Abstract

We present the simulation, fabrication, and optical characterization of low-index polymeric rod-connected diamond (RCD) structures. Such complex three-dimensional photonic crystal structures are created via direct laser writing by two-photon polymerization. To our knowledge, this is the first measurement at near-infrared wavelengths, showing partial photonic bandgaps for this structure. We characterize structures in transmission and reflection using angular resolved Fourier image spectroscopy to visualize the band structure. Comparison of the numerical simulations of such structures with the experimentally measured data show good agreement for both P- and S-polarizations.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Fabrication and properties of metalo-dielectric photonic crystal structures for infrared spectral region

Vygantas Mizeikis, Saulius Juodkazis, Rima Tarozaitė, Jurga Juodkazytė, Kęstutis Juodkazis, and Hiroaki Misawa
Opt. Express 15(13) 8454-8464 (2007)

Fabrication and characterization of silicon woodpile photonic crystals with a complete bandgap at telecom wavelengths

I. Staude, M. Thiel, S. Essig, C. Wolff, K. Busch, G. von Freymann, and M. Wegener
Opt. Lett. 35(7) 1094-1096 (2010)

Direct wide-angle measurement of a photonic band structure in a three-dimensional photonic crystal using infrared Fourier imaging spectroscopy

Lifeng Chen, Martin Lopez-Garcia, Mike P. C. Taverne, Xu Zheng, Ying-Lung D. Ho, and John Rarity
Opt. Lett. 42(8) 1584-1587 (2017)

