Abstract

Metallic photonic crystals (MPCs) and metamaterials operating in the visible spectrum are required for high-temperature nanophotonics, but they are often difficult to construct. This study demonstrates a new approach to directly write two-dimensional (2D) MPCs on tungsten surfaces through the cylindrical focusing of two collinear femtosecond laser beams with certain temporal delays and orthogonal linear polarizations. Results are physically attributed to the laser-induced transient crossed temperature grating patterns and tempo-spatial thermal correlations. Optical properties of the fabricated MPCs are characterized. Such a simple and efficient technique can be used to fabricate large-area, 2D microstructures on metal surfaces for potential applications.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Direct fabricating large-area nanotriangle structure arrays on tungsten surface by nonlinear lithography of two femtosecond laser beams

Qi Liu, Nan Zhang, Jianjun Yang, Hongzhen Qiao, and Chunlei Guo
Opt. Express 26(9) 11718-11727 (2018)

Formation of uniform two-dimensional subwavelength structures by delayed triple femtosecond laser pulse irradiation

Sohail A. Jalil, Jianjun Yang, Mohamed Elkabbash, Yuhao Lei, Wanlin He, and Chunlei Guo
Opt. Lett. 44(9) 2278-2281 (2019)

References

  • View by:
  • |
  • |
  • |

  1. S. A. Rinne, F. Garcia-Santamaria, and P. V. Braun, “Embedded cavities and waveguides in three-dimensional silicon photonic crystals,” Nat. Photonics 2(1), 52–56 (2008).
    [Crossref]
  2. K. Ishizaki, M. Koumura, K. Suzuki, K. Gondaira, and S. Noda, “Realization of three-dimensional guiding of photons in photonic crystals,” Nat. Photonics 7(2), 133–137 (2013).
    [Crossref]
  3. B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, and J. Vuckovic, “Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser,” Nat. Photonics 5(5), 297–300 (2011).
    [Crossref]
  4. A. A. Erchak, D. J. Ripin, S. F. Peter, J. D. Rakich, E. P. Joannopoulos, G. S. Ippen, Petrich, and L. A. Kolodziejski, “Enhanced coupling to vertical radiation using a two-dimensional photonic crystal in a semiconductor light-emitting diode,” Appl. Phys. Lett. 78(5), 563–565 (2001).
  5. E. R. Brown and O. B. McMahon, “Large electromagnetic stop bands in metallodielectric photonic crystals,” Appl. Phys. Lett. 67(15), 2138–2140 (1995).
    [Crossref]
  6. M. M. Sigalas, C. T. Chan, K. M. Ho, and C. M. Soukoulis, “Metallic photonic band-gap materials,” Phys. Rev. B Condens. Matter 52(16), 11744–11751 (1995).
    [Crossref] [PubMed]
  7. J. G. Fleming, S. Y. Lin, I. El-Kady, R. Biswas, and K. M. Ho, “All-metallic three-dimensional photonic crystals with a large infrared bandgap,” Nature 417(6884), 52–55 (2002).
    [Crossref] [PubMed]
  8. C. Luo, A. Narayanaswamy, G. Chen, and J. D. Joannopoulos, “Thermal radiation from photonic crystals: a direct calculation,” Phys. Rev. Lett. 93(21), 213905 (2004).
    [Crossref] [PubMed]
  9. C. J. Crowley, N. A. Elkouh, S. Murray, and D. L. Chubb, “Thermophotovoltaic converter performance for radioisotope power systems,” AIP Conf. Proc. 746, 601–614 (2005).
    [Crossref]
  10. V. M. Andreev, A. S. Vlasov, V. P. Khvostikov, O. A. Khvostikova, P. Y. Gazaryan, S. V. Sorokina, and N. A. Sadchikov, “Solar thermophotovoltaic converters based on tungsten emitters,” J. Sol. Energy Eng. 129(3), 298–303 (2007).
    [Crossref]
  11. Y. X. Yeng, M. Ghebrebrhan, P. Bermel, W. R. Chan, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Enabling high-temperature nanophotonics for energy applications,” Proc. Natl. Acad. Sci. U.S.A. 109(7), 2280–2285 (2012).
    [Crossref] [PubMed]
  12. M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, “Photonic crystal enhanced narrow-band infrared emitters,” Appl. Phys. Lett. 81(25), 4685–4687 (2002).
    [Crossref]
  13. H. Sai, Y. Kanamori, and H. Yugami, “High-temperature resistive surface grating for spectral control of thermal radiation,” Appl. Phys. Lett. 82(11), 1685–1687 (2003).
    [Crossref]
  14. K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, G. N. Parsons, G. S. Girolami, J. R. Abelson, S. Fan, and P. V. Braun, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat. Commun. 4, 2630 (2013).
    [Crossref] [PubMed]
  15. L. A. Ibbotson, A. Demetriadou, S. Croxall, O. Hess, and J. J. Baumberg, “Optical nano-woodpiles: large-area metallic photonic crystals and metamaterials,” Sci. Rep. 5, 8313 (2015).
    [Crossref] [PubMed]
  16. V. Rinnerbauer, S. Ndao, Y. X. Yeng, J. J. Senkevich, K. F. Jensen, J. D. Joannopoulos, M. Soljacic, I. Celanovic, and R. D. Geil, “Large-area fabrication of high aspect ratio tantalum photonic crystals for high-temperature selective emitters,” J. Vac. Sci. Technol. B 31(1), 011802 (2013).
    [Crossref]
  17. K. Paivasaari, J. J. J. Kaakkunen, M. Kuittinen, and T. Jaaskelainen, “Enhanced optical absorptance of metals using interferometric femtosecond ablation,” Opt. Express 15(21), 13838–13843 (2007).
    [Crossref] [PubMed]
  18. M. Mader, T. Höche, J. W. Gerlach, R. Böhme, K. Zimmer, and B. Rauschenbach, “Large area metal dot matrices made by diffraction mask projection laser ablation,” Phys. Status Solidi 2(1), 34–36 (2008).
  19. Z. Pang and X. Zhang, “Direct writing of large-area plasmonic photonic crystals using single-shot interference ablation,” Nanotechnology 22(14), 145303 (2011).
    [Crossref] [PubMed]
  20. B. Voisiat, M. Gedvilas, S. Indrisiunas, and G. Raciukaitis, “Picosecond-laser 4-beam-interference ablation as a flexible tool for thin film microstructuring,” Phys. Procedia 12, 116–124 (2011).
    [Crossref]
  21. M. Araghchini, Y. X. Yeng, N. Jovanovic, P. Bermel, L. A. Kolodziejski, M. Soljacic, I. Celanovic, and J. D. Joannopoulos, “Fabrication of two-dimensional tungsten photonic crystals for high-temperature applications,” J. Vac. Sci. Technol. B 29(6), 061402 (2011).
    [Crossref]
  22. P. Feng, N. Zhang, H. Wu, and X. Zhu, “Effect of ambient air on femtosecond laser ablation of highly oriented pyrolytic graphite,” Opt. Lett. 40(1), 17–20 (2015).
    [Crossref] [PubMed]
  23. L. Mayer, “On electron mirror microscopy,” J. Appl. Phys. 26(10), 1228–1230 (1955).
    [Crossref]
  24. S. Sakabe, M. Hashida, S. Tokita, S. Namba, and K. Okamuro, “Mechanism for self-formation of periodic grating structures on a metal surface by a femtosecond laser pulse,” Phys. Rev. B 79(3), 033409 (2009).
    [Crossref]
  25. T. Y. Hwang, A. Y. Vorobyev, and C. Guo, “Surface-plasmon-enhanced photoelectron emission from nanostructure-covered periodic grooves on metals,” Phys. Rev. B 79(8), 085425 (2009).
    [Crossref]
  26. C. P. Lungu, C. M. Ticos, C. Porosnicu, I. Jepu, M. Lungu, A. Marcu, C. Luculescu, G. Cojocaru, D. Ursescu, R. Banici, and G. R. Ungureanu, “Periodic striations on beryllium and tungsten surfaces by indirect femtosecond laser irradiation,” Appl. Phys. Lett. 104(10), 101604 (2014).
    [Crossref]
  27. W. Han, L. Jiang, X. Li, P. Liu, L. Xu, and Y. Lu, “Continuous modulations of femtosecond laser-induced periodic surface structures and scanned line-widths on silicon by polarization changes,” Opt. Express 21(13), 15505–15513 (2013).
    [Crossref] [PubMed]
  28. J. Cong, J. Yang, B. Zhao, and X. Xu, “Fabricating subwavelength dot-matrix surface structures of Molybdenum by transient correlated actions of two-color femtosecond laser beams,” Opt. Express 23(4), 5357–5367 (2015).
    [Crossref] [PubMed]
  29. T. Q. Qiu and C. L. Tien, “Heat transfer mechanisms during short-pulse laser heating of metals,” J. Heat Transfer 115(4), 835–841 (1993).
    [Crossref]
  30. J. Hohlfeld, S. S. Wellershoff, J. Gudde, U. Conrad, V. Jahnke, and E. Matthias, “Electron and lattice dynamics following optical excitation of metals,” Chem. Phys. 251(1-3), 237–258 (2000).
    [Crossref]
  31. M. Shinoda, R. R. Gattass, and E. Mazur, “Femtosecond laser-induced formation of nanometer-width grooves on synthetic single-crystal diamond surfaces,” J. Appl. Phys. 105(5), 053102 (2009).
    [Crossref]
  32. J. Liu, T. Jia, K. Zhou, D. Feng, S. Zhang, H. Zhang, X. Jia, Z. Sun, and J. Qiu, “Direct writing of 150 nm gratings and squares on ZnO crystal in water by using 800 nm femtosecond laser,” Opt. Express 22(26), 32361–32370 (2014).
    [Crossref] [PubMed]

2015 (3)

2014 (2)

J. Liu, T. Jia, K. Zhou, D. Feng, S. Zhang, H. Zhang, X. Jia, Z. Sun, and J. Qiu, “Direct writing of 150 nm gratings and squares on ZnO crystal in water by using 800 nm femtosecond laser,” Opt. Express 22(26), 32361–32370 (2014).
[Crossref] [PubMed]

C. P. Lungu, C. M. Ticos, C. Porosnicu, I. Jepu, M. Lungu, A. Marcu, C. Luculescu, G. Cojocaru, D. Ursescu, R. Banici, and G. R. Ungureanu, “Periodic striations on beryllium and tungsten surfaces by indirect femtosecond laser irradiation,” Appl. Phys. Lett. 104(10), 101604 (2014).
[Crossref]

2013 (4)

K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, G. N. Parsons, G. S. Girolami, J. R. Abelson, S. Fan, and P. V. Braun, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat. Commun. 4, 2630 (2013).
[Crossref] [PubMed]

V. Rinnerbauer, S. Ndao, Y. X. Yeng, J. J. Senkevich, K. F. Jensen, J. D. Joannopoulos, M. Soljacic, I. Celanovic, and R. D. Geil, “Large-area fabrication of high aspect ratio tantalum photonic crystals for high-temperature selective emitters,” J. Vac. Sci. Technol. B 31(1), 011802 (2013).
[Crossref]

W. Han, L. Jiang, X. Li, P. Liu, L. Xu, and Y. Lu, “Continuous modulations of femtosecond laser-induced periodic surface structures and scanned line-widths on silicon by polarization changes,” Opt. Express 21(13), 15505–15513 (2013).
[Crossref] [PubMed]

K. Ishizaki, M. Koumura, K. Suzuki, K. Gondaira, and S. Noda, “Realization of three-dimensional guiding of photons in photonic crystals,” Nat. Photonics 7(2), 133–137 (2013).
[Crossref]

2012 (1)

Y. X. Yeng, M. Ghebrebrhan, P. Bermel, W. R. Chan, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Enabling high-temperature nanophotonics for energy applications,” Proc. Natl. Acad. Sci. U.S.A. 109(7), 2280–2285 (2012).
[Crossref] [PubMed]

2011 (4)

Z. Pang and X. Zhang, “Direct writing of large-area plasmonic photonic crystals using single-shot interference ablation,” Nanotechnology 22(14), 145303 (2011).
[Crossref] [PubMed]

B. Voisiat, M. Gedvilas, S. Indrisiunas, and G. Raciukaitis, “Picosecond-laser 4-beam-interference ablation as a flexible tool for thin film microstructuring,” Phys. Procedia 12, 116–124 (2011).
[Crossref]

M. Araghchini, Y. X. Yeng, N. Jovanovic, P. Bermel, L. A. Kolodziejski, M. Soljacic, I. Celanovic, and J. D. Joannopoulos, “Fabrication of two-dimensional tungsten photonic crystals for high-temperature applications,” J. Vac. Sci. Technol. B 29(6), 061402 (2011).
[Crossref]

B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, and J. Vuckovic, “Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser,” Nat. Photonics 5(5), 297–300 (2011).
[Crossref]

2009 (3)

M. Shinoda, R. R. Gattass, and E. Mazur, “Femtosecond laser-induced formation of nanometer-width grooves on synthetic single-crystal diamond surfaces,” J. Appl. Phys. 105(5), 053102 (2009).
[Crossref]

S. Sakabe, M. Hashida, S. Tokita, S. Namba, and K. Okamuro, “Mechanism for self-formation of periodic grating structures on a metal surface by a femtosecond laser pulse,” Phys. Rev. B 79(3), 033409 (2009).
[Crossref]

T. Y. Hwang, A. Y. Vorobyev, and C. Guo, “Surface-plasmon-enhanced photoelectron emission from nanostructure-covered periodic grooves on metals,” Phys. Rev. B 79(8), 085425 (2009).
[Crossref]

2008 (2)

M. Mader, T. Höche, J. W. Gerlach, R. Böhme, K. Zimmer, and B. Rauschenbach, “Large area metal dot matrices made by diffraction mask projection laser ablation,” Phys. Status Solidi 2(1), 34–36 (2008).

S. A. Rinne, F. Garcia-Santamaria, and P. V. Braun, “Embedded cavities and waveguides in three-dimensional silicon photonic crystals,” Nat. Photonics 2(1), 52–56 (2008).
[Crossref]

2007 (2)

V. M. Andreev, A. S. Vlasov, V. P. Khvostikov, O. A. Khvostikova, P. Y. Gazaryan, S. V. Sorokina, and N. A. Sadchikov, “Solar thermophotovoltaic converters based on tungsten emitters,” J. Sol. Energy Eng. 129(3), 298–303 (2007).
[Crossref]

K. Paivasaari, J. J. J. Kaakkunen, M. Kuittinen, and T. Jaaskelainen, “Enhanced optical absorptance of metals using interferometric femtosecond ablation,” Opt. Express 15(21), 13838–13843 (2007).
[Crossref] [PubMed]

2005 (1)

C. J. Crowley, N. A. Elkouh, S. Murray, and D. L. Chubb, “Thermophotovoltaic converter performance for radioisotope power systems,” AIP Conf. Proc. 746, 601–614 (2005).
[Crossref]

2004 (1)

C. Luo, A. Narayanaswamy, G. Chen, and J. D. Joannopoulos, “Thermal radiation from photonic crystals: a direct calculation,” Phys. Rev. Lett. 93(21), 213905 (2004).
[Crossref] [PubMed]

2003 (1)

H. Sai, Y. Kanamori, and H. Yugami, “High-temperature resistive surface grating for spectral control of thermal radiation,” Appl. Phys. Lett. 82(11), 1685–1687 (2003).
[Crossref]

2002 (2)

M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, “Photonic crystal enhanced narrow-band infrared emitters,” Appl. Phys. Lett. 81(25), 4685–4687 (2002).
[Crossref]

J. G. Fleming, S. Y. Lin, I. El-Kady, R. Biswas, and K. M. Ho, “All-metallic three-dimensional photonic crystals with a large infrared bandgap,” Nature 417(6884), 52–55 (2002).
[Crossref] [PubMed]

2001 (1)

A. A. Erchak, D. J. Ripin, S. F. Peter, J. D. Rakich, E. P. Joannopoulos, G. S. Ippen, Petrich, and L. A. Kolodziejski, “Enhanced coupling to vertical radiation using a two-dimensional photonic crystal in a semiconductor light-emitting diode,” Appl. Phys. Lett. 78(5), 563–565 (2001).

2000 (1)

J. Hohlfeld, S. S. Wellershoff, J. Gudde, U. Conrad, V. Jahnke, and E. Matthias, “Electron and lattice dynamics following optical excitation of metals,” Chem. Phys. 251(1-3), 237–258 (2000).
[Crossref]

1995 (2)

E. R. Brown and O. B. McMahon, “Large electromagnetic stop bands in metallodielectric photonic crystals,” Appl. Phys. Lett. 67(15), 2138–2140 (1995).
[Crossref]

M. M. Sigalas, C. T. Chan, K. M. Ho, and C. M. Soukoulis, “Metallic photonic band-gap materials,” Phys. Rev. B Condens. Matter 52(16), 11744–11751 (1995).
[Crossref] [PubMed]

1993 (1)

T. Q. Qiu and C. L. Tien, “Heat transfer mechanisms during short-pulse laser heating of metals,” J. Heat Transfer 115(4), 835–841 (1993).
[Crossref]

1955 (1)

L. Mayer, “On electron mirror microscopy,” J. Appl. Phys. 26(10), 1228–1230 (1955).
[Crossref]

Abelson, J. R.

K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, G. N. Parsons, G. S. Girolami, J. R. Abelson, S. Fan, and P. V. Braun, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat. Commun. 4, 2630 (2013).
[Crossref] [PubMed]

Andreev, V. M.

V. M. Andreev, A. S. Vlasov, V. P. Khvostikov, O. A. Khvostikova, P. Y. Gazaryan, S. V. Sorokina, and N. A. Sadchikov, “Solar thermophotovoltaic converters based on tungsten emitters,” J. Sol. Energy Eng. 129(3), 298–303 (2007).
[Crossref]

Araghchini, M.

M. Araghchini, Y. X. Yeng, N. Jovanovic, P. Bermel, L. A. Kolodziejski, M. Soljacic, I. Celanovic, and J. D. Joannopoulos, “Fabrication of two-dimensional tungsten photonic crystals for high-temperature applications,” J. Vac. Sci. Technol. B 29(6), 061402 (2011).
[Crossref]

Arpin, K. A.

K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, G. N. Parsons, G. S. Girolami, J. R. Abelson, S. Fan, and P. V. Braun, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat. Commun. 4, 2630 (2013).
[Crossref] [PubMed]

Banici, R.

C. P. Lungu, C. M. Ticos, C. Porosnicu, I. Jepu, M. Lungu, A. Marcu, C. Luculescu, G. Cojocaru, D. Ursescu, R. Banici, and G. R. Ungureanu, “Periodic striations on beryllium and tungsten surfaces by indirect femtosecond laser irradiation,” Appl. Phys. Lett. 104(10), 101604 (2014).
[Crossref]

Baumberg, J. J.

L. A. Ibbotson, A. Demetriadou, S. Croxall, O. Hess, and J. J. Baumberg, “Optical nano-woodpiles: large-area metallic photonic crystals and metamaterials,” Sci. Rep. 5, 8313 (2015).
[Crossref] [PubMed]

Bermel, P.

Y. X. Yeng, M. Ghebrebrhan, P. Bermel, W. R. Chan, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Enabling high-temperature nanophotonics for energy applications,” Proc. Natl. Acad. Sci. U.S.A. 109(7), 2280–2285 (2012).
[Crossref] [PubMed]

M. Araghchini, Y. X. Yeng, N. Jovanovic, P. Bermel, L. A. Kolodziejski, M. Soljacic, I. Celanovic, and J. D. Joannopoulos, “Fabrication of two-dimensional tungsten photonic crystals for high-temperature applications,” J. Vac. Sci. Technol. B 29(6), 061402 (2011).
[Crossref]

Biswas, R.

M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, “Photonic crystal enhanced narrow-band infrared emitters,” Appl. Phys. Lett. 81(25), 4685–4687 (2002).
[Crossref]

J. G. Fleming, S. Y. Lin, I. El-Kady, R. Biswas, and K. M. Ho, “All-metallic three-dimensional photonic crystals with a large infrared bandgap,” Nature 417(6884), 52–55 (2002).
[Crossref] [PubMed]

Böhme, R.

M. Mader, T. Höche, J. W. Gerlach, R. Böhme, K. Zimmer, and B. Rauschenbach, “Large area metal dot matrices made by diffraction mask projection laser ablation,” Phys. Status Solidi 2(1), 34–36 (2008).

Braun, P. V.

K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, G. N. Parsons, G. S. Girolami, J. R. Abelson, S. Fan, and P. V. Braun, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat. Commun. 4, 2630 (2013).
[Crossref] [PubMed]

S. A. Rinne, F. Garcia-Santamaria, and P. V. Braun, “Embedded cavities and waveguides in three-dimensional silicon photonic crystals,” Nat. Photonics 2(1), 52–56 (2008).
[Crossref]

Brown, E. R.

E. R. Brown and O. B. McMahon, “Large electromagnetic stop bands in metallodielectric photonic crystals,” Appl. Phys. Lett. 67(15), 2138–2140 (1995).
[Crossref]

Celanovic, I.

V. Rinnerbauer, S. Ndao, Y. X. Yeng, J. J. Senkevich, K. F. Jensen, J. D. Joannopoulos, M. Soljacic, I. Celanovic, and R. D. Geil, “Large-area fabrication of high aspect ratio tantalum photonic crystals for high-temperature selective emitters,” J. Vac. Sci. Technol. B 31(1), 011802 (2013).
[Crossref]

Y. X. Yeng, M. Ghebrebrhan, P. Bermel, W. R. Chan, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Enabling high-temperature nanophotonics for energy applications,” Proc. Natl. Acad. Sci. U.S.A. 109(7), 2280–2285 (2012).
[Crossref] [PubMed]

M. Araghchini, Y. X. Yeng, N. Jovanovic, P. Bermel, L. A. Kolodziejski, M. Soljacic, I. Celanovic, and J. D. Joannopoulos, “Fabrication of two-dimensional tungsten photonic crystals for high-temperature applications,” J. Vac. Sci. Technol. B 29(6), 061402 (2011).
[Crossref]

Chan, C. T.

M. M. Sigalas, C. T. Chan, K. M. Ho, and C. M. Soukoulis, “Metallic photonic band-gap materials,” Phys. Rev. B Condens. Matter 52(16), 11744–11751 (1995).
[Crossref] [PubMed]

Chan, W. R.

Y. X. Yeng, M. Ghebrebrhan, P. Bermel, W. R. Chan, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Enabling high-temperature nanophotonics for energy applications,” Proc. Natl. Acad. Sci. U.S.A. 109(7), 2280–2285 (2012).
[Crossref] [PubMed]

Chen, G.

C. Luo, A. Narayanaswamy, G. Chen, and J. D. Joannopoulos, “Thermal radiation from photonic crystals: a direct calculation,” Phys. Rev. Lett. 93(21), 213905 (2004).
[Crossref] [PubMed]

Choi, D. S.

M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, “Photonic crystal enhanced narrow-band infrared emitters,” Appl. Phys. Lett. 81(25), 4685–4687 (2002).
[Crossref]

Chubb, D. L.

C. J. Crowley, N. A. Elkouh, S. Murray, and D. L. Chubb, “Thermophotovoltaic converter performance for radioisotope power systems,” AIP Conf. Proc. 746, 601–614 (2005).
[Crossref]

Cloud, A. N.

K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, G. N. Parsons, G. S. Girolami, J. R. Abelson, S. Fan, and P. V. Braun, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat. Commun. 4, 2630 (2013).
[Crossref] [PubMed]

Cojocaru, G.

C. P. Lungu, C. M. Ticos, C. Porosnicu, I. Jepu, M. Lungu, A. Marcu, C. Luculescu, G. Cojocaru, D. Ursescu, R. Banici, and G. R. Ungureanu, “Periodic striations on beryllium and tungsten surfaces by indirect femtosecond laser irradiation,” Appl. Phys. Lett. 104(10), 101604 (2014).
[Crossref]

Cong, J.

Conrad, U.

J. Hohlfeld, S. S. Wellershoff, J. Gudde, U. Conrad, V. Jahnke, and E. Matthias, “Electron and lattice dynamics following optical excitation of metals,” Chem. Phys. 251(1-3), 237–258 (2000).
[Crossref]

Crowley, C. J.

C. J. Crowley, N. A. Elkouh, S. Murray, and D. L. Chubb, “Thermophotovoltaic converter performance for radioisotope power systems,” AIP Conf. Proc. 746, 601–614 (2005).
[Crossref]

Croxall, S.

L. A. Ibbotson, A. Demetriadou, S. Croxall, O. Hess, and J. J. Baumberg, “Optical nano-woodpiles: large-area metallic photonic crystals and metamaterials,” Sci. Rep. 5, 8313 (2015).
[Crossref] [PubMed]

Daly, J. T.

M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, “Photonic crystal enhanced narrow-band infrared emitters,” Appl. Phys. Lett. 81(25), 4685–4687 (2002).
[Crossref]

Demetriadou, A.

L. A. Ibbotson, A. Demetriadou, S. Croxall, O. Hess, and J. J. Baumberg, “Optical nano-woodpiles: large-area metallic photonic crystals and metamaterials,” Sci. Rep. 5, 8313 (2015).
[Crossref] [PubMed]

El-Kady, I.

M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, “Photonic crystal enhanced narrow-band infrared emitters,” Appl. Phys. Lett. 81(25), 4685–4687 (2002).
[Crossref]

J. G. Fleming, S. Y. Lin, I. El-Kady, R. Biswas, and K. M. Ho, “All-metallic three-dimensional photonic crystals with a large infrared bandgap,” Nature 417(6884), 52–55 (2002).
[Crossref] [PubMed]

Elkouh, N. A.

C. J. Crowley, N. A. Elkouh, S. Murray, and D. L. Chubb, “Thermophotovoltaic converter performance for radioisotope power systems,” AIP Conf. Proc. 746, 601–614 (2005).
[Crossref]

Ellis, B.

B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, and J. Vuckovic, “Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser,” Nat. Photonics 5(5), 297–300 (2011).
[Crossref]

Erchak, A. A.

A. A. Erchak, D. J. Ripin, S. F. Peter, J. D. Rakich, E. P. Joannopoulos, G. S. Ippen, Petrich, and L. A. Kolodziejski, “Enhanced coupling to vertical radiation using a two-dimensional photonic crystal in a semiconductor light-emitting diode,” Appl. Phys. Lett. 78(5), 563–565 (2001).

Fan, S.

K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, G. N. Parsons, G. S. Girolami, J. R. Abelson, S. Fan, and P. V. Braun, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat. Commun. 4, 2630 (2013).
[Crossref] [PubMed]

Feng, D.

Feng, P.

Fleming, J. G.

J. G. Fleming, S. Y. Lin, I. El-Kady, R. Biswas, and K. M. Ho, “All-metallic three-dimensional photonic crystals with a large infrared bandgap,” Nature 417(6884), 52–55 (2002).
[Crossref] [PubMed]

Garcia-Santamaria, F.

S. A. Rinne, F. Garcia-Santamaria, and P. V. Braun, “Embedded cavities and waveguides in three-dimensional silicon photonic crystals,” Nat. Photonics 2(1), 52–56 (2008).
[Crossref]

Gattass, R. R.

M. Shinoda, R. R. Gattass, and E. Mazur, “Femtosecond laser-induced formation of nanometer-width grooves on synthetic single-crystal diamond surfaces,” J. Appl. Phys. 105(5), 053102 (2009).
[Crossref]

Gazaryan, P. Y.

V. M. Andreev, A. S. Vlasov, V. P. Khvostikov, O. A. Khvostikova, P. Y. Gazaryan, S. V. Sorokina, and N. A. Sadchikov, “Solar thermophotovoltaic converters based on tungsten emitters,” J. Sol. Energy Eng. 129(3), 298–303 (2007).
[Crossref]

Gedvilas, M.

B. Voisiat, M. Gedvilas, S. Indrisiunas, and G. Raciukaitis, “Picosecond-laser 4-beam-interference ablation as a flexible tool for thin film microstructuring,” Phys. Procedia 12, 116–124 (2011).
[Crossref]

Geil, R. D.

V. Rinnerbauer, S. Ndao, Y. X. Yeng, J. J. Senkevich, K. F. Jensen, J. D. Joannopoulos, M. Soljacic, I. Celanovic, and R. D. Geil, “Large-area fabrication of high aspect ratio tantalum photonic crystals for high-temperature selective emitters,” J. Vac. Sci. Technol. B 31(1), 011802 (2013).
[Crossref]

George, T.

M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, “Photonic crystal enhanced narrow-band infrared emitters,” Appl. Phys. Lett. 81(25), 4685–4687 (2002).
[Crossref]

Gerlach, J. W.

M. Mader, T. Höche, J. W. Gerlach, R. Böhme, K. Zimmer, and B. Rauschenbach, “Large area metal dot matrices made by diffraction mask projection laser ablation,” Phys. Status Solidi 2(1), 34–36 (2008).

Ghebrebrhan, M.

Y. X. Yeng, M. Ghebrebrhan, P. Bermel, W. R. Chan, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Enabling high-temperature nanophotonics for energy applications,” Proc. Natl. Acad. Sci. U.S.A. 109(7), 2280–2285 (2012).
[Crossref] [PubMed]

Girolami, G. S.

K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, G. N. Parsons, G. S. Girolami, J. R. Abelson, S. Fan, and P. V. Braun, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat. Commun. 4, 2630 (2013).
[Crossref] [PubMed]

Gondaira, K.

K. Ishizaki, M. Koumura, K. Suzuki, K. Gondaira, and S. Noda, “Realization of three-dimensional guiding of photons in photonic crystals,” Nat. Photonics 7(2), 133–137 (2013).
[Crossref]

Greenwald, A. C.

M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, “Photonic crystal enhanced narrow-band infrared emitters,” Appl. Phys. Lett. 81(25), 4685–4687 (2002).
[Crossref]

Gudde, J.

J. Hohlfeld, S. S. Wellershoff, J. Gudde, U. Conrad, V. Jahnke, and E. Matthias, “Electron and lattice dynamics following optical excitation of metals,” Chem. Phys. 251(1-3), 237–258 (2000).
[Crossref]

Guo, C.

T. Y. Hwang, A. Y. Vorobyev, and C. Guo, “Surface-plasmon-enhanced photoelectron emission from nanostructure-covered periodic grooves on metals,” Phys. Rev. B 79(8), 085425 (2009).
[Crossref]

Haller, E. E.

B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, and J. Vuckovic, “Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser,” Nat. Photonics 5(5), 297–300 (2011).
[Crossref]

Han, W.

Harris, J.

B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, and J. Vuckovic, “Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser,” Nat. Photonics 5(5), 297–300 (2011).
[Crossref]

Hashida, M.

S. Sakabe, M. Hashida, S. Tokita, S. Namba, and K. Okamuro, “Mechanism for self-formation of periodic grating structures on a metal surface by a femtosecond laser pulse,” Phys. Rev. B 79(3), 033409 (2009).
[Crossref]

Hess, O.

L. A. Ibbotson, A. Demetriadou, S. Croxall, O. Hess, and J. J. Baumberg, “Optical nano-woodpiles: large-area metallic photonic crystals and metamaterials,” Sci. Rep. 5, 8313 (2015).
[Crossref] [PubMed]

Ho, K. M.

J. G. Fleming, S. Y. Lin, I. El-Kady, R. Biswas, and K. M. Ho, “All-metallic three-dimensional photonic crystals with a large infrared bandgap,” Nature 417(6884), 52–55 (2002).
[Crossref] [PubMed]

M. M. Sigalas, C. T. Chan, K. M. Ho, and C. M. Soukoulis, “Metallic photonic band-gap materials,” Phys. Rev. B Condens. Matter 52(16), 11744–11751 (1995).
[Crossref] [PubMed]

Höche, T.

M. Mader, T. Höche, J. W. Gerlach, R. Böhme, K. Zimmer, and B. Rauschenbach, “Large area metal dot matrices made by diffraction mask projection laser ablation,” Phys. Status Solidi 2(1), 34–36 (2008).

Hohlfeld, J.

J. Hohlfeld, S. S. Wellershoff, J. Gudde, U. Conrad, V. Jahnke, and E. Matthias, “Electron and lattice dynamics following optical excitation of metals,” Chem. Phys. 251(1-3), 237–258 (2000).
[Crossref]

Hwang, T. Y.

T. Y. Hwang, A. Y. Vorobyev, and C. Guo, “Surface-plasmon-enhanced photoelectron emission from nanostructure-covered periodic grooves on metals,” Phys. Rev. B 79(8), 085425 (2009).
[Crossref]

Ibbotson, L. A.

L. A. Ibbotson, A. Demetriadou, S. Croxall, O. Hess, and J. J. Baumberg, “Optical nano-woodpiles: large-area metallic photonic crystals and metamaterials,” Sci. Rep. 5, 8313 (2015).
[Crossref] [PubMed]

Indrisiunas, S.

B. Voisiat, M. Gedvilas, S. Indrisiunas, and G. Raciukaitis, “Picosecond-laser 4-beam-interference ablation as a flexible tool for thin film microstructuring,” Phys. Procedia 12, 116–124 (2011).
[Crossref]

Ippen, G. S.

A. A. Erchak, D. J. Ripin, S. F. Peter, J. D. Rakich, E. P. Joannopoulos, G. S. Ippen, Petrich, and L. A. Kolodziejski, “Enhanced coupling to vertical radiation using a two-dimensional photonic crystal in a semiconductor light-emitting diode,” Appl. Phys. Lett. 78(5), 563–565 (2001).

Ishizaki, K.

K. Ishizaki, M. Koumura, K. Suzuki, K. Gondaira, and S. Noda, “Realization of three-dimensional guiding of photons in photonic crystals,” Nat. Photonics 7(2), 133–137 (2013).
[Crossref]

Jaaskelainen, T.

Jahnke, V.

J. Hohlfeld, S. S. Wellershoff, J. Gudde, U. Conrad, V. Jahnke, and E. Matthias, “Electron and lattice dynamics following optical excitation of metals,” Chem. Phys. 251(1-3), 237–258 (2000).
[Crossref]

Jensen, K. F.

V. Rinnerbauer, S. Ndao, Y. X. Yeng, J. J. Senkevich, K. F. Jensen, J. D. Joannopoulos, M. Soljacic, I. Celanovic, and R. D. Geil, “Large-area fabrication of high aspect ratio tantalum photonic crystals for high-temperature selective emitters,” J. Vac. Sci. Technol. B 31(1), 011802 (2013).
[Crossref]

Jepu, I.

C. P. Lungu, C. M. Ticos, C. Porosnicu, I. Jepu, M. Lungu, A. Marcu, C. Luculescu, G. Cojocaru, D. Ursescu, R. Banici, and G. R. Ungureanu, “Periodic striations on beryllium and tungsten surfaces by indirect femtosecond laser irradiation,” Appl. Phys. Lett. 104(10), 101604 (2014).
[Crossref]

Jia, T.

Jia, X.

Jiang, L.

Joannopoulos, E. P.

A. A. Erchak, D. J. Ripin, S. F. Peter, J. D. Rakich, E. P. Joannopoulos, G. S. Ippen, Petrich, and L. A. Kolodziejski, “Enhanced coupling to vertical radiation using a two-dimensional photonic crystal in a semiconductor light-emitting diode,” Appl. Phys. Lett. 78(5), 563–565 (2001).

Joannopoulos, J. D.

V. Rinnerbauer, S. Ndao, Y. X. Yeng, J. J. Senkevich, K. F. Jensen, J. D. Joannopoulos, M. Soljacic, I. Celanovic, and R. D. Geil, “Large-area fabrication of high aspect ratio tantalum photonic crystals for high-temperature selective emitters,” J. Vac. Sci. Technol. B 31(1), 011802 (2013).
[Crossref]

Y. X. Yeng, M. Ghebrebrhan, P. Bermel, W. R. Chan, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Enabling high-temperature nanophotonics for energy applications,” Proc. Natl. Acad. Sci. U.S.A. 109(7), 2280–2285 (2012).
[Crossref] [PubMed]

M. Araghchini, Y. X. Yeng, N. Jovanovic, P. Bermel, L. A. Kolodziejski, M. Soljacic, I. Celanovic, and J. D. Joannopoulos, “Fabrication of two-dimensional tungsten photonic crystals for high-temperature applications,” J. Vac. Sci. Technol. B 29(6), 061402 (2011).
[Crossref]

C. Luo, A. Narayanaswamy, G. Chen, and J. D. Joannopoulos, “Thermal radiation from photonic crystals: a direct calculation,” Phys. Rev. Lett. 93(21), 213905 (2004).
[Crossref] [PubMed]

Johnson, E. A.

M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, “Photonic crystal enhanced narrow-band infrared emitters,” Appl. Phys. Lett. 81(25), 4685–4687 (2002).
[Crossref]

Jovanovic, N.

M. Araghchini, Y. X. Yeng, N. Jovanovic, P. Bermel, L. A. Kolodziejski, M. Soljacic, I. Celanovic, and J. D. Joannopoulos, “Fabrication of two-dimensional tungsten photonic crystals for high-temperature applications,” J. Vac. Sci. Technol. B 29(6), 061402 (2011).
[Crossref]

Kaakkunen, J. J. J.

Kalanyan, B.

K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, G. N. Parsons, G. S. Girolami, J. R. Abelson, S. Fan, and P. V. Braun, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat. Commun. 4, 2630 (2013).
[Crossref] [PubMed]

Kanamori, Y.

H. Sai, Y. Kanamori, and H. Yugami, “High-temperature resistive surface grating for spectral control of thermal radiation,” Appl. Phys. Lett. 82(11), 1685–1687 (2003).
[Crossref]

Khvostikov, V. P.

V. M. Andreev, A. S. Vlasov, V. P. Khvostikov, O. A. Khvostikova, P. Y. Gazaryan, S. V. Sorokina, and N. A. Sadchikov, “Solar thermophotovoltaic converters based on tungsten emitters,” J. Sol. Energy Eng. 129(3), 298–303 (2007).
[Crossref]

Khvostikova, O. A.

V. M. Andreev, A. S. Vlasov, V. P. Khvostikov, O. A. Khvostikova, P. Y. Gazaryan, S. V. Sorokina, and N. A. Sadchikov, “Solar thermophotovoltaic converters based on tungsten emitters,” J. Sol. Energy Eng. 129(3), 298–303 (2007).
[Crossref]

Kolodziejski, L. A.

M. Araghchini, Y. X. Yeng, N. Jovanovic, P. Bermel, L. A. Kolodziejski, M. Soljacic, I. Celanovic, and J. D. Joannopoulos, “Fabrication of two-dimensional tungsten photonic crystals for high-temperature applications,” J. Vac. Sci. Technol. B 29(6), 061402 (2011).
[Crossref]

A. A. Erchak, D. J. Ripin, S. F. Peter, J. D. Rakich, E. P. Joannopoulos, G. S. Ippen, Petrich, and L. A. Kolodziejski, “Enhanced coupling to vertical radiation using a two-dimensional photonic crystal in a semiconductor light-emitting diode,” Appl. Phys. Lett. 78(5), 563–565 (2001).

Koumura, M.

K. Ishizaki, M. Koumura, K. Suzuki, K. Gondaira, and S. Noda, “Realization of three-dimensional guiding of photons in photonic crystals,” Nat. Photonics 7(2), 133–137 (2013).
[Crossref]

Kuittinen, M.

Li, X.

Lin, S. Y.

J. G. Fleming, S. Y. Lin, I. El-Kady, R. Biswas, and K. M. Ho, “All-metallic three-dimensional photonic crystals with a large infrared bandgap,” Nature 417(6884), 52–55 (2002).
[Crossref] [PubMed]

Liu, J.

Liu, P.

Losego, M. D.

K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, G. N. Parsons, G. S. Girolami, J. R. Abelson, S. Fan, and P. V. Braun, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat. Commun. 4, 2630 (2013).
[Crossref] [PubMed]

Lu, Y.

Luculescu, C.

C. P. Lungu, C. M. Ticos, C. Porosnicu, I. Jepu, M. Lungu, A. Marcu, C. Luculescu, G. Cojocaru, D. Ursescu, R. Banici, and G. R. Ungureanu, “Periodic striations on beryllium and tungsten surfaces by indirect femtosecond laser irradiation,” Appl. Phys. Lett. 104(10), 101604 (2014).
[Crossref]

Lungu, C. P.

C. P. Lungu, C. M. Ticos, C. Porosnicu, I. Jepu, M. Lungu, A. Marcu, C. Luculescu, G. Cojocaru, D. Ursescu, R. Banici, and G. R. Ungureanu, “Periodic striations on beryllium and tungsten surfaces by indirect femtosecond laser irradiation,” Appl. Phys. Lett. 104(10), 101604 (2014).
[Crossref]

Lungu, M.

C. P. Lungu, C. M. Ticos, C. Porosnicu, I. Jepu, M. Lungu, A. Marcu, C. Luculescu, G. Cojocaru, D. Ursescu, R. Banici, and G. R. Ungureanu, “Periodic striations on beryllium and tungsten surfaces by indirect femtosecond laser irradiation,” Appl. Phys. Lett. 104(10), 101604 (2014).
[Crossref]

Luo, C.

C. Luo, A. Narayanaswamy, G. Chen, and J. D. Joannopoulos, “Thermal radiation from photonic crystals: a direct calculation,” Phys. Rev. Lett. 93(21), 213905 (2004).
[Crossref] [PubMed]

Mader, M.

M. Mader, T. Höche, J. W. Gerlach, R. Böhme, K. Zimmer, and B. Rauschenbach, “Large area metal dot matrices made by diffraction mask projection laser ablation,” Phys. Status Solidi 2(1), 34–36 (2008).

Mallek, J.

K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, G. N. Parsons, G. S. Girolami, J. R. Abelson, S. Fan, and P. V. Braun, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat. Commun. 4, 2630 (2013).
[Crossref] [PubMed]

Marcu, A.

C. P. Lungu, C. M. Ticos, C. Porosnicu, I. Jepu, M. Lungu, A. Marcu, C. Luculescu, G. Cojocaru, D. Ursescu, R. Banici, and G. R. Ungureanu, “Periodic striations on beryllium and tungsten surfaces by indirect femtosecond laser irradiation,” Appl. Phys. Lett. 104(10), 101604 (2014).
[Crossref]

Matthias, E.

J. Hohlfeld, S. S. Wellershoff, J. Gudde, U. Conrad, V. Jahnke, and E. Matthias, “Electron and lattice dynamics following optical excitation of metals,” Chem. Phys. 251(1-3), 237–258 (2000).
[Crossref]

Mayer, L.

L. Mayer, “On electron mirror microscopy,” J. Appl. Phys. 26(10), 1228–1230 (1955).
[Crossref]

Mayer, M. A.

B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, and J. Vuckovic, “Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser,” Nat. Photonics 5(5), 297–300 (2011).
[Crossref]

Mazur, E.

M. Shinoda, R. R. Gattass, and E. Mazur, “Femtosecond laser-induced formation of nanometer-width grooves on synthetic single-crystal diamond surfaces,” J. Appl. Phys. 105(5), 053102 (2009).
[Crossref]

McMahon, O. B.

E. R. Brown and O. B. McMahon, “Large electromagnetic stop bands in metallodielectric photonic crystals,” Appl. Phys. Lett. 67(15), 2138–2140 (1995).
[Crossref]

McNeal, M. P.

M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, “Photonic crystal enhanced narrow-band infrared emitters,” Appl. Phys. Lett. 81(25), 4685–4687 (2002).
[Crossref]

Moelders, N.

M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, “Photonic crystal enhanced narrow-band infrared emitters,” Appl. Phys. Lett. 81(25), 4685–4687 (2002).
[Crossref]

Murray, S.

C. J. Crowley, N. A. Elkouh, S. Murray, and D. L. Chubb, “Thermophotovoltaic converter performance for radioisotope power systems,” AIP Conf. Proc. 746, 601–614 (2005).
[Crossref]

Namba, S.

S. Sakabe, M. Hashida, S. Tokita, S. Namba, and K. Okamuro, “Mechanism for self-formation of periodic grating structures on a metal surface by a femtosecond laser pulse,” Phys. Rev. B 79(3), 033409 (2009).
[Crossref]

Narayanaswamy, A.

C. Luo, A. Narayanaswamy, G. Chen, and J. D. Joannopoulos, “Thermal radiation from photonic crystals: a direct calculation,” Phys. Rev. Lett. 93(21), 213905 (2004).
[Crossref] [PubMed]

Ndao, S.

V. Rinnerbauer, S. Ndao, Y. X. Yeng, J. J. Senkevich, K. F. Jensen, J. D. Joannopoulos, M. Soljacic, I. Celanovic, and R. D. Geil, “Large-area fabrication of high aspect ratio tantalum photonic crystals for high-temperature selective emitters,” J. Vac. Sci. Technol. B 31(1), 011802 (2013).
[Crossref]

Ning, H.

K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, G. N. Parsons, G. S. Girolami, J. R. Abelson, S. Fan, and P. V. Braun, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat. Commun. 4, 2630 (2013).
[Crossref] [PubMed]

Noda, S.

K. Ishizaki, M. Koumura, K. Suzuki, K. Gondaira, and S. Noda, “Realization of three-dimensional guiding of photons in photonic crystals,” Nat. Photonics 7(2), 133–137 (2013).
[Crossref]

Okamuro, K.

S. Sakabe, M. Hashida, S. Tokita, S. Namba, and K. Okamuro, “Mechanism for self-formation of periodic grating structures on a metal surface by a femtosecond laser pulse,” Phys. Rev. B 79(3), 033409 (2009).
[Crossref]

Paivasaari, K.

Pang, Z.

Z. Pang and X. Zhang, “Direct writing of large-area plasmonic photonic crystals using single-shot interference ablation,” Nanotechnology 22(14), 145303 (2011).
[Crossref] [PubMed]

Parsons, G. N.

K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, G. N. Parsons, G. S. Girolami, J. R. Abelson, S. Fan, and P. V. Braun, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat. Commun. 4, 2630 (2013).
[Crossref] [PubMed]

Peter, S. F.

A. A. Erchak, D. J. Ripin, S. F. Peter, J. D. Rakich, E. P. Joannopoulos, G. S. Ippen, Petrich, and L. A. Kolodziejski, “Enhanced coupling to vertical radiation using a two-dimensional photonic crystal in a semiconductor light-emitting diode,” Appl. Phys. Lett. 78(5), 563–565 (2001).

Petrich,

A. A. Erchak, D. J. Ripin, S. F. Peter, J. D. Rakich, E. P. Joannopoulos, G. S. Ippen, Petrich, and L. A. Kolodziejski, “Enhanced coupling to vertical radiation using a two-dimensional photonic crystal in a semiconductor light-emitting diode,” Appl. Phys. Lett. 78(5), 563–565 (2001).

Porosnicu, C.

C. P. Lungu, C. M. Ticos, C. Porosnicu, I. Jepu, M. Lungu, A. Marcu, C. Luculescu, G. Cojocaru, D. Ursescu, R. Banici, and G. R. Ungureanu, “Periodic striations on beryllium and tungsten surfaces by indirect femtosecond laser irradiation,” Appl. Phys. Lett. 104(10), 101604 (2014).
[Crossref]

Pralle, M. U.

M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, “Photonic crystal enhanced narrow-band infrared emitters,” Appl. Phys. Lett. 81(25), 4685–4687 (2002).
[Crossref]

Puscasu, I.

M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, “Photonic crystal enhanced narrow-band infrared emitters,” Appl. Phys. Lett. 81(25), 4685–4687 (2002).
[Crossref]

Qiu, J.

Qiu, T. Q.

T. Q. Qiu and C. L. Tien, “Heat transfer mechanisms during short-pulse laser heating of metals,” J. Heat Transfer 115(4), 835–841 (1993).
[Crossref]

Raciukaitis, G.

B. Voisiat, M. Gedvilas, S. Indrisiunas, and G. Raciukaitis, “Picosecond-laser 4-beam-interference ablation as a flexible tool for thin film microstructuring,” Phys. Procedia 12, 116–124 (2011).
[Crossref]

Rakich, J. D.

A. A. Erchak, D. J. Ripin, S. F. Peter, J. D. Rakich, E. P. Joannopoulos, G. S. Ippen, Petrich, and L. A. Kolodziejski, “Enhanced coupling to vertical radiation using a two-dimensional photonic crystal in a semiconductor light-emitting diode,” Appl. Phys. Lett. 78(5), 563–565 (2001).

Rauschenbach, B.

M. Mader, T. Höche, J. W. Gerlach, R. Böhme, K. Zimmer, and B. Rauschenbach, “Large area metal dot matrices made by diffraction mask projection laser ablation,” Phys. Status Solidi 2(1), 34–36 (2008).

Rinne, S. A.

S. A. Rinne, F. Garcia-Santamaria, and P. V. Braun, “Embedded cavities and waveguides in three-dimensional silicon photonic crystals,” Nat. Photonics 2(1), 52–56 (2008).
[Crossref]

Rinnerbauer, V.

V. Rinnerbauer, S. Ndao, Y. X. Yeng, J. J. Senkevich, K. F. Jensen, J. D. Joannopoulos, M. Soljacic, I. Celanovic, and R. D. Geil, “Large-area fabrication of high aspect ratio tantalum photonic crystals for high-temperature selective emitters,” J. Vac. Sci. Technol. B 31(1), 011802 (2013).
[Crossref]

Ripin, D. J.

A. A. Erchak, D. J. Ripin, S. F. Peter, J. D. Rakich, E. P. Joannopoulos, G. S. Ippen, Petrich, and L. A. Kolodziejski, “Enhanced coupling to vertical radiation using a two-dimensional photonic crystal in a semiconductor light-emitting diode,” Appl. Phys. Lett. 78(5), 563–565 (2001).

Sadchikov, N. A.

V. M. Andreev, A. S. Vlasov, V. P. Khvostikov, O. A. Khvostikova, P. Y. Gazaryan, S. V. Sorokina, and N. A. Sadchikov, “Solar thermophotovoltaic converters based on tungsten emitters,” J. Sol. Energy Eng. 129(3), 298–303 (2007).
[Crossref]

Sai, H.

H. Sai, Y. Kanamori, and H. Yugami, “High-temperature resistive surface grating for spectral control of thermal radiation,” Appl. Phys. Lett. 82(11), 1685–1687 (2003).
[Crossref]

Sakabe, S.

S. Sakabe, M. Hashida, S. Tokita, S. Namba, and K. Okamuro, “Mechanism for self-formation of periodic grating structures on a metal surface by a femtosecond laser pulse,” Phys. Rev. B 79(3), 033409 (2009).
[Crossref]

Sarmiento, T.

B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, and J. Vuckovic, “Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser,” Nat. Photonics 5(5), 297–300 (2011).
[Crossref]

Senkevich, J. J.

V. Rinnerbauer, S. Ndao, Y. X. Yeng, J. J. Senkevich, K. F. Jensen, J. D. Joannopoulos, M. Soljacic, I. Celanovic, and R. D. Geil, “Large-area fabrication of high aspect ratio tantalum photonic crystals for high-temperature selective emitters,” J. Vac. Sci. Technol. B 31(1), 011802 (2013).
[Crossref]

Sergeant, N. P.

K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, G. N. Parsons, G. S. Girolami, J. R. Abelson, S. Fan, and P. V. Braun, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat. Commun. 4, 2630 (2013).
[Crossref] [PubMed]

Shambat, G.

B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, and J. Vuckovic, “Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser,” Nat. Photonics 5(5), 297–300 (2011).
[Crossref]

Shinoda, M.

M. Shinoda, R. R. Gattass, and E. Mazur, “Femtosecond laser-induced formation of nanometer-width grooves on synthetic single-crystal diamond surfaces,” J. Appl. Phys. 105(5), 053102 (2009).
[Crossref]

Sigalas, M. M.

M. M. Sigalas, C. T. Chan, K. M. Ho, and C. M. Soukoulis, “Metallic photonic band-gap materials,” Phys. Rev. B Condens. Matter 52(16), 11744–11751 (1995).
[Crossref] [PubMed]

Soljacic, M.

V. Rinnerbauer, S. Ndao, Y. X. Yeng, J. J. Senkevich, K. F. Jensen, J. D. Joannopoulos, M. Soljacic, I. Celanovic, and R. D. Geil, “Large-area fabrication of high aspect ratio tantalum photonic crystals for high-temperature selective emitters,” J. Vac. Sci. Technol. B 31(1), 011802 (2013).
[Crossref]

Y. X. Yeng, M. Ghebrebrhan, P. Bermel, W. R. Chan, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Enabling high-temperature nanophotonics for energy applications,” Proc. Natl. Acad. Sci. U.S.A. 109(7), 2280–2285 (2012).
[Crossref] [PubMed]

M. Araghchini, Y. X. Yeng, N. Jovanovic, P. Bermel, L. A. Kolodziejski, M. Soljacic, I. Celanovic, and J. D. Joannopoulos, “Fabrication of two-dimensional tungsten photonic crystals for high-temperature applications,” J. Vac. Sci. Technol. B 29(6), 061402 (2011).
[Crossref]

Sorokina, S. V.

V. M. Andreev, A. S. Vlasov, V. P. Khvostikov, O. A. Khvostikova, P. Y. Gazaryan, S. V. Sorokina, and N. A. Sadchikov, “Solar thermophotovoltaic converters based on tungsten emitters,” J. Sol. Energy Eng. 129(3), 298–303 (2007).
[Crossref]

Soukoulis, C. M.

M. M. Sigalas, C. T. Chan, K. M. Ho, and C. M. Soukoulis, “Metallic photonic band-gap materials,” Phys. Rev. B Condens. Matter 52(16), 11744–11751 (1995).
[Crossref] [PubMed]

Sun, Z.

Suzuki, K.

K. Ishizaki, M. Koumura, K. Suzuki, K. Gondaira, and S. Noda, “Realization of three-dimensional guiding of photons in photonic crystals,” Nat. Photonics 7(2), 133–137 (2013).
[Crossref]

Ticos, C. M.

C. P. Lungu, C. M. Ticos, C. Porosnicu, I. Jepu, M. Lungu, A. Marcu, C. Luculescu, G. Cojocaru, D. Ursescu, R. Banici, and G. R. Ungureanu, “Periodic striations on beryllium and tungsten surfaces by indirect femtosecond laser irradiation,” Appl. Phys. Lett. 104(10), 101604 (2014).
[Crossref]

Tien, C. L.

T. Q. Qiu and C. L. Tien, “Heat transfer mechanisms during short-pulse laser heating of metals,” J. Heat Transfer 115(4), 835–841 (1993).
[Crossref]

Tokita, S.

S. Sakabe, M. Hashida, S. Tokita, S. Namba, and K. Okamuro, “Mechanism for self-formation of periodic grating structures on a metal surface by a femtosecond laser pulse,” Phys. Rev. B 79(3), 033409 (2009).
[Crossref]

Ungureanu, G. R.

C. P. Lungu, C. M. Ticos, C. Porosnicu, I. Jepu, M. Lungu, A. Marcu, C. Luculescu, G. Cojocaru, D. Ursescu, R. Banici, and G. R. Ungureanu, “Periodic striations on beryllium and tungsten surfaces by indirect femtosecond laser irradiation,” Appl. Phys. Lett. 104(10), 101604 (2014).
[Crossref]

Ursescu, D.

C. P. Lungu, C. M. Ticos, C. Porosnicu, I. Jepu, M. Lungu, A. Marcu, C. Luculescu, G. Cojocaru, D. Ursescu, R. Banici, and G. R. Ungureanu, “Periodic striations on beryllium and tungsten surfaces by indirect femtosecond laser irradiation,” Appl. Phys. Lett. 104(10), 101604 (2014).
[Crossref]

Vlasov, A. S.

V. M. Andreev, A. S. Vlasov, V. P. Khvostikov, O. A. Khvostikova, P. Y. Gazaryan, S. V. Sorokina, and N. A. Sadchikov, “Solar thermophotovoltaic converters based on tungsten emitters,” J. Sol. Energy Eng. 129(3), 298–303 (2007).
[Crossref]

Voisiat, B.

B. Voisiat, M. Gedvilas, S. Indrisiunas, and G. Raciukaitis, “Picosecond-laser 4-beam-interference ablation as a flexible tool for thin film microstructuring,” Phys. Procedia 12, 116–124 (2011).
[Crossref]

Vorobyev, A. Y.

T. Y. Hwang, A. Y. Vorobyev, and C. Guo, “Surface-plasmon-enhanced photoelectron emission from nanostructure-covered periodic grooves on metals,” Phys. Rev. B 79(8), 085425 (2009).
[Crossref]

Vuckovic, J.

B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, and J. Vuckovic, “Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser,” Nat. Photonics 5(5), 297–300 (2011).
[Crossref]

Wellershoff, S. S.

J. Hohlfeld, S. S. Wellershoff, J. Gudde, U. Conrad, V. Jahnke, and E. Matthias, “Electron and lattice dynamics following optical excitation of metals,” Chem. Phys. 251(1-3), 237–258 (2000).
[Crossref]

Wu, H.

Xu, L.

Xu, X.

Yang, J.

Yeng, Y. X.

V. Rinnerbauer, S. Ndao, Y. X. Yeng, J. J. Senkevich, K. F. Jensen, J. D. Joannopoulos, M. Soljacic, I. Celanovic, and R. D. Geil, “Large-area fabrication of high aspect ratio tantalum photonic crystals for high-temperature selective emitters,” J. Vac. Sci. Technol. B 31(1), 011802 (2013).
[Crossref]

Y. X. Yeng, M. Ghebrebrhan, P. Bermel, W. R. Chan, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Enabling high-temperature nanophotonics for energy applications,” Proc. Natl. Acad. Sci. U.S.A. 109(7), 2280–2285 (2012).
[Crossref] [PubMed]

M. Araghchini, Y. X. Yeng, N. Jovanovic, P. Bermel, L. A. Kolodziejski, M. Soljacic, I. Celanovic, and J. D. Joannopoulos, “Fabrication of two-dimensional tungsten photonic crystals for high-temperature applications,” J. Vac. Sci. Technol. B 29(6), 061402 (2011).
[Crossref]

Yu, Z.

K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, G. N. Parsons, G. S. Girolami, J. R. Abelson, S. Fan, and P. V. Braun, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat. Commun. 4, 2630 (2013).
[Crossref] [PubMed]

Yugami, H.

H. Sai, Y. Kanamori, and H. Yugami, “High-temperature resistive surface grating for spectral control of thermal radiation,” Appl. Phys. Lett. 82(11), 1685–1687 (2003).
[Crossref]

Zhang, H.

Zhang, N.

Zhang, S.

Zhang, X.

Z. Pang and X. Zhang, “Direct writing of large-area plasmonic photonic crystals using single-shot interference ablation,” Nanotechnology 22(14), 145303 (2011).
[Crossref] [PubMed]

Zhao, B.

Zhou, K.

Zhu, L.

K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, G. N. Parsons, G. S. Girolami, J. R. Abelson, S. Fan, and P. V. Braun, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat. Commun. 4, 2630 (2013).
[Crossref] [PubMed]

Zhu, X.

Zimmer, K.

M. Mader, T. Höche, J. W. Gerlach, R. Böhme, K. Zimmer, and B. Rauschenbach, “Large area metal dot matrices made by diffraction mask projection laser ablation,” Phys. Status Solidi 2(1), 34–36 (2008).

AIP Conf. Proc. (1)

C. J. Crowley, N. A. Elkouh, S. Murray, and D. L. Chubb, “Thermophotovoltaic converter performance for radioisotope power systems,” AIP Conf. Proc. 746, 601–614 (2005).
[Crossref]

Appl. Phys. Lett. (5)

A. A. Erchak, D. J. Ripin, S. F. Peter, J. D. Rakich, E. P. Joannopoulos, G. S. Ippen, Petrich, and L. A. Kolodziejski, “Enhanced coupling to vertical radiation using a two-dimensional photonic crystal in a semiconductor light-emitting diode,” Appl. Phys. Lett. 78(5), 563–565 (2001).

E. R. Brown and O. B. McMahon, “Large electromagnetic stop bands in metallodielectric photonic crystals,” Appl. Phys. Lett. 67(15), 2138–2140 (1995).
[Crossref]

M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, “Photonic crystal enhanced narrow-band infrared emitters,” Appl. Phys. Lett. 81(25), 4685–4687 (2002).
[Crossref]

H. Sai, Y. Kanamori, and H. Yugami, “High-temperature resistive surface grating for spectral control of thermal radiation,” Appl. Phys. Lett. 82(11), 1685–1687 (2003).
[Crossref]

C. P. Lungu, C. M. Ticos, C. Porosnicu, I. Jepu, M. Lungu, A. Marcu, C. Luculescu, G. Cojocaru, D. Ursescu, R. Banici, and G. R. Ungureanu, “Periodic striations on beryllium and tungsten surfaces by indirect femtosecond laser irradiation,” Appl. Phys. Lett. 104(10), 101604 (2014).
[Crossref]

Chem. Phys. (1)

J. Hohlfeld, S. S. Wellershoff, J. Gudde, U. Conrad, V. Jahnke, and E. Matthias, “Electron and lattice dynamics following optical excitation of metals,” Chem. Phys. 251(1-3), 237–258 (2000).
[Crossref]

J. Appl. Phys. (2)

M. Shinoda, R. R. Gattass, and E. Mazur, “Femtosecond laser-induced formation of nanometer-width grooves on synthetic single-crystal diamond surfaces,” J. Appl. Phys. 105(5), 053102 (2009).
[Crossref]

L. Mayer, “On electron mirror microscopy,” J. Appl. Phys. 26(10), 1228–1230 (1955).
[Crossref]

J. Heat Transfer (1)

T. Q. Qiu and C. L. Tien, “Heat transfer mechanisms during short-pulse laser heating of metals,” J. Heat Transfer 115(4), 835–841 (1993).
[Crossref]

J. Sol. Energy Eng. (1)

V. M. Andreev, A. S. Vlasov, V. P. Khvostikov, O. A. Khvostikova, P. Y. Gazaryan, S. V. Sorokina, and N. A. Sadchikov, “Solar thermophotovoltaic converters based on tungsten emitters,” J. Sol. Energy Eng. 129(3), 298–303 (2007).
[Crossref]

J. Vac. Sci. Technol. B (2)

V. Rinnerbauer, S. Ndao, Y. X. Yeng, J. J. Senkevich, K. F. Jensen, J. D. Joannopoulos, M. Soljacic, I. Celanovic, and R. D. Geil, “Large-area fabrication of high aspect ratio tantalum photonic crystals for high-temperature selective emitters,” J. Vac. Sci. Technol. B 31(1), 011802 (2013).
[Crossref]

M. Araghchini, Y. X. Yeng, N. Jovanovic, P. Bermel, L. A. Kolodziejski, M. Soljacic, I. Celanovic, and J. D. Joannopoulos, “Fabrication of two-dimensional tungsten photonic crystals for high-temperature applications,” J. Vac. Sci. Technol. B 29(6), 061402 (2011).
[Crossref]

Nanotechnology (1)

Z. Pang and X. Zhang, “Direct writing of large-area plasmonic photonic crystals using single-shot interference ablation,” Nanotechnology 22(14), 145303 (2011).
[Crossref] [PubMed]

Nat. Commun. (1)

K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, G. N. Parsons, G. S. Girolami, J. R. Abelson, S. Fan, and P. V. Braun, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat. Commun. 4, 2630 (2013).
[Crossref] [PubMed]

Nat. Photonics (3)

S. A. Rinne, F. Garcia-Santamaria, and P. V. Braun, “Embedded cavities and waveguides in three-dimensional silicon photonic crystals,” Nat. Photonics 2(1), 52–56 (2008).
[Crossref]

K. Ishizaki, M. Koumura, K. Suzuki, K. Gondaira, and S. Noda, “Realization of three-dimensional guiding of photons in photonic crystals,” Nat. Photonics 7(2), 133–137 (2013).
[Crossref]

B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, and J. Vuckovic, “Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser,” Nat. Photonics 5(5), 297–300 (2011).
[Crossref]

Nature (1)

J. G. Fleming, S. Y. Lin, I. El-Kady, R. Biswas, and K. M. Ho, “All-metallic three-dimensional photonic crystals with a large infrared bandgap,” Nature 417(6884), 52–55 (2002).
[Crossref] [PubMed]

Opt. Express (4)

Opt. Lett. (1)

Phys. Procedia (1)

B. Voisiat, M. Gedvilas, S. Indrisiunas, and G. Raciukaitis, “Picosecond-laser 4-beam-interference ablation as a flexible tool for thin film microstructuring,” Phys. Procedia 12, 116–124 (2011).
[Crossref]

Phys. Rev. B (2)

S. Sakabe, M. Hashida, S. Tokita, S. Namba, and K. Okamuro, “Mechanism for self-formation of periodic grating structures on a metal surface by a femtosecond laser pulse,” Phys. Rev. B 79(3), 033409 (2009).
[Crossref]

T. Y. Hwang, A. Y. Vorobyev, and C. Guo, “Surface-plasmon-enhanced photoelectron emission from nanostructure-covered periodic grooves on metals,” Phys. Rev. B 79(8), 085425 (2009).
[Crossref]

Phys. Rev. B Condens. Matter (1)

M. M. Sigalas, C. T. Chan, K. M. Ho, and C. M. Soukoulis, “Metallic photonic band-gap materials,” Phys. Rev. B Condens. Matter 52(16), 11744–11751 (1995).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

C. Luo, A. Narayanaswamy, G. Chen, and J. D. Joannopoulos, “Thermal radiation from photonic crystals: a direct calculation,” Phys. Rev. Lett. 93(21), 213905 (2004).
[Crossref] [PubMed]

Phys. Status Solidi (1)

M. Mader, T. Höche, J. W. Gerlach, R. Böhme, K. Zimmer, and B. Rauschenbach, “Large area metal dot matrices made by diffraction mask projection laser ablation,” Phys. Status Solidi 2(1), 34–36 (2008).

Proc. Natl. Acad. Sci. U.S.A. (1)

Y. X. Yeng, M. Ghebrebrhan, P. Bermel, W. R. Chan, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Enabling high-temperature nanophotonics for energy applications,” Proc. Natl. Acad. Sci. U.S.A. 109(7), 2280–2285 (2012).
[Crossref] [PubMed]

Sci. Rep. (1)

L. A. Ibbotson, A. Demetriadou, S. Croxall, O. Hess, and J. J. Baumberg, “Optical nano-woodpiles: large-area metallic photonic crystals and metamaterials,” Sci. Rep. 5, 8313 (2015).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Schematic of the experimental setup for direct fabricating large-area 2D photonic crystal structures on tungsten surface by two cross-polarization femtosecond laser pulses. The double arrows represent the directions of the linear polarization of femtosecond laser pulses, and θ denotes the azimuth angle of the birefringent crystal.
Fig. 2
Fig. 2 (a) SEM images of the square lattices of metallic microbump structures on tungsten surface fabricated by two time-delay femtosecond laser pulses with orthogonal linear polarizations at the total laser energy of 0.21 mJ and the translation speed of 0.02 mm/s. (b) A typical AFM image (left) and MEM image (right) of the microbumped surface structures. (c) A cross-section profile line of the AFM image in Fig. 2(b).
Fig. 3
Fig. 3 Evolution of the microstructures on tungsten surface with varying incident laser parameters. (a) Morphologies of the structures formed with several laser fluences. (b) Morphologies of the structures formed with several translation speeds. (c) The measured periodicity and feature size of the microbumps as a function of the translation speed.
Fig. 4
Fig. 4 (a) Simulated variations of the double laser pulse energies with different azimuth angles of the birefringent crystal, where the shaded regions represent two available regimes for the formation of 2D square lattices of microbump structures; (b)–(g) SEM images of surface structures obtained at different azimuth angles of the birefrigent crystal, represent θ = 40°, 46°, 49°, 52°, 58° and 60°, respectively where the laser energy is 0.2mJ.
Fig. 5
Fig. 5 (a) SEM image of the 2D microbumped MPC structures in an extended area on tungsten surface irradiated by two time-delay femtosecond laser pulses with orthognal linear polarizations. (b) An image of the fast Fourier transformation (FFT) of Fig. 5(a).
Fig. 6
Fig. 6 An illustration of physical stages for the formation of 2D microbumped photonic crystal structures on tungsten surface by two time-delayed femtosecond laser pulse beams. (a) The prior laser pulse induces a transient subwavelength temperature grating-like pattern (yellow regions) within the beam spot, with orientation perpendicular to the incident polarization direction due to the laser-SPP coupling. (b) The delayed laser pulse associated with different linear polarization also induces its own transient subwavelength temperature grating-like pattern (blue regions). As a result, the short time delay between double laser pulses results in two orthogonal temperature grating-like patterns on the sample surface. (c) Quadratic matrix of pristine metallic islands are initially generated by the crossed ablations of two temperature gratings, and then they are sculptured into microbumps due to the surrounding correlated thermal effects.
Fig. 7
Fig. 7 Evolution of microstructures on tungsten surface with different time delays between the two time-delay femtosecond laser pulses with orthogonal linear polarizations, where the two laser pulse energies are E1 = 0.104 mJ and E2 = 0.08 mJ, respectively, and their linear polarization directions are denoted by the red double arrows (time delays represent the first arrival of the higher-energy laser pulse E1).
Fig. 8
Fig. 8 Measured spectral reflectivity of the 2D MPC structures and the polished tungsten at the normal incident angle at room temperature. The incident beam is randomly polarized.

Metrics