphene,” New J. Phys. 16, 053014 (2014).
[Crossref]

J.L. Cheng, N. Vermeulen, and J.E. Sipe, “DC current induced second order optical nonlinearity in graphene,” Opt. Express 22, 15868–15876 (2014).
[Crossref] [PubMed]

Smet, J.H.

D.S. Lee, C. Riedl, B. Krauss, K. von Klitzing, U. Starke, and J.H. Smet, “Raman spectra of epitaxial graphene on SiC and of epitaxial graphene transferred to SiO2,” Nano Lett. 9, 4320–4325 (2008).
[Crossref]

Sobieski, J.

T. Ciuk, I. Pasternak, A. Krajewska, J. Sobieski, P. Caban, J. Szmidt, and W. Strupinski, “Properties of chemical vapor deposition graphene transferred by high-speed electrochemical delamination,” J. Phys. Chem. C 117, 20833–20837 (2013).
[Crossref]

Stampfer, C.

D. Graf, F. Molitor, K. Ensslin, C. Stampfer, A. Jungen, C. Hierold, and L. Wirtz, “Spatially resolved Raman spectroscopy of single- and few-layer graphene,” Nano Lett. 7, 238–242 (2007).
[Crossref] [PubMed]

Starke, U.

D.S. Lee, C. Riedl, B. Krauss, K. von Klitzing, U. Starke, and J.H. Smet, “Raman spectra of epitaxial graphene on SiC and of epitaxial graphene transferred to SiO2,” Nano Lett. 9, 4320–4325 (2008).
[Crossref]

Strupinski, W.

T. Ciuk, I. Pasternak, A. Krajewska, J. Sobieski, P. Caban, J. Szmidt, and W. Strupinski, “Properties of chemical vapor deposition graphene transferred by high-speed electrochemical delamination,” J. Phys. Chem. C 117, 20833–20837 (2013).
[Crossref]

Szmidt, J.

T. Ciuk, I. Pasternak, A. Krajewska, J. Sobieski, P. Caban, J. Szmidt, and W. Strupinski, “Properties of chemical vapor deposition graphene transferred by high-speed electrochemical delamination,” J. Phys. Chem. C 117, 20833–20837 (2013).
[Crossref]

Szymanski, Z.

J. Hoffman, J. Chrzanowska, S. Kucharski, T. Moscicki, I.N. Mihailescu, C. Ristoscu, and Z. Szymanski, “The effect of laser wavelength on the ablation rate of carbon,” Appl. Phys. A 117, 395–400 (2014).
[Crossref]

Tadigadapa, S.

A. Gupta, G. Chen, P. Joshi, S. Tadigadapa, and P.C. Eklund, “Raman scattering from high-frequency phonons in supported n-graphene layer films,” Nano Lett. 6, 2667–2673 (2006).
[Crossref] [PubMed]

Takai, M.

F. Wakaya, T. Kurihara, S. Abo, and M. Takai, “Ultra-violet laser processing of graphene on SiO2/Si,” Microelectron. Eng. 110358–360 (2013).
[Crossref]

Tian, J.

I. Childres, L.A. Jauregui, J. Tian, and Y.P. Chen, “Effect of oxygen plasma etching on graphene studied using Raman spectroscopy and electronic transport measurements,” New J. Phys. 13, 025008 (2011).
[Crossref]

H. Cao, Q. Yu, L.A. Jauregui, J. Tian, W. Wu, Z. Liu, R. Jalilian, D.K. Benjamin, Z. Jiang, J. Bao, S.S.S. Pei, and Y.P. Chen, “Electronic transport in chemical vapor deposited graphene synthesized on Cu: quantum Hall effect and weak localization,” Appl. Phys. Lett. 96, 122106 (2010).
[Crossref]

Tsang, H. K.

Z. Cheng, H. K. Tsang, X. Wang, K. Xu, and J.-B. Xu, “In-plane optical absorption and free carrier absorption in graphene-on-silicon waveguides,” IEEE J. Sel. Top. Quant. Electron. 20, 4400106 (2014).

Venugopal, A.

A. Pirkle, J. Chan, A. Venugopal, D. Hinojos, C.W. Magnuson, S. McDonnell, L. Colombo, E.M. Vogel, R.S. Ruoff, and R.M. Wallace, “The effect of chemical residues on the physical and electrical properties of chemical vapor deposited graphene transferred to SiO2,” Appl. Phys. Lett. 99, 122108 (2011).
[Crossref]

Vermeulen, N.