References

  • View by:
  • |
  • |
  • |

  1. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987).
    [Crossref] [PubMed]
  2. S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, “Full three-dimensional photonic bandgap crystals at near-infrared wavelengths,” Science 289(5479), 604–606 (2000).
    [Crossref] [PubMed]
  3. S. John, A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature 405(6785), 437–440 (2000).
    [Crossref] [PubMed]
  4. M. Straub and M. Gu, “Near-infrared photonic crystals with higher-order bandgaps generated by two-photon photopolymerization,” Opt. Lett. 27(20), 1824–1826 (2002).
    [Crossref] [PubMed]
  5. S. Wong, M. Deubel, F. Pérez-Willard, S. John, G. A. Ozin, M. Wegener, and G. Von Freymann, “Direct laser writing of three-dimensional photonic crystals with a complete photonic bandgap in chalcogenide glasses,” Adv. Mater. 18(3), 265–269 (2006).
    [Crossref]
  6. J. Serbin and M. Gu, “Experimental evidence for superprism effects in three-dimensional polymer photonic crystals,” Adv. Mater. 18(2), 221–224 (2006).
    [Crossref]
  7. N. Tétreault, G. Von Freymann, M. Deubel, F. Pérez-Willard, S. John, M. Hermatschweiler, M. Wegener, and G.A. Ozin, “New route to three-dimensional photonic bandgap materials: silicon double inversion of polymer templates,” Adv. Mater. 18(4), 457–460 (2006).
    [Crossref]
  8. M. Thiel, M. Decker, M. Deubel, M. Wegener, S. Linden, and G. Von Freymann, “Polarization stop bands in chiral polymeric three-dimensional photonic crystals,” Adv. Mater. 19(2), 207–210 (2007).
    [Crossref]
  9. I. Staude, M. Thiel, S. Essig, C. Wolff, K. Busch, G. von Freymann, and M. Wegener, “Fabrication and characterization of silicon woodpile photonic crystals with a complete bandgap at telecom wavelengths,” Opt. Lett. 35(7), 1094–1096 (2010).
    [Crossref] [PubMed]
  10. A. Frölich, J. Fischer, C. Wolff, K. Busch, and M. Wegener, “Frequency-Resolved Reciprocal-Space Mapping of Visible Spontaneous Emission from 3D Photonic Crystals,” Adv. Opt. Mater. 2(9), 849–853 (2014).
    [Crossref]
  11. S. Maruo, O. Nakamura, and S. Kawata, “Three-dimensional microfabrication with two-photon-absorbed photopolymerization,” Opt. Lett. 22(2), 132–134 (1997).
    [Crossref] [PubMed]
  12. S. Maruo and J. T. Fourkas, “Recent progress in multiphoton microfabrication,” Laser Photonics Rev. 2(1–2), 100–111 (2008).
    [Crossref]
  13. G. von Freymann, A. Ledermann, M. Thiel, I. Staude, S. Essig, K. Busch, and M. Wegener, “Three-Dimensional Nanostructures for Photonics,” Adv. Funct. Mater. 20(7), 1038–1052 (2010).
    [Crossref]
  14. C. M. Soukoulis and M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nat. Photonics 5(9), 523–530 (2011).
  15. I. Staude, G. von Freymann, S. Essig, K. Busch, and M. Wegener, “Waveguides in three-dimensional photonic-bandgap materials by direct laser writing and silicon double inversion,” Opt. Lett. 36(1), 67–69 (2011).
    [Crossref] [PubMed]
  16. M. Gu, B. Jia, J. Li, and M. Ventura, “Fabrication of three‐dimensional photonic crystals in quantum‐dot‐based materials,” Laser Photonics Rev. 4(3), 414–431 (2010).
    [Crossref]
  17. T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328(5976), 337–339 (2010).
    [Crossref] [PubMed]
  18. J. A. Dolan, B. D. Wilts, S. Vignolini, J. J. Baumberg, U. Steiner, and T. D. Wilkinson, “Optical properties of gyroid structured materials: from photonic crystals to metamaterials,” Adv. Opt. Mater. 3(1), 12–32 (2015).
    [Crossref]
  19. M. D. Turner, M. Saba, Q. Zhang, B. P. Cumming, G. E. Schröder-Turk, and M. Gu, “Miniature chiral beamsplitter based on gyroid photonic crystals,” Nat. Photonics 7(10), 801–805 (2013).
    [Crossref]
  20. C. T. Chan, K. M. Ho, and C. M. Soukoulis, “Photonic band gaps inexperimentally realizable periodic dielectric structures,” Europhys. Lett. 16(6), 563–568 (1991).
    [Crossref]
  21. C. T. C. Chan, S. Datta, K. M. K. Ho, and C. M. Soukoulis, “A7 structure: A family of photonic crystals,” Phys. Rev. B Condens. Matter 50(3), 1988–1991 (1994).
    [Crossref] [PubMed]
  22. M. Maldovan and E. L. E. L. Thomas, “Diamond-structured photonic crystals,” Nat. Mater. 3(9), 593–600 (2004).
    [Crossref] [PubMed]
  23. H. Men, K. Y. K. Lee, R. M. Freund, J. Peraire, and S. G. Johnson, “Robust topology optimization of three-dimensional photonic-crystal band-gap structures,” Opt. Express 22(19), 22632–22648 (2014).
    [Crossref] [PubMed]
  24. S. Johnson and J. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8(3), 173–190 (2001).
    [Crossref] [PubMed]
  25. S. Imagawa, K. Edagawa, and M. Notomi, “Strong light confinement in a photonic amorphous diamond structure,” Appl. Phys. Lett. 100(15), 151103 (2012).
    [Crossref]
  26. K.-M. Ho, C. T. Chan, C. Soukoulis, R. Biswas, and M. Sigalas, “Photonic band gaps in three dimensions: new layer-by-layer periodic structures,” Solid State Commun. 89(5), 413–416 (1994).
    [Crossref]
  27. K. Aoki, “Practical approach for a rod-connected diamond photonic crystal operating at optical wavelengths,” Appl. Phys. Lett. 95(19), 191910 (2009).
    [Crossref]
  28. K. Aoki, H. T. Miyazaki, H. Hirayama, K. Inoshita, T. Baba, K. Sakoda, N. Shinya, and Y. Aoyagi, “Microassembly of semiconductor three-dimensional photonic crystals,” Nat. Mater. 2(2), 117–121 (2003).
    [Crossref] [PubMed]
  29. M. Qi, E. Lidorikis, P. T. Rakich, S. G. Johnson, J. D. Joannopoulos, E. P. Ippen, and H. I. Smith, “A three-dimensional optical photonic crystal with designed point defects,” Nature 429(6991), 538–542 (2004).
    [Crossref] [PubMed]
  30. J. W. Galusha, L. R. Richey, J. S. Gardner, J. N. Cha, and M. H. Bartl, “Discovery of a diamond-based photonic crystal structure in beetle scales,” Phys. Rev. E. 77(5), 050904 (2008).
  31. B. D. Wilts, K. Michielsen, H. De Raedt, and D. G. Stavenga, “Hemispherical Brillouin zone imaging of a diamond-type biological photonic crystal,” J. R. Soc. Interface 9(72), 1609–1614 (2012).
    [Crossref] [PubMed]
  32. M. Deubel, M. Wegener, S. Linden, and G. Von Freymann, “Angle-resolved transmission spectroscopy of three-dimensional photonic crystals fabricated by direct laser writing,” Appl. Phys. Lett. 87(22), 221104 (2005).
    [Crossref]
  33. M. López-García, J. F. Galisteo-López, A. Blanco, J. Sánchez-Marcos, C. López, and A. García-Martín, “Enhancement and directionality of spontaneous emission in hybrid self-assembled photonic-plasmonic crystals,” Small 6(16), 1757–1761 (2010).
    [Crossref] [PubMed]
  34. A. Ovsianikov, X. Shizhou, M. Farsari, M. Vamvakaki, C. Fotakis, and B. N. Chichkov, “Shrinkage of microstructures produced by two-photon polymerization of Zr-based hybrid photosensitive materials,” Opt. Express 17(4), 2143–2148 (2009).
    [Crossref] [PubMed]
  35. M. A. Lieb, J. M. Zavislan, and L. Novotny, “Single-molecule orientations determined by direct emission pattern imaging,” J. Opt. Soc. Am. B 21(6), 1210–1215 (2004).
    [Crossref]
  36. E. H. Waller, M. Renner, and G. von Freymann, “Active aberration- and point-spread-function control in direct laser writing,” Opt. Express 20(22), 24949–24956 (2012).
    [Crossref] [PubMed]
  37. B. P. Cumming, S. Debbarma, B. Luther-Davis, and M. Gu, “Simultaneous compensation for aberration and axial elongation in three-dimensional laser nanofabrication by a high numerical-aperture objective,” Opt. Express 21(16), 19135–19141 (2013).
    [Crossref] [PubMed]
  38. L. Li, R. R. Gattass, E. Gershgoren, H. Hwang, and J. T. Fourkas, “Achieving lambda/20 resolution by one-color initiation and deactivation of polymerization,” Science 324(5929), 910–913 (2009).
    [Crossref] [PubMed]
  39. Z. Gan, Y. Cao, R. A. Evans, and M. Gu, “Three-dimensional deep sub-diffraction optical beam lithography with 9 nm feature size,” Nat. Commun. 4, 2061 (2013).
    [Crossref] [PubMed]
  40. P. Mueller, M. Thiel, and M. Wegener, “3D direct laser writing using a 405 nm diode laser,” Opt. Lett. 39(24), 6847–6850 (2014).
    [Crossref] [PubMed]
  41. S. H. Wong, M. Thiel, P. Brodersen, D. Fenske, G. A. Ozin, M. Wegener, and G. Von Freymann, “Highly selective wet etch for high-resolution three-dimensional nanostructures in arsenic sulfide all-inorganic photoresist,” Chem. Mater. 19(17), 4213–4221 (2007).
    [Crossref]
  42. Y. D. Ho, P. S. Ivanov, E. Engin, M. F. J. Nicol, M. P. C. Taverne, C. Hu, M. J. Cryan, S. Member, I. J. Craddock, C. J. Railton, and J. G. Rarity, “FDTD simulation of inverse 3-D face-centered cubic photonic crystal cavities,” IEEE J. Quantum Electron. 47(12), 1480–1492 (2011).
    [Crossref]
  43. M. P. C. Taverne, Y.-L. D. Ho, and J. G. Rarity, “Investigation of defect cavities formed in three-dimensional woodpile photonic crystals,” J. Opt. Soc. Am. B 32(4), 639–648 (2015).
    [Crossref]
  44. A. Young, C. Y. Hu, L. Marseglia, J. P. Harrison, J. L. O’Brien, and J. G. Rarity, “Cavity enhanced spin measurement of the ground state spin of an NV center in diamond,” New J. Phys. 11(1), 013007 (2009).
    [Crossref]
  45. C. Simon, M. Afzelius, J. Appel, A. Boyer De La Giroday, S. J. Dewhurst, N. Gisin, C. Y. Hu, F. Jelezko, S. Kröll, J. H. Müller, J. Nunn, E. S. Polzik, J. G. Rarity, H. De Riedmatten, W. Rosenfeld, A. J. Shields, N. Sköld, R. M. Stevenson, R. Thew, I. A. Walmsley, M. C. Weber, H. Weinfurter, J. Wrachtrup, and R. J. Young, “Quantum memories : a review based on the European integrated project Qubit Applications (QAP),” Eur. Phys. J. D 58(1), 1–22 (2010).
    [Crossref]
  46. S. Buckley, K. Rivoire, and J. Vučković, “Engineered quantum dot single-photon sources,” Rep. Prog. Phys. 75(12), 126503 (2012).
    [Crossref] [PubMed]
  47. I. Aharonovich, S. Castelletto, D. A. Simpson, C.-H. Su, A. D. Greentree, and S. Prawer, “Diamond-based single-photon emitters,” Rep. Prog. Phys. 74(7), 076501 (2011).
    [Crossref]

