Abstract

We pump a degenerate frequency-divide-by-two optical parametric oscillator (OPO) based on orientation-patterned GaAs with a stable Tm frequency comb at 2 micrometer wavelength and measure the OPO comb offset frequency and linewidth. We show frequency division by two with sub-Hz relative linewidth of the comb teeth. The OPO thermally self-stabilizes and oscillates for nearly an hour without any active control.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Frequency comb metrology with an optical parametric oscillator

K. Balskus, S. Schilt, V. J. Wittwer, P. Brochard, T. Ploetzing, N. Jornod, R. A. McCracken, Z. Zhang, A. Bartels, D.T. Reid, and T. Südmeyer
Opt. Express 24(8) 8370-8381 (2016)

Atomically referenced 1-GHz optical parametric oscillator frequency comb

Richard A. McCracken, Karolis Balskus, Zhaowei Zhang, and Derryck T. Reid
Opt. Express 23(12) 16466-16472 (2015)

Frequency stability of a femtosecond optical parametric oscillator frequency comb

Teresa I. Ferreiro, Jinghua Sun, and Derryck T. Reid
Opt. Express 19(24) 24159-24164 (2011)

References

  • View by:
  • |
  • |
  • |

  1. N. Leindecker, A. Marandi, R. L. Byer, and K. L. Vodopyanov, “Broadband degenerate OPO for mid-infrared frequency comb generation,” Opt. Express 19(7), 6296–6302 (2011).
    [Crossref] [PubMed]
  2. A. Marandi, N. C. Leindecker, V. Pervak, R. L. Byer, and K. L. Vodopyanov, “Coherence properties of a broadband femtosecond mid-IR optical parametric oscillator operating at degeneracy,” Opt. Express 20(7), 7255–7262 (2012).
    [Crossref] [PubMed]
  3. K. F. Lee, J. Jiang, C. Mohr, J. Bethge, M. E. Fermann, N. Leindecker, K. L. Vodopyanov, P. G. Schunemann, and I. Hartl, “Carrier envelope offset frequency of a doubly resonant, nondegenerate, mid-infrared GaAs optical parametric oscillator,” Opt. Lett. 38(8), 1191–1193 (2013).
    [Crossref] [PubMed]
  4. A. S. Villar, K. N. Cassemiro, K. Dechoum, A. Z. Khoury, M. Martinelli, and P. Nussenzveig, “Entanglement in the above-threshold optical parametric oscillator,” J. Opt. Soc. Am. B 24(2), 249–256 (2007).
    [Crossref]
  5. A. Marandi, N. C. Leindecker, K. L. Vodopyanov, and R. L. Byer, “All-optical quantum random bit generation from intrinsically binary phase of parametric oscillators,” Opt. Express 20(17), 19322–19330 (2012).
    [PubMed]
  6. S. T. Wong, K. L. Vodopyanov, and R. L. Byer, “Self-phase-locked divide-by-2 optical parametric oscillator as a broadband frequency comb source,” J. Opt. Soc. Am. B 27(5), 876–882 (2010).
    [Crossref]
  7. A. Foltynowicz, P. Masłowski, T. Ban, F. Adler, K. C. Cossel, T. C. Briles, and J. Ye, “Optical frequency comb spectroscopy,” Faraday Discuss. 150, 23–31 (2011).
    [Crossref] [PubMed]
  8. S. T. Cundiff and J. Ye, “Femtosecond optical frequency combs,” Rev. Mod. Phys. 75(1), 325–342 (2003).
    [Crossref]
  9. C.-C. Lee, S. Suzuki, W. Xie, and T. R. Schibli, “Broadband graphene electro-optic modulators with sub-wavelength thickness,” Opt. Express 20(5), 5264–5269 (2012).
    [Crossref] [PubMed]
  10. N. Leindecker, A. Marandi, R. L. Byer, K. L. Vodopyanov, J. Jiang, I. Hartl, M. Fermann, and P. G. Schunemann, “Octave-spanning ultrafast OPO with 2.6-6.1 µm instantaneous bandwidth pumped by femtosecond Tm-fiber laser,” Opt. Express 20(7), 7046–7053 (2012).
    [Crossref] [PubMed]
  11. V. O. Smolski, S. Vasilyev, P. G. Schunemann, S. B. Mirov, and K. L. Vodopyanov, “Cr:ZnS laser-pumped subharmonic GaAs optical parametric oscillator with the spectrum spanning 3.6-5.6 μm,” Opt. Lett. 40(12), 2906–2908 (2015).
    [Crossref] [PubMed]
  12. J. Kiessling, Fraunhofer Institute of Physical Measurement Techniques, Heidenhofstraße 8, D-79110 Freiburg, Germany (personal comunication 2013).
  13. T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn, and E. Lallier, “Improved dispersion relations for GaAs and applications to nonlinear optics,” J. Appl. Phys. 94(10), 6447 (2003).
    [Crossref]
  14. D. K. Serkland, R. C. Eckardt, and R. L. Byer, “Continuous-wave total-internal-reflection optical parametric oscillator pumped at 1064 nm,” Opt. Lett. 19(14), 1046–1048 (1994).
    [Crossref] [PubMed]
  15. P. L. Hansen and P. Buchhave, “Thermal self-frequency locking of a doubly resonant optical parametric oscillator,” Opt. Lett. 22(14), 1074–1076 (1997).
    [Crossref] [PubMed]
  16. A. Douillet, J.-J. Zondy, A. Yelisseyev, S. Lobanov, and L. Isaenko, “Stability and frequency tuning of thermally loaded continuous-wave AgGaS2 optical parametric oscillators,” J. Opt. Soc. Am. B 16(9), 1481–1498 (1999).
    [Crossref]
  17. P. Dubé, L.-S. Ma, J. Ye, P. Jungner, and J. L. Hall, “Thermally induced self-locking of an optical cavity by overtone absorption in acetylene gas,” J. Opt. Soc. Am. B 13(9), 2041–2054 (1996).
    [Crossref]
  18. K. F. Lee, N. Granzow, M. A. Schmidt, W. Chang, L. Wang, Q. Coulombier, J. Troles, N. Leindecker, K. L. Vodopyanov, P. G. Schunemann, M. E. Fermann, P. St. J. Russell, and I. Hartl, “Midinfrared frequency combs from coherent supercontinuum in chalcogenide and optical parametric oscillation,” Opt. Lett. 39(7), 2056–2059 (2014).
    [Crossref] [PubMed]
  19. K. F. Lee, P. Maslowski, A. Mills, C. Mohr, J. Jiang, C. C. Lee, T. R. Schibli, P. G. Schunemann, and M. Fermann, “Broadband Midinfrared Comb-Resolved Fourier Transform Spectroscopy,” in CLEO: 2014, OSA Technical Digest (online) (Optical Society of America, 2014), paper STh1N.1.
    [Crossref]