J.L. Cheng, N. Vermeulen, and J.E. Sipe, “Third order optical nonlinearity of graphene,” New J. Phys. 16, 053014 (2014).
[Crossref]

J.L. Cheng, N. Vermeulen, and J.E. Sipe, “DC current induced second order optical nonlinearity in graphene,” Opt. Express 22, 15868–15876 (2014).
[Crossref] [PubMed]

Vlasov, Y.A.

Vogel, E.M.

A. Pirkle, J. Chan, A. Venugopal, D. Hinojos, C.W. Magnuson, S. McDonnell, L. Colombo, E.M. Vogel, R.S. Ruoff, and R.M. Wallace, “The effect of chemical residues on the physical and electrical properties of chemical vapor deposited graphene transferred to SiO2,” Appl. Phys. Lett. 99, 122108 (2011).
[Crossref]

von Klitzing, K.

D.S. Lee, C. Riedl, B. Krauss, K. von Klitzing, U. Starke, and J.H. Smet, “Raman spectra of epitaxial graphene on SiC and of epitaxial graphene transferred to SiO2,” Nano Lett. 9, 4320–4325 (2008).
[Crossref]

Wakaya, F.

F. Wakaya, T. Kurihara, S. Abo, and M. Takai, “Ultra-violet laser processing of graphene on SiO2/Si,” Microelectron. Eng. 110358–360 (2013).
[Crossref]

Wallace, R.M.

A. Pirkle, J. Chan, A. Venugopal, D. Hinojos, C.W. Magnuson, S. McDonnell, L. Colombo, E.M. Vogel, R.S. Ruoff, and R.M. Wallace, “The effect of chemical residues on the physical and electrical properties of chemical vapor deposited graphene transferred to SiO2,” Appl. Phys. Lett. 99, 122108 (2011).
[Crossref]

Wang, H.M.

Y.Y. Wang, Z.H. Ni, T. Yu, Z.X. Shen, H.M. Wang, Y.H. Wu, W. Chen, and A.T.S. Wee, “Raman studies of monolayer graphene: the substrate effect,” J. Phys. Chem. C 112, 10637–10640 (2008).
[Crossref]

Wang, X.

Z. Cheng, H. K. Tsang, X. Wang, K. Xu, and J.-B. Xu, “In-plane optical absorption and free carrier absorption in graphene-on-silicon waveguides,” IEEE J. Sel. Top. Quant. Electron. 20, 4400106 (2014).

Wang, Y.Y.

Y.Y. Wang, Z.H. Ni, T. Yu, Z.X. Shen, H.M. Wang, Y.H. Wu, W. Chen, and A.T.S. Wee, “Raman studies of monolayer graphene: the substrate effect,” J. Phys. Chem. C 112, 10637–10640 (2008).
[Crossref]

Wang, Z.B.

W. Zhang, L. Li, Z.B. Wang, A.A. Pena, D.J. Whitehead, M.L. Zhong, Z. Lin, and H.W. Zhu, “Ti:Sapphire femtosecond laser direct micro-cutting and profiling of graphene,” Appl. Phys. A 109, 291–297 (2012).
[Crossref]

Wee, A.T.S.

Y.Y. Wang, Z.H. Ni, T. Yu, Z.X. Shen, H.M. Wang, Y.H. Wu, W. Chen, and A.T.S. Wee, “Raman studies of monolayer graphene: the substrate effect,” J. Phys. Chem. C 112, 10637–10640 (2008).
[Crossref]

Whitehead, D.J.

W. Zhang, L. Li, Z.B. Wang, A.A. Pena, D.J. Whitehead, M.L. Zhong, Z. Lin, and H.W. Zhu, “Ti:Sapphire femtosecond laser direct micro-cutting and profiling of graphene,” Appl. Phys. A 109, 291–297 (2012).
[Crossref]

Wirtz, L.

D. Graf, F. Molitor, K. Ensslin, C. Stampfer, A. Jungen, C. Hierold, and L. Wirtz, “Spatially resolved Raman spectroscopy of single- and few-layer graphene,” Nano Lett. 7, 238–242 (2007).
[Crossref] [PubMed]

Wu, W.

H. Cao, Q. Yu, L.A. Jauregui, J. Tian, W. Wu, Z. Liu, R. Jalilian, D.K. Benjamin, Z. Jiang, J. Bao, S.S.S. Pei, and Y.P. Chen, “Electronic transport in chemical vapor deposited graphene synthesized on Cu: quantum Hall effect and weak localization,” Appl. Phys. Lett. 96, 122106 (2010).
[Crossref]

Wu, Y.H.