2015 (2)

J. A. Dolan, B. D. Wilts, S. Vignolini, J. J. Baumberg, U. Steiner, and T. D. Wilkinson, “Optical properties of gyroid structured materials: from photonic crystals to metamaterials,” Adv. Opt. Mater. 3(1), 12–32 (2015).
[Crossref]

M. P. C. Taverne, Y.-L. D. Ho, and J. G. Rarity, “Investigation of defect cavities formed in three-dimensional woodpile photonic crystals,” J. Opt. Soc. Am. B 32(4), 639–648 (2015).
[Crossref]

2014 (3)

2013 (3)

M. D. Turner, M. Saba, Q. Zhang, B. P. Cumming, G. E. Schröder-Turk, and M. Gu, “Miniature chiral beamsplitter based on gyroid photonic crystals,” Nat. Photonics 7(10), 801–805 (2013).
[Crossref]

B. P. Cumming, S. Debbarma, B. Luther-Davis, and M. Gu, “Simultaneous compensation for aberration and axial elongation in three-dimensional laser nanofabrication by a high numerical-aperture objective,” Opt. Express 21(16), 19135–19141 (2013).
[Crossref] [PubMed]

Z. Gan, Y. Cao, R. A. Evans, and M. Gu, “Three-dimensional deep sub-diffraction optical beam lithography with 9 nm feature size,” Nat. Commun. 4, 2061 (2013).
[Crossref] [PubMed]

2012 (4)

E. H. Waller, M. Renner, and G. von Freymann, “Active aberration- and point-spread-function control in direct laser writing,” Opt. Express 20(22), 24949–24956 (2012).
[Crossref] [PubMed]

S. Buckley, K. Rivoire, and J. Vučković, “Engineered quantum dot single-photon sources,” Rep. Prog. Phys. 75(12), 126503 (2012).
[Crossref] [PubMed]

S. Imagawa, K. Edagawa, and M. Notomi, “Strong light confinement in a photonic amorphous diamond structure,” Appl. Phys. Lett. 100(15), 151103 (2012).
[Crossref]

B. D. Wilts, K. Michielsen, H. De Raedt, and D. G. Stavenga, “Hemispherical Brillouin zone imaging of a diamond-type biological photonic crystal,” J. R. Soc. Interface 9(72), 1609–1614 (2012).
[Crossref] [PubMed]

2011 (4)

C. M. Soukoulis and M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nat. Photonics 5(9), 523–530 (2011).

I. Staude, G. von Freymann, S. Essig, K. Busch, and M. Wegener, “Waveguides in three-dimensional photonic-bandgap materials by direct laser writing and silicon double inversion,” Opt. Lett. 36(1), 67–69 (2011).
[Crossref] [PubMed]

I. Aharonovich, S. Castelletto, D. A. Simpson, C.-H. Su, A. D. Greentree, and S. Prawer, “Diamond-based single-photon emitters,” Rep. Prog. Phys. 74(7), 076501 (2011).
[Crossref]

Y. D. Ho, P. S. Ivanov, E. Engin, M. F. J. Nicol, M. P. C. Taverne, C. Hu, M. J. Cryan, S. Member, I. J. Craddock, C. J. Railton, and J. G. Rarity, “FDTD simulation of inverse 3-D face-centered cubic photonic crystal cavities,” IEEE J. Quantum Electron. 47(12), 1480–1492 (2011).
[Crossref]

2010 (6)

C. Simon, M. Afzelius, J. Appel, A. Boyer De La Giroday, S. J. Dewhurst, N. Gisin, C. Y. Hu, F. Jelezko, S. Kröll, J. H. Müller, J. Nunn, E. S. Polzik, J. G. Rarity, H. De Riedmatten, W. Rosenfeld, A. J. Shields, N. Sköld, R. M. Stevenson, R. Thew, I. A. Walmsley, M. C. Weber, H. Weinfurter, J. Wrachtrup, and R. J. Young, “Quantum memories : a review based on the European integrated project Qubit Applications (QAP),” Eur. Phys. J. D 58(1), 1–22 (2010).
[Crossref]

M. Gu, B. Jia, J. Li, and M. Ventura, “Fabrication of three‐dimensional photonic crystals in quantum‐dot‐based materials,” Laser Photonics Rev. 4(3), 414–431 (2010).
[Crossref]

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328(5976), 337–339 (2010).
[Crossref] [PubMed]

G. von Freymann, A. Ledermann, M. Thiel, I. Staude, S. Essig, K. Busch, and M. Wegener, “Three-Dimensional Nanostructures for Photonics,” Adv. Funct. Mater. 20(7), 1038–1052 (2010).
[Crossref]