2015 (1)

2014 (1)

2013 (1)

2012 (4)

2011 (2)

N. Leindecker, A. Marandi, R. L. Byer, and K. L. Vodopyanov, “Broadband degenerate OPO for mid-infrared frequency comb generation,” Opt. Express 19(7), 6296–6302 (2011).
[Crossref] [PubMed]

A. Foltynowicz, P. Masłowski, T. Ban, F. Adler, K. C. Cossel, T. C. Briles, and J. Ye, “Optical frequency comb spectroscopy,” Faraday Discuss. 150, 23–31 (2011).
[Crossref] [PubMed]

2010 (1)

2007 (1)

2003 (2)

S. T. Cundiff and J. Ye, “Femtosecond optical frequency combs,” Rev. Mod. Phys. 75(1), 325–342 (2003).
[Crossref]

T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn, and E. Lallier, “Improved dispersion relations for GaAs and applications to nonlinear optics,” J. Appl. Phys. 94(10), 6447 (2003).
[Crossref]

1999 (1)

1997 (1)

1996 (1)

1994 (1)

Adler, F.

A. Foltynowicz, P. Masłowski, T. Ban, F. Adler, K. C. Cossel, T. C. Briles, and J. Ye, “Optical frequency comb spectroscopy,” Faraday Discuss. 150, 23–31 (2011).
[Crossref] [PubMed]

Ban, T.

A. Foltynowicz, P. Masłowski, T. Ban, F. Adler, K. C. Cossel, T. C. Briles, and J. Ye, “Optical frequency comb spectroscopy,” Faraday Discuss. 150, 23–31 (2011).
[Crossref] [PubMed]

Becouarn, L.

T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn, and E. Lallier, “Improved dispersion relations for GaAs and applications to nonlinear optics,” J. Appl. Phys. 94(10), 6447 (2003).
[Crossref]

Bethge, J.

Briles, T. C.

A. Foltynowicz, P. Masłowski, T. Ban, F. Adler, K. C. Cossel, T. C. Briles, and J. Ye, “Optical frequency comb spectroscopy,” Faraday Discuss. 150, 23–31 (2011).
[Crossref] [PubMed]

Buchhave, P.

Byer, R. L.

Cassemiro, K. N.

Chang, W.

Cossel, K. C.

A. Foltynowicz, P. Masłowski, T. Ban, F. Adler, K. C. Cossel, T. C. Briles, and J. Ye, “Optical frequency comb spectroscopy,” Faraday Discuss. 150, 23–31 (2011).
[Crossref] [PubMed]

Coulombier, Q.

Cundiff, S. T.

S. T. Cundiff and J. Ye, “Femtosecond optical frequency combs,” Rev. Mod. Phys. 75(1), 325–342 (2003).
[Crossref]

Dechoum, K.

Douillet, A.

Dubé, P.

Eckardt, R. C.

Eyres, L. A.

T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn, and E. Lallier, “Improved dispersion relations for GaAs and applications to nonlinear optics,” J. Appl. Phys. 94(10), 6447 (2003).
[Crossref]

Fejer, M. M.

T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn, and E. Lallier, “Improved dispersion relations for GaAs and applications to nonlinear optics,” J. Appl. Phys. 94(10), 6447 (2003).
[Crossref]

Fermann, M.

Fermann, M. E.

Foltynowicz, A.

A. Foltynowicz, P. Masłowski, T. Ban, F. Adler, K. C. Cossel, T. C. Briles, and J. Ye, “Optical frequency comb spectroscopy,” Faraday Discuss. 150, 23–31 (2011).
[Crossref] [PubMed]

Gerard, B.

T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn, and E. Lallier, “Improved dispersion relations for GaAs and applications to nonlinear optics,” J. Appl. Phys. 94(10), 6447 (2003).
[Crossref]

Granzow, N.

Hall, J. L.

Hansen, P. L.

Harris, J. S.

T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn, and E. Lallier, “Improved dispersion relations for GaAs and applications to nonlinear optics,” J. Appl. Phys. 94(10), 6447 (2003).
[Crossref]

Hartl, I.

Isaenko, L.

Jiang, J.

Jungner, P.

Khoury, A. Z.

Kuo, P. S.

T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn, and E. Lallier, “Improved dispersion relations for GaAs and applications to nonlinear optics,” J. Appl. Phys. 94(10), 6447 (2003).
[Crossref]

Lallier, E.

T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn, and E. Lallier, “Improved dispersion relations for GaAs and applications to nonlinear optics,” J. Appl. Phys. 94(10), 6447 (2003).
[Crossref]

Lee, C.-C.

Lee, K. F.

Leindecker, N.

Leindecker, N. C.

Levi, O.

T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn, and E. Lallier, “Improved dispersion relations for GaAs and applications to nonlinear optics,” J. Appl. Phys. 94(10), 6447 (2003).
[Crossref]

Lobanov, S.

Ma, L.-S.

Marandi, A.

Martinelli, M.

Maslowski, P.

A. Foltynowicz, P. Masłowski, T. Ban, F. Adler, K. C. Cossel, T. C. Briles, and J. Ye, “Optical frequency comb spectroscopy,” Faraday Discuss. 150, 23–31 (2011).
[Crossref] [PubMed]

Mirov, S. B.

Mohr, C.

Nussenzveig, P.

Pervak, V.

Pinguet, T. J.

T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn, and E. Lallier, “Improved dispersion relations for GaAs and applications to nonlinear optics,” J. Appl. Phys. 94(10), 6447 (2003).
[Crossref]

Russell, P. St. J.

Schibli, T. R.

Schmidt, M. A.

Schunemann, P. G.

Serkland, D. K.

Skauli, T.

T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn, and E. Lallier, “Improved dispersion relations for GaAs and applications to nonlinear optics,” J. Appl. Phys. 94(10), 6447 (2003).
[Crossref]

Smolski, V. O.

Suzuki, S.

Troles, J.

Vasilyev, S.

Villar, A. S.

Vodopyanov, K. L.

V. O. Smolski, S. Vasilyev, P. G. Schunemann, S. B. Mirov, and K. L. Vodopyanov, “Cr:ZnS laser-pumped subharmonic GaAs optical parametric oscillator with the spectrum spanning 3.6-5.6 μm,” Opt. Lett. 40(12), 2906–2908 (2015).
[Crossref] [PubMed]

K. F. Lee, N. Granzow, M. A. Schmidt, W. Chang, L. Wang, Q. Coulombier, J. Troles, N. Leindecker, K. L. Vodopyanov, P. G. Schunemann, M. E. Fermann, P. St. J. Russell, and I. Hartl, “Midinfrared frequency combs from coherent supercontinuum in chalcogenide and optical parametric oscillation,” Opt. Lett. 39(7), 2056–2059 (2014).
[Crossref] [PubMed]

K. F. Lee, J. Jiang, C. Mohr, J. Bethge, M. E. Fermann, N. Leindecker, K. L. Vodopyanov, P. G. Schunemann, and I. Hartl, “Carrier envelope offset frequency of a doubly resonant, nondegenerate, mid-infrared GaAs optical parametric oscillator,” Opt. Lett. 38(8), 1191–1193 (2013).
[Crossref] [PubMed]

N. Leindecker, A. Marandi, R. L. Byer, K. L. Vodopyanov, J. Jiang, I. Hartl, M. Fermann, and P. G. Schunemann, “Octave-spanning ultrafast OPO with 2.6-6.1 µm instantaneous bandwidth pumped by femtosecond Tm-fiber laser,” Opt. Express 20(7), 7046–7053 (2012).
[Crossref] [PubMed]

A. Marandi, N. C. Leindecker, V. Pervak, R. L. Byer, and K. L. Vodopyanov, “Coherence properties of a broadband femtosecond mid-IR optical parametric oscillator operating at degeneracy,” Opt. Express 20(7), 7255–7262 (2012).
[Crossref] [PubMed]

A. Marandi, N. C. Leindecker, K. L. Vodopyanov, and R. L. Byer, “All-optical quantum random bit generation from intrinsically binary phase of parametric oscillators,” Opt. Express 20(17), 19322–19330 (2012).
[PubMed]

N. Leindecker, A. Marandi, R. L. Byer, and K. L. Vodopyanov, “Broadband degenerate OPO for mid-infrared frequency comb generation,” Opt. Express 19(7), 6296–6302 (2011).
[Crossref] [PubMed]

S. T. Wong, K. L. Vodopyanov, and R. L. Byer, “Self-phase-locked divide-by-2 optical parametric oscillator as a broadband frequency comb source,” J. Opt. Soc. Am. B 27(5), 876–882 (2010).
[Crossref]

T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn, and E. Lallier, “Improved dispersion relations for GaAs and applications to nonlinear optics,” J. Appl. Phys. 94(10), 6447 (2003).
[Crossref]

Wang, L.

Wong, S. T.

Xie, W.

Ye, J.

A. Foltynowicz, P. Masłowski, T. Ban, F. Adler, K. C. Cossel, T. C. Briles, and J. Ye, “Optical frequency comb spectroscopy,” Faraday Discuss. 150, 23–31 (2011).
[Crossref] [PubMed]

S. T. Cundiff and J. Ye, “Femtosecond optical frequency combs,” Rev. Mod. Phys. 75(1), 325–342 (2003).
[Crossref]

P. Dubé, L.-S. Ma, J. Ye, P. Jungner, and J. L. Hall, “Thermally induced self-locking of an optical cavity by overtone absorption in acetylene gas,” J. Opt. Soc. Am. B 13(9), 2041–2054 (1996).
[Crossref]

Yelisseyev, A.

Zondy, J.-J.

Faraday Discuss. (1)

A. Foltynowicz, P. Masłowski, T. Ban, F. Adler, K. C. Cossel, T. C. Briles, and J. Ye, “Optical frequency comb spectroscopy,” Faraday Discuss. 150, 23–31 (2011).
[Crossref] [PubMed]

J. Appl. Phys. (1)

T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn, and E. Lallier, “Improved dispersion relations for GaAs and applications to nonlinear optics,” J. Appl. Phys. 94(10), 6447 (2003).
[Crossref]

J. Opt. Soc. Am. B (4)

Opt. Express (5)

Opt. Lett. (5)

Rev. Mod. Phys. (1)

S. T. Cundiff and J. Ye, “Femtosecond optical frequency combs,” Rev. Mod. Phys. 75(1), 325–342 (2003).
[Crossref]

Other (2)

J. Kiessling, Fraunhofer Institute of Physical Measurement Techniques, Heidenhofstraße 8, D-79110 Freiburg, Germany (personal comunication 2013).

K. F. Lee, P. Maslowski, A. Mills, C. Mohr, J. Jiang, C. C. Lee, T. R. Schibli, P. G. Schunemann, and M. Fermann, “Broadband Midinfrared Comb-Resolved Fourier Transform Spectroscopy,” in CLEO: 2014, OSA Technical Digest (online) (Optical Society of America, 2014), paper STh1N.1.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

System outline. A Tm frequency comb pumps a degenerate OPO, and supercontinuum generation in nonlinear fiber for comb stabilization. Interference between the upconverted OPO and supercontinuum is used to measure the frequency stability of the OPO comb.

Fig. 2
Fig. 2

Example spectra of the degenerate OPO with a pump CEO of 274 MHz (purple, broader spectrum), and 140 MHz (blue, narrower spectrum). The shaded area indicates wavelengths that can contribute to the beat with the pump supercontinuum. The broad absorption at 4.25 µm is from CO2 in air.

Fig. 3
Fig. 3

Calculated group delay after passage through 0.5 mm of bulk GaAs, and 0.8 mm of CaF2, referenced to the minimum delay. If the second-order dispersion is balanced for degeneracy near 4 µm, degenerate OPO pulses will be faster than nondegenerate pulses, corresponding to a longer cavity resonance. Nondegenerate pulses are slower, corresponding to a shorter cavity resonance.

Fig. 4
Fig. 4

Plot of the pump CEO, and OPO CEO RF beats (solid curves), and their associated cumulative phase noises (dashed). The OPO and pump have similar behaviour at high frequencies. The OPO has additional noise at low frequencies, but still maintains sub-Hz relative linewidth without any stabilization.

Fig. 5
Fig. 5

Monitored OPO output and CEO beat. The pump CEO was 188 MHz. The OPO passively oscillates for 54 minutes, and stays degenerate except for the 15 minute region. The low CEO at the end is an artifact of reduced beat note intensity.

Fig. 6
Fig. 6

Power stability of passive degenerate OPO over 3 minutes, measured at 1 kHz. The standard deviation is 0.38%.

Fig. 7
Fig. 7

RF spectrum of the OPO CEO frequency taken over 0.5 s for degeneracy (upper, purple) and nondegeneracy (lower, blue, offset by 40 dB) from the OPO parasite SFG and pump comb beat note. In the presence of the same noise sources, the degenerate case produces a single, narrow beat note, while the nondegenerate beat note moves over a large range of frequencies.

Fig. 8
Fig. 8

OPO output (thin purple line) as roundtrip cavity length (thick blue line) is slowly shortened (left) then lengthened (right) through the mostly degenerate resonance (nondegenerate at the highest output). The different peak widths are due to crystal heating which counteracts cavity shortening by increasing the refractive index, but cannot correct for cavity lengthening.

Fig. 9
Fig. 9

Left: OPO output as the pump comb repetition rate is modulated by ± 100 Hz at modulation speeds of 0.2, 0.5, 1, 3, and 5 Hz while the OPO is free-running. Right: fit of dependence of modulation amplitude to period, with a 0.8 s exponential time constant, showing that the thermal response of the crystal refractive index counteracts changes on the second timescale.

Tables (1)

Tables Icon

Table 1 CEO frequencies of pump and degenerate OPO

Metrics