Y.Y. Wang, Z.H. Ni, T. Yu, Z.X. Shen, H.M. Wang, Y.H. Wu, W. Chen, and A.T.S. Wee, “Raman studies of monolayer graphene: the substrate effect,” J. Phys. Chem. C 112, 10637–10640 (2008).
[Crossref]

Xu, J.-B.

Z. Cheng, H. K. Tsang, X. Wang, K. Xu, and J.-B. Xu, “In-plane optical absorption and free carrier absorption in graphene-on-silicon waveguides,” IEEE J. Sel. Top. Quant. Electron. 20, 4400106 (2014).

Xu, K.

Z. Cheng, H. K. Tsang, X. Wang, K. Xu, and J.-B. Xu, “In-plane optical absorption and free carrier absorption in graphene-on-silicon waveguides,” IEEE J. Sel. Top. Quant. Electron. 20, 4400106 (2014).

Ye, Y.

Y. Ye, L. Gan, L. Dai, Y. Dai, X. Guo, H. Meng, B. Yu, Z. Shi, K. Shang, and G. Qin, “A simple and scalable graphene patterning method and its application in CdSe nanobelt/graphene Schottky junction solar cells,” Nanoscale 3, 1477–1481 (2011).
[Crossref] [PubMed]

Yu, B.

Y. Ye, L. Gan, L. Dai, Y. Dai, X. Guo, H. Meng, B. Yu, Z. Shi, K. Shang, and G. Qin, “A simple and scalable graphene patterning method and its application in CdSe nanobelt/graphene Schottky junction solar cells,” Nanoscale 3, 1477–1481 (2011).
[Crossref] [PubMed]

Yu, Q.

H. Cao, Q. Yu, L.A. Jauregui, J. Tian, W. Wu, Z. Liu, R. Jalilian, D.K. Benjamin, Z. Jiang, J. Bao, S.S.S. Pei, and Y.P. Chen, “Electronic transport in chemical vapor deposited graphene synthesized on Cu: quantum Hall effect and weak localization,” Appl. Phys. Lett. 96, 122106 (2010).
[Crossref]

Yu, T.

Y.Y. Wang, Z.H. Ni, T. Yu, Z.X. Shen, H.M. Wang, Y.H. Wu, W. Chen, and A.T.S. Wee, “Raman studies of monolayer graphene: the substrate effect,” J. Phys. Chem. C 112, 10637–10640 (2008).
[Crossref]

Zhang, W.

W. Zhang, L. Li, Z.B. Wang, A.A. Pena, D.J. Whitehead, M.L. Zhong, Z. Lin, and H.W. Zhu, “Ti:Sapphire femtosecond laser direct micro-cutting and profiling of graphene,” Appl. Phys. A 109, 291–297 (2012).
[Crossref]

Zhao, Y.

K.S. Kim, Y. Zhao, H. Jang, S.Y. Lee, J.M. Kim, K.S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi, and B.H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature 457, 706–710 (2009).
[Crossref] [PubMed]

Zhong, M.L.

W. Zhang, L. Li, Z.B. Wang, A.A. Pena, D.J. Whitehead, M.L. Zhong, Z. Lin, and H.W. Zhu, “Ti:Sapphire femtosecond laser direct micro-cutting and profiling of graphene,” Appl. Phys. A 109, 291–297 (2012).
[Crossref]

Zhu, H.W.

W. Zhang, L. Li, Z.B. Wang, A.A. Pena, D.J. Whitehead, M.L. Zhong, Z. Lin, and H.W. Zhu, “Ti:Sapphire femtosecond laser direct micro-cutting and profiling of graphene,” Appl. Phys. A 109, 291–297 (2012).
[Crossref]

Appl. Phys. A (3)

R. Sahin, S. Akturk, and E. Simsek, “Quantifying the quality of femtosecond laser ablation of graphene,” Appl. Phys. A 116555–560 (2014).
[Crossref]

W. Zhang, L. Li, Z.B. Wang, A.A. Pena, D.J. Whitehead, M.L. Zhong, Z. Lin, and H.W. Zhu, “Ti:Sapphire femtosecond laser direct micro-cutting and profiling of graphene,” Appl. Phys. A 109, 291–297 (2012).
[Crossref]

J. Hoffman, J. Chrzanowska, S. Kucharski, T. Moscicki, I.N. Mihailescu, C. Ristoscu, and Z. Szymanski, “The effect of laser wavelength on the ablation rate of carbon,” Appl. Phys. A 117, 395–400 (2014).
[Crossref]

Appl. Phys. Lett. (6)

C. Casiraghi, S. Pisana, K.S. Novoselov, A.K. Geim, and A.C. Ferrari, “Raman fingerprint of charged impurities in graphene,” Appl. Phys. Lett. 91, 233108 (2007).
[Crossref]

I. Bobrinetskiy, A.V. Emelianov, N. Otero, and P.M. Romero, “Patterned graphene ablation and two-photon functionalization by picosecond laser pulses in ambient conditions,” Appl. Phys. Lett. 107, 043104 (2015).
[Crossref]

H. Li, Y. Anugrah, S.J. Koester, and M. Li, “Optical absorption in graphene integrated on Silicon waveguides,” Appl. Phys. Lett. 101, 111110 (2012).
[Crossref]

H. Cao, Q. Yu, L.A. Jauregui, J. Tian, W. Wu, Z. Liu, R. Jalilian, D.K. Benjamin, Z. Jiang, J. Bao, S.S.S. Pei, and Y.P. Chen, “Electronic transport in chemical vapor deposited graphene synthesized on Cu: quantum Hall effect and weak localization,” Appl. Phys. Lett. 96, 122106 (2010).
[Crossref]

A. Pirkle, J. Chan, A. Venugopal, D. Hinojos, C.W. Magnuson, S. McDonnell, L. Colombo, E.M. Vogel, R.S. Ruoff, and R.M. Wallace, “The effect of chemical residues on the physical and electrical properties of chemical vapor deposited graphene transferred to SiO2,” Appl. Phys. Lett. 99, 122108 (2011).
[Crossref]

R. Sahin, E. Simsek, and S. Akturk, “Nanoscale patterning of graphene through femtosecond laser ablation,” Appl. Phys. Lett. 104, 053118 (2014).
[Crossref]

IEEE J. Sel. Top. Quant. Electron. (1)

Z. Cheng, H. K. Tsang, X. Wang, K. Xu, and J.-B. Xu, “In-plane optical absorption and free carrier absorption in graphene-on-silicon waveguides,” IEEE J. Sel. Top. Quant. Electron. 20, 4400106 (2014).

J. Phys. Chem. C (2)

Y.Y. Wang, Z.H. Ni, T. Yu, Z.X. Shen, H.M. Wang, Y.H. Wu, W. Chen, and A.T.S. Wee, “Raman studies of monolayer graphene: the substrate effect,” J. Phys. Chem. C 112, 10637–10640 (2008).
[Crossref]

T. Ciuk, I. Pasternak, A. Krajewska, J. Sobieski, P. Caban, J. Szmidt, and W. Strupinski, “Properties of chemical vapor deposition graphene transferred by high-speed electrochemical delamination,” J. Phys. Chem. C 117, 20833–20837 (2013).
[Crossref]

Microelectron. Eng. (1)

F. Wakaya, T. Kurihara, S. Abo, and M. Takai, “Ultra-violet laser processing of graphene on SiO2/Si,” Microelectron. Eng. 110358–360 (2013).
[Crossref]

Nano Lett. (3)

A. Gupta, G. Chen, P. Joshi, S. Tadigadapa, and P.C. Eklund, “Raman scattering from high-frequency phonons in supported n-graphene layer films,” Nano Lett. 6, 2667–2673 (2006).
[Crossref] [PubMed]

D. Graf, F. Molitor, K. Ensslin, C. Stampfer, A. Jungen, C. Hierold, and L. Wirtz, “Spatially resolved Raman spectroscopy of single- and few-layer graphene,” Nano Lett. 7, 238–242 (2007).
[Crossref] [PubMed]

D.S. Lee, C. Riedl, B. Krauss, K. von Klitzing, U. Starke, and J.H. Smet, “Raman spectra of epitaxial graphene on SiC and of epitaxial graphene transferred to SiO2,” Nano Lett. 9, 4320–4325 (2008).
[Crossref]

Nano-Micro Lett (1)

H. Al-Mumen, F. Rao, W. Li, and L. Dong, “Singular sheet etching of graphene with oxygen plasma,” Nano-Micro Lett 6, 116–124 (2014).
[Crossref]

Nanoscale (1)

Y. Ye, L. Gan, L. Dai, Y. Dai, X. Guo, H. Meng, B. Yu, Z. Shi, K. Shang, and G. Qin, “A simple and scalable graphene patterning method and its application in CdSe nanobelt/graphene Schottky junction solar cells,” Nanoscale 3, 1477–1481 (2011).
[Crossref] [PubMed]

Nature (1)

K.S. Kim, Y. Zhao, H. Jang, S.Y. Lee, J.M. Kim, K.S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi, and B.H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature 457, 706–710 (2009).
[Crossref] [PubMed]

New J. Phys. (2)

J.L. Cheng, N. Vermeulen, and J.E. Sipe, “Third order optical nonlinearity of graphene,” New J. Phys. 16, 053014 (2014).
[Crossref]

I. Childres, L.A. Jauregui, J. Tian, and Y.P. Chen, “Effect of oxygen plasma etching on graphene studied using Raman spectroscopy and electronic transport measurements,” New J. Phys. 13, 025008 (2011).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Phys. Rev. Lett. (1)

A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K.S. Novoselov, S. Roth, and A.K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97, 189401 (2006).
[Crossref]

Trans. Electr. Electron. Mat. (1)

S.-C. Jeon, Y.-S. Kim, and D.-K. Lee, “Fabrication of a graphene nanoribbon with electron beam lithography using a XR-1541/PMMA lift-off process,” Trans. Electr. Electron. Mat. 11, 190–193 (2010).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 Raman spectrum measured after graphene transfer on the SOI waveguides, showing the monolayer nature of the transferred graphene.
Fig. 2
Fig. 2 Experimental measurement of the squared diameter of the ablated areas (D2) as a function of the peak fluence to determine the ablation threshold, which is the intersection of the fitted curve with the X-axis. The smallest measured diameter of the ablated spot was 8 μm for graphene on SiO2, 5 μm for graphene on SOI, and 4 μm for bare SOI. A Nikon Optiphot 200 high-resolution, high-magnification optical microscope was used to determine D2.
Fig. 3
Fig. 3 Raman spectra measured in the ablated and non-ablated regions of a graphene-covered SOI waveguide.
Fig. 4
Fig. 4 AFM measurement showing the waveguide profile before laser ablation (left). The right part shows a cross-section of the waveguide along the blue line in the left AFM image (bottom) and a zoom on the 400 nm × 400 nm area indicated by the dashed square in the left AFM image (top). The measured surface roughness is 0.57 nm.
Fig. 5
Fig. 5 AFM measurement showing the waveguide profile after laser ablation (left). The entire area shown in this measurement has been ablated. The right part of the figure shows a cross-section of the ablated waveguide along the blue line in the left AFM image (bottom) and a zoom on the 400 nm × 400 nm area indicated by the dashed square in the left AFM image (top). The measured surface roughness is 2.12 nm.
Fig. 6
Fig. 6 Microscope image of the photonic chip on which a PMMA/graphene layer has been transferred, which is then selectively O2 plasma etched to create openings in the layer on top of the grating couplers and tapered sections of the SOI waveguides. The dashed rectangle refers to the area of the chip which was used for the cut-back measurements (see Section 5). Left: zoom on three grating couplers in an etched opening, and the transition to a graphene-covered region (i.e. the slightly darker stripe that runs vertically across the figure).
Fig. 7
Fig. 7 Raman spectra measured in a graphene-covered region (blue) and in the O2 plasma etched grating coupler area (red).
Fig. 8
Fig. 8 AFM measurement showing the grating coupler profile before (a) and after (b) plasma etching. The bottom part shows a cross-section of the grating along the line in the top AFM image.
Fig. 9
Fig. 9 AFM measurement showing the tapered waveguide section profile before (a) and after (b) plasma etching. The bottom part shows a cross-section of the grating along the line in the top AFM image. The measured surface roughness over an area of 400 nm × 400 nm was measured to increase from 0.66 nm before plasma etching to 3.16 nm after plasma etching.
Fig. 10
Fig. 10 Schematic lay-out of the laser ablation and O2 plasma etching regions on an array of identical graphene-covered waveguides (indicated by the dashed rectangle in the right part of Fig. 6), to be used for cut-back measurements.
Fig. 11
Fig. 11 Schematic of the experimental setup to measure the linear loss properties of graphene-covered waveguides (WDM: wavelength-division multiplexing; EDFA: Erbium-doped fiber amplifier; VOA: variable optical attenuator; PC: polarization controller).
Fig. 12
Fig. 12 Results of the linear transmission cut-back experiments.

Metrics