I. Staude, M. Thiel, S. Essig, C. Wolff, K. Busch, G. von Freymann, and M. Wegener, “Fabrication and characterization of silicon woodpile photonic crystals with a complete bandgap at telecom wavelengths,” Opt. Lett. 35(7), 1094–1096 (2010).
[Crossref] [PubMed]

M. López-García, J. F. Galisteo-López, A. Blanco, J. Sánchez-Marcos, C. López, and A. García-Martín, “Enhancement and directionality of spontaneous emission in hybrid self-assembled photonic-plasmonic crystals,” Small 6(16), 1757–1761 (2010).
[Crossref] [PubMed]

2009 (4)

A. Ovsianikov, X. Shizhou, M. Farsari, M. Vamvakaki, C. Fotakis, and B. N. Chichkov, “Shrinkage of microstructures produced by two-photon polymerization of Zr-based hybrid photosensitive materials,” Opt. Express 17(4), 2143–2148 (2009).
[Crossref] [PubMed]

K. Aoki, “Practical approach for a rod-connected diamond photonic crystal operating at optical wavelengths,” Appl. Phys. Lett. 95(19), 191910 (2009).
[Crossref]

L. Li, R. R. Gattass, E. Gershgoren, H. Hwang, and J. T. Fourkas, “Achieving lambda/20 resolution by one-color initiation and deactivation of polymerization,” Science 324(5929), 910–913 (2009).
[Crossref] [PubMed]

A. Young, C. Y. Hu, L. Marseglia, J. P. Harrison, J. L. O’Brien, and J. G. Rarity, “Cavity enhanced spin measurement of the ground state spin of an NV center in diamond,” New J. Phys. 11(1), 013007 (2009).
[Crossref]

2008 (2)

J. W. Galusha, L. R. Richey, J. S. Gardner, J. N. Cha, and M. H. Bartl, “Discovery of a diamond-based photonic crystal structure in beetle scales,” Phys. Rev. E. 77(5), 050904 (2008).

S. Maruo and J. T. Fourkas, “Recent progress in multiphoton microfabrication,” Laser Photonics Rev. 2(1–2), 100–111 (2008).
[Crossref]

2007 (2)

M. Thiel, M. Decker, M. Deubel, M. Wegener, S. Linden, and G. Von Freymann, “Polarization stop bands in chiral polymeric three-dimensional photonic crystals,” Adv. Mater. 19(2), 207–210 (2007).
[Crossref]

S. H. Wong, M. Thiel, P. Brodersen, D. Fenske, G. A. Ozin, M. Wegener, and G. Von Freymann, “Highly selective wet etch for high-resolution three-dimensional nanostructures in arsenic sulfide all-inorganic photoresist,” Chem. Mater. 19(17), 4213–4221 (2007).
[Crossref]

2006 (3)

S. Wong, M. Deubel, F. Pérez-Willard, S. John, G. A. Ozin, M. Wegener, and G. Von Freymann, “Direct laser writing of three-dimensional photonic crystals with a complete photonic bandgap in chalcogenide glasses,” Adv. Mater. 18(3), 265–269 (2006).
[Crossref]

J. Serbin and M. Gu, “Experimental evidence for superprism effects in three-dimensional polymer photonic crystals,” Adv. Mater. 18(2), 221–224 (2006).
[Crossref]

N. Tétreault, G. Von Freymann, M. Deubel, F. Pérez-Willard, S. John, M. Hermatschweiler, M. Wegener, and G.A. Ozin, “New route to three-dimensional photonic bandgap materials: silicon double inversion of polymer templates,” Adv. Mater. 18(4), 457–460 (2006).
[Crossref]

2005 (1)

M. Deubel, M. Wegener, S. Linden, and G. Von Freymann, “Angle-resolved transmission spectroscopy of three-dimensional photonic crystals fabricated by direct laser writing,” Appl. Phys. Lett. 87(22), 221104 (2005).
[Crossref]

2004 (3)

M. A. Lieb, J. M. Zavislan, and L. Novotny, “Single-molecule orientations determined by direct emission pattern imaging,” J. Opt. Soc. Am. B 21(6), 1210–1215 (2004).
[Crossref]

M. Qi, E. Lidorikis, P. T. Rakich, S. G. Johnson, J. D. Joannopoulos, E. P. Ippen, and H. I. Smith, “A three-dimensional optical photonic crystal with designed point defects,” Nature 429(6991), 538–542 (2004).
[Crossref] [PubMed]

M. Maldovan and E. L. E. L. Thomas, “Diamond-structured photonic crystals,” Nat. Mater. 3(9), 593–600 (2004).
[Crossref] [PubMed]

2003 (1)

K. Aoki, H. T. Miyazaki, H. Hirayama, K. Inoshita, T. Baba, K. Sakoda, N. Shinya, and Y. Aoyagi, “Microassembly of semiconductor three-dimensional photonic crystals,” Nat. Mater. 2(2), 117–121 (2003).
[Crossref] [PubMed]

2002 (1)

2001 (1)

2000 (2)

S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, “Full three-dimensional photonic bandgap crystals at near-infrared wavelengths,” Science 289(5479), 604–606 (2000).
[Crossref] [PubMed]

S. John, A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature 405(6785), 437–440 (2000).
[Crossref] [PubMed]

1997 (1)

1994 (2)

K.-M. Ho, C. T. Chan, C. Soukoulis, R. Biswas, and M. Sigalas, “Photonic band gaps in three dimensions: new layer-by-layer periodic structures,” Solid State Commun. 89(5), 413–416 (1994).
[Crossref]

C. T. C. Chan, S. Datta, K. M. K. Ho, and C. M. Soukoulis, “A7 structure: A family of photonic crystals,” Phys. Rev. B Condens. Matter 50(3), 1988–1991 (1994).
[Crossref] [PubMed]

1991 (1)

C. T. Chan, K. M. Ho, and C. M. Soukoulis, “Photonic band gaps inexperimentally realizable periodic dielectric structures,” Europhys. Lett. 16(6), 563–568 (1991).
[Crossref]

1987 (1)

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987).
[Crossref] [PubMed]

Afzelius, M.

C. Simon, M. Afzelius, J. Appel, A. Boyer De La Giroday, S. J. Dewhurst, N. Gisin, C. Y. Hu, F. Jelezko, S. Kröll, J. H. Müller, J. Nunn, E. S. Polzik, J. G. Rarity, H. De Riedmatten, W. Rosenfeld, A. J. Shields, N. Sköld, R. M. Stevenson, R. Thew, I. A. Walmsley, M. C. Weber, H. Weinfurter, J. Wrachtrup, and R. J. Young, “Quantum memories : a review based on the European integrated project Qubit Applications (QAP),” Eur. Phys. J. D 58(1), 1–22 (2010).
[Crossref]

Aharonovich, I.

I. Aharonovich, S. Castelletto, D. A. Simpson, C.-H. Su, A. D. Greentree, and S. Prawer, “Diamond-based single-photon emitters,” Rep. Prog. Phys. 74(7), 076501 (2011).
[Crossref]

Aoki, K.

K. Aoki, “Practical approach for a rod-connected diamond photonic crystal operating at optical wavelengths,” Appl. Phys. Lett. 95(19), 191910 (2009).
[Crossref]

K. Aoki, H. T. Miyazaki, H. Hirayama, K. Inoshita, T. Baba, K. Sakoda, N. Shinya, and Y. Aoyagi, “Microassembly of semiconductor three-dimensional photonic crystals,” Nat. Mater. 2(2), 117–121 (2003).
[Crossref] [PubMed]

Aoyagi, Y.

K. Aoki, H. T. Miyazaki, H. Hirayama, K. Inoshita, T. Baba, K. Sakoda, N. Shinya, and Y. Aoyagi, “Microassembly of semiconductor three-dimensional photonic crystals,” Nat. Mater. 2(2), 117–121 (2003).
[Crossref] [PubMed]

Appel, J.

C. Simon, M. Afzelius, J. Appel, A. Boyer De La Giroday, S. J. Dewhurst, N. Gisin, C. Y. Hu, F. Jelezko, S. Kröll, J. H. Müller, J. Nunn, E. S. Polzik, J. G. Rarity, H. De Riedmatten, W. Rosenfeld, A. J. Shields, N. Sköld, R. M. Stevenson, R. Thew, I. A. Walmsley, M. C. Weber, H. Weinfurter, J. Wrachtrup, and R. J. Young, “Quantum memories : a review based on the European integrated project Qubit Applications (QAP),” Eur. Phys. J. D 58(1), 1–22 (2010).
[Crossref]

Baba, T.

K. Aoki, H. T. Miyazaki, H. Hirayama, K. Inoshita, T. Baba, K. Sakoda, N. Shinya, and Y. Aoyagi, “Microassembly of semiconductor three-dimensional photonic crystals,” Nat. Mater. 2(2), 117–121 (2003).
[Crossref] [PubMed]

Bartl, M. H.

J. W. Galusha, L. R. Richey, J. S. Gardner, J. N. Cha, and M. H. Bartl, “Discovery of a diamond-based photonic crystal structure in beetle scales,” Phys. Rev. E. 77(5), 050904 (2008).

Baumberg, J. J.

J. A. Dolan, B. D. Wilts, S. Vignolini, J. J. Baumberg, U. Steiner, and T. D. Wilkinson, “Optical properties of gyroid structured materials: from photonic crystals to metamaterials,” Adv. Opt. Mater. 3(1), 12–32 (2015).
[Crossref]

Biswas, R.

K.-M. Ho, C. T. Chan, C. Soukoulis, R. Biswas, and M. Sigalas, “Photonic band gaps in three dimensions: new layer-by-layer periodic structures,” Solid State Commun. 89(5), 413–416 (1994).
[Crossref]

Blanco, A.

M. López-García, J. F. Galisteo-López, A. Blanco, J. Sánchez-Marcos, C. López, and A. García-Martín, “Enhancement and directionality of spontaneous emission in hybrid self-assembled photonic-plasmonic crystals,” Small 6(16), 1757–1761 (2010).
[Crossref] [PubMed]

S. John, A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature 405(6785), 437–440 (2000).
[Crossref] [PubMed]

Boyer De La Giroday, A.

C. Simon, M. Afzelius, J. Appel, A. Boyer De La Giroday, S. J. Dewhurst, N. Gisin, C. Y. Hu, F. Jelezko, S. Kröll, J. H. Müller, J. Nunn, E. S. Polzik, J. G. Rarity, H. De Riedmatten, W. Rosenfeld, A. J. Shields, N. Sköld, R. M. Stevenson, R. Thew, I. A. Walmsley, M. C. Weber, H. Weinfurter, J. Wrachtrup, and R. J. Young, “Quantum memories : a review based on the European integrated project Qubit Applications (QAP),” Eur. Phys. J. D 58(1), 1–22 (2010).
[Crossref]

Brenner, P.

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328(5976), 337–339 (2010).
[Crossref] [PubMed]

Brodersen, P.

S. H. Wong, M. Thiel, P. Brodersen, D. Fenske, G. A. Ozin, M. Wegener, and G. Von Freymann, “Highly selective wet etch for high-resolution three-dimensional nanostructures in arsenic sulfide all-inorganic photoresist,” Chem. Mater. 19(17), 4213–4221 (2007).
[Crossref]

Buckley, S.

S. Buckley, K. Rivoire, and J. Vučković, “Engineered quantum dot single-photon sources,” Rep. Prog. Phys. 75(12), 126503 (2012).
[Crossref] [PubMed]

Busch, K.

A. Frölich, J. Fischer, C. Wolff, K. Busch, and M. Wegener, “Frequency-Resolved Reciprocal-Space Mapping of Visible Spontaneous Emission from 3D Photonic Crystals,” Adv. Opt. Mater. 2(9), 849–853 (2014).
[Crossref]

I. Staude, G. von Freymann, S. Essig, K. Busch, and M. Wegener, “Waveguides in three-dimensional photonic-bandgap materials by direct laser writing and silicon double inversion,” Opt. Lett. 36(1), 67–69 (2011).
[Crossref] [PubMed]

I. Staude, M. Thiel, S. Essig, C. Wolff, K. Busch, G. von Freymann, and M. Wegener, “Fabrication and characterization of silicon woodpile photonic crystals with a complete bandgap at telecom wavelengths,” Opt. Lett. 35(7), 1094–1096 (2010).
[Crossref] [PubMed]

G. von Freymann, A. Ledermann, M. Thiel, I. Staude, S. Essig, K. Busch, and M. Wegener, “Three-Dimensional Nanostructures for Photonics,” Adv. Funct. Mater. 20(7), 1038–1052 (2010).
[Crossref]

Cao, Y.

Z. Gan, Y. Cao, R. A. Evans, and M. Gu, “Three-dimensional deep sub-diffraction optical beam lithography with 9 nm feature size,” Nat. Commun. 4, 2061 (2013).
[Crossref] [PubMed]

Castelletto, S.

I. Aharonovich, S. Castelletto, D. A. Simpson, C.-H. Su, A. D. Greentree, and S. Prawer, “Diamond-based single-photon emitters,” Rep. Prog. Phys. 74(7), 076501 (2011).
[Crossref]

Cha, J. N.

J. W. Galusha, L. R. Richey, J. S. Gardner, J. N. Cha, and M. H. Bartl, “Discovery of a diamond-based photonic crystal structure in beetle scales,” Phys. Rev. E. 77(5), 050904 (2008).

Chan, C. T.

K.-M. Ho, C. T. Chan, C. Soukoulis, R. Biswas, and M. Sigalas, “Photonic band gaps in three dimensions: new layer-by-layer periodic structures,” Solid State Commun. 89(5), 413–416 (1994).
[Crossref]

C. T. Chan, K. M. Ho, and C. M. Soukoulis, “Photonic band gaps inexperimentally realizable periodic dielectric structures,” Europhys. Lett. 16(6), 563–568 (1991).
[Crossref]

Chan, C. T. C.

C. T. C. Chan, S. Datta, K. M. K. Ho, and C. M. Soukoulis, “A7 structure: A family of photonic crystals,” Phys. Rev. B Condens. Matter 50(3), 1988–1991 (1994).
[Crossref] [PubMed]

Chichkov, B. N.

Chomski, E.

S. John, A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature 405(6785), 437–440 (2000).
[Crossref] [PubMed]

Chutinan, A.

S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, “Full three-dimensional photonic bandgap crystals at near-infrared wavelengths,” Science 289(5479), 604–606 (2000).
[Crossref] [PubMed]

Craddock, I. J.

Y. D. Ho, P. S. Ivanov, E. Engin, M. F. J. Nicol, M. P. C. Taverne, C. Hu, M. J. Cryan, S. Member, I. J. Craddock, C. J. Railton, and J. G. Rarity, “FDTD simulation of inverse 3-D face-centered cubic photonic crystal cavities,” IEEE J. Quantum Electron. 47(12), 1480–1492 (2011).
[Crossref]

Cryan, M. J.

Y. D. Ho, P. S. Ivanov, E. Engin, M. F. J. Nicol, M. P. C. Taverne, C. Hu, M. J. Cryan, S. Member, I. J. Craddock, C. J. Railton, and J. G. Rarity, “FDTD simulation of inverse 3-D face-centered cubic photonic crystal cavities,” IEEE J. Quantum Electron. 47(12), 1480–1492 (2011).
[Crossref]

Cumming, B. P.

B. P. Cumming, S. Debbarma, B. Luther-Davis, and M. Gu, “Simultaneous compensation for aberration and axial elongation in three-dimensional laser nanofabrication by a high numerical-aperture objective,” Opt. Express 21(16), 19135–19141 (2013).
[Crossref] [PubMed]

M. D. Turner, M. Saba, Q. Zhang, B. P. Cumming, G. E. Schröder-Turk, and M. Gu, “Miniature chiral beamsplitter based on gyroid photonic crystals,” Nat. Photonics 7(10), 801–805 (2013).
[Crossref]

Datta, S.

C. T. C. Chan, S. Datta, K. M. K. Ho, and C. M. Soukoulis, “A7 structure: A family of photonic crystals,” Phys. Rev. B Condens. Matter 50(3), 1988–1991 (1994).
[Crossref] [PubMed]

De Raedt, H.

B. D. Wilts, K. Michielsen, H. De Raedt, and D. G. Stavenga, “Hemispherical Brillouin zone imaging of a diamond-type biological photonic crystal,” J. R. Soc. Interface 9(72), 1609–1614 (2012).
[Crossref] [PubMed]

De Riedmatten, H.

C. Simon, M. Afzelius, J. Appel, A. Boyer De La Giroday, S. J. Dewhurst, N. Gisin, C. Y. Hu, F. Jelezko, S. Kröll, J. H. Müller, J. Nunn, E. S. Polzik, J. G. Rarity, H. De Riedmatten, W. Rosenfeld, A. J. Shields, N. Sköld, R. M. Stevenson, R. Thew, I. A. Walmsley, M. C. Weber, H. Weinfurter, J. Wrachtrup, and R. J. Young, “Quantum memories : a review based on the European integrated project Qubit Applications (QAP),” Eur. Phys. J. D 58(1), 1–22 (2010).
[Crossref]

Debbarma, S.

Decker, M.

M. Thiel, M. Decker, M. Deubel, M. Wegener, S. Linden, and G. Von Freymann, “Polarization stop bands in chiral polymeric three-dimensional photonic crystals,” Adv. Mater. 19(2), 207–210 (2007).
[Crossref]

Deubel, M.

M. Thiel, M. Decker, M. Deubel, M. Wegener, S. Linden, and G. Von Freymann, “Polarization stop bands in chiral polymeric three-dimensional photonic crystals,” Adv. Mater. 19(2), 207–210 (2007).
[Crossref]

N. Tétreault, G. Von Freymann, M. Deubel, F. Pérez-Willard, S. John, M. Hermatschweiler, M. Wegener, and G.A. Ozin, “New route to three-dimensional photonic bandgap materials: silicon double inversion of polymer templates,” Adv. Mater. 18(4), 457–460 (2006).
[Crossref]

S. Wong, M. Deubel, F. Pérez-Willard, S. John, G. A. Ozin, M. Wegener, and G. Von Freymann, “Direct laser writing of three-dimensional photonic crystals with a complete photonic bandgap in chalcogenide glasses,” Adv. Mater. 18(3), 265–269 (2006).
[Crossref]

M. Deubel, M. Wegener, S. Linden, and G. Von Freymann, “Angle-resolved transmission spectroscopy of three-dimensional photonic crystals fabricated by direct laser writing,” Appl. Phys. Lett. 87(22), 221104 (2005).
[Crossref]

Dewhurst, S. J.

C. Simon, M. Afzelius, J. Appel, A. Boyer De La Giroday, S. J. Dewhurst, N. Gisin, C. Y. Hu, F. Jelezko, S. Kröll, J. H. Müller, J. Nunn, E. S. Polzik, J. G. Rarity, H. De Riedmatten, W. Rosenfeld, A. J. Shields, N. Sköld, R. M. Stevenson, R. Thew, I. A. Walmsley, M. C. Weber, H. Weinfurter, J. Wrachtrup, and R. J. Young, “Quantum memories : a review based on the European integrated project Qubit Applications (QAP),” Eur. Phys. J. D 58(1), 1–22 (2010).
[Crossref]

Dolan, J. A.

J. A. Dolan, B. D. Wilts, S. Vignolini, J. J. Baumberg, U. Steiner, and T. D. Wilkinson, “Optical properties of gyroid structured materials: from photonic crystals to metamaterials,” Adv. Opt. Mater. 3(1), 12–32 (2015).
[Crossref]

Edagawa, K.

S. Imagawa, K. Edagawa, and M. Notomi, “Strong light confinement in a photonic amorphous diamond structure,” Appl. Phys. Lett. 100(15), 151103 (2012).
[Crossref]

Engin, E.

Y. D. Ho, P. S. Ivanov, E. Engin, M. F. J. Nicol, M. P. C. Taverne, C. Hu, M. J. Cryan, S. Member, I. J. Craddock, C. J. Railton, and J. G. Rarity, “FDTD simulation of inverse 3-D face-centered cubic photonic crystal cavities,” IEEE J. Quantum Electron. 47(12), 1480–1492 (2011).
[Crossref]

Ergin, T.

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328(5976), 337–339 (2010).
[Crossref] [PubMed]

Essig, S.

Evans, R. A.

Z. Gan, Y. Cao, R. A. Evans, and M. Gu, “Three-dimensional deep sub-diffraction optical beam lithography with 9 nm feature size,” Nat. Commun. 4, 2061 (2013).
[Crossref] [PubMed]

Farsari, M.

Fenske, D.

S. H. Wong, M. Thiel, P. Brodersen, D. Fenske, G. A. Ozin, M. Wegener, and G. Von Freymann, “Highly selective wet etch for high-resolution three-dimensional nanostructures in arsenic sulfide all-inorganic photoresist,” Chem. Mater. 19(17), 4213–4221 (2007).
[Crossref]

Fischer, J.

A. Frölich, J. Fischer, C. Wolff, K. Busch, and M. Wegener, “Frequency-Resolved Reciprocal-Space Mapping of Visible Spontaneous Emission from 3D Photonic Crystals,” Adv. Opt. Mater. 2(9), 849–853 (2014).
[Crossref]

Fotakis, C.

Fourkas, J. T.

L. Li, R. R. Gattass, E. Gershgoren, H. Hwang, and J. T. Fourkas, “Achieving lambda/20 resolution by one-color initiation and deactivation of polymerization,” Science 324(5929), 910–913 (2009).
[Crossref] [PubMed]

S. Maruo and J. T. Fourkas, “Recent progress in multiphoton microfabrication,” Laser Photonics Rev. 2(1–2), 100–111 (2008).
[Crossref]

Freund, R. M.

Frölich, A.

A. Frölich, J. Fischer, C. Wolff, K. Busch, and M. Wegener, “Frequency-Resolved Reciprocal-Space Mapping of Visible Spontaneous Emission from 3D Photonic Crystals,” Adv. Opt. Mater. 2(9), 849–853 (2014).
[Crossref]

Galisteo-López, J. F.

M. López-García, J. F. Galisteo-López, A. Blanco, J. Sánchez-Marcos, C. López, and A. García-Martín, “Enhancement and directionality of spontaneous emission in hybrid self-assembled photonic-plasmonic crystals,” Small 6(16), 1757–1761 (2010).
[Crossref] [PubMed]

Galusha, J. W.

J. W. Galusha, L. R. Richey, J. S. Gardner, J. N. Cha, and M. H. Bartl, “Discovery of a diamond-based photonic crystal structure in beetle scales,” Phys. Rev. E. 77(5), 050904 (2008).

Gan, Z.

Z. Gan, Y. Cao, R. A. Evans, and M. Gu, “Three-dimensional deep sub-diffraction optical beam lithography with 9 nm feature size,” Nat. Commun. 4, 2061 (2013).
[Crossref] [PubMed]

García-Martín, A.

M. López-García, J. F. Galisteo-López, A. Blanco, J. Sánchez-Marcos, C. López, and A. García-Martín, “Enhancement and directionality of spontaneous emission in hybrid self-assembled photonic-plasmonic crystals,” Small 6(16), 1757–1761 (2010).
[Crossref] [PubMed]

Gardner, J. S.

J. W. Galusha, L. R. Richey, J. S. Gardner, J. N. Cha, and M. H. Bartl, “Discovery of a diamond-based photonic crystal structure in beetle scales,” Phys. Rev. E. 77(5), 050904 (2008).

Gattass, R. R.

L. Li, R. R. Gattass, E. Gershgoren, H. Hwang, and J. T. Fourkas, “Achieving lambda/20 resolution by one-color initiation and deactivation of polymerization,” Science 324(5929), 910–913 (2009).
[Crossref] [PubMed]

Gershgoren, E.

L. Li, R. R. Gattass, E. Gershgoren, H. Hwang, and J. T. Fourkas, “Achieving lambda/20 resolution by one-color initiation and deactivation of polymerization,” Science 324(5929), 910–913 (2009).
[Crossref] [PubMed]

Gisin, N.

C. Simon, M. Afzelius, J. Appel, A. Boyer De La Giroday, S. J. Dewhurst, N. Gisin, C. Y. Hu, F. Jelezko, S. Kröll, J. H. Müller, J. Nunn, E. S. Polzik, J. G. Rarity, H. De Riedmatten, W. Rosenfeld, A. J. Shields, N. Sköld, R. M. Stevenson, R. Thew, I. A. Walmsley, M. C. Weber, H. Weinfurter, J. Wrachtrup, and R. J. Young, “Quantum memories : a review based on the European integrated project Qubit Applications (QAP),” Eur. Phys. J. D 58(1), 1–22 (2010).
[Crossref]

Grabtchak, S.

S. John, A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature 405(6785), 437–440 (2000).
[Crossref] [PubMed]

Greentree, A. D.

I. Aharonovich, S. Castelletto, D. A. Simpson, C.-H. Su, A. D. Greentree, and S. Prawer, “Diamond-based single-photon emitters,” Rep. Prog. Phys. 74(7), 076501 (2011).
[Crossref]

Gu, M.

Z. Gan, Y. Cao, R. A. Evans, and M. Gu, “Three-dimensional deep sub-diffraction optical beam lithography with 9 nm feature size,” Nat. Commun. 4, 2061 (2013).
[Crossref] [PubMed]

B. P. Cumming, S. Debbarma, B. Luther-Davis, and M. Gu, “Simultaneous compensation for aberration and axial elongation in three-dimensional laser nanofabrication by a high numerical-aperture objective,” Opt. Express 21(16), 19135–19141 (2013).
[Crossref] [PubMed]

M. D. Turner, M. Saba, Q. Zhang, B. P. Cumming, G. E. Schröder-Turk, and M. Gu, “Miniature chiral beamsplitter based on gyroid photonic crystals,” Nat. Photonics 7(10), 801–805 (2013).
[Crossref]

M. Gu, B. Jia, J. Li, and M. Ventura, “Fabrication of three‐dimensional photonic crystals in quantum‐dot‐based materials,” Laser Photonics Rev. 4(3), 414–431 (2010).
[Crossref]

J. Serbin and M. Gu, “Experimental evidence for superprism effects in three-dimensional polymer photonic crystals,” Adv. Mater. 18(2), 221–224 (2006).
[Crossref]

M. Straub and M. Gu, “Near-infrared photonic crystals with higher-order bandgaps generated by two-photon photopolymerization,” Opt. Lett. 27(20), 1824–1826 (2002).
[Crossref] [PubMed]

Harrison, J. P.

A. Young, C. Y. Hu, L. Marseglia, J. P. Harrison, J. L. O’Brien, and J. G. Rarity, “Cavity enhanced spin measurement of the ground state spin of an NV center in diamond,” New J. Phys. 11(1), 013007 (2009).
[Crossref]

Hermatschweiler, M.

N. Tétreault, G. Von Freymann, M. Deubel, F. Pérez-Willard, S. John, M. Hermatschweiler, M. Wegener, and G.A. Ozin, “New route to three-dimensional photonic bandgap materials: silicon double inversion of polymer templates,” Adv. Mater. 18(4), 457–460 (2006).
[Crossref]

Hirayama, H.

K. Aoki, H. T. Miyazaki, H. Hirayama, K. Inoshita, T. Baba, K. Sakoda, N. Shinya, and Y. Aoyagi, “Microassembly of semiconductor three-dimensional photonic crystals,” Nat. Mater. 2(2), 117–121 (2003).
[Crossref] [PubMed]

Ho, K. M.

C. T. Chan, K. M. Ho, and C. M. Soukoulis, “Photonic band gaps inexperimentally realizable periodic dielectric structures,” Europhys. Lett. 16(6), 563–568 (1991).
[Crossref]

Ho, K. M. K.

C. T. C. Chan, S. Datta, K. M. K. Ho, and C. M. Soukoulis, “A7 structure: A family of photonic crystals,” Phys. Rev. B Condens. Matter 50(3), 1988–1991 (1994).
[Crossref] [PubMed]

Ho, K.-M.

K.-M. Ho, C. T. Chan, C. Soukoulis, R. Biswas, and M. Sigalas, “Photonic band gaps in three dimensions: new layer-by-layer periodic structures,” Solid State Commun. 89(5), 413–416 (1994).
[Crossref]

Ho, Y. D.

Y. D. Ho, P. S. Ivanov, E. Engin, M. F. J. Nicol, M. P. C. Taverne, C. Hu, M. J. Cryan, S. Member, I. J. Craddock, C. J. Railton, and J. G. Rarity, “FDTD simulation of inverse 3-D face-centered cubic photonic crystal cavities,” IEEE J. Quantum Electron. 47(12), 1480–1492 (2011).
[Crossref]

Ho, Y.-L. D.

Hu, C.

Y. D. Ho, P. S. Ivanov, E. Engin, M. F. J. Nicol, M. P. C. Taverne, C. Hu, M. J. Cryan, S. Member, I. J. Craddock, C. J. Railton, and J. G. Rarity, “FDTD simulation of inverse 3-D face-centered cubic photonic crystal cavities,” IEEE J. Quantum Electron. 47(12), 1480–1492 (2011).
[Crossref]

Hu, C. Y.

C. Simon, M. Afzelius, J. Appel, A. Boyer De La Giroday, S. J. Dewhurst, N. Gisin, C. Y. Hu, F. Jelezko, S. Kröll, J. H. Müller, J. Nunn, E. S. Polzik, J. G. Rarity, H. De Riedmatten, W. Rosenfeld, A. J. Shields, N. Sköld, R. M. Stevenson, R. Thew, I. A. Walmsley, M. C. Weber, H. Weinfurter, J. Wrachtrup, and R. J. Young, “Quantum memories : a review based on the European integrated project Qubit Applications (QAP),” Eur. Phys. J. D 58(1), 1–22 (2010).
[Crossref]

A. Young, C. Y. Hu, L. Marseglia, J. P. Harrison, J. L. O’Brien, and J. G. Rarity, “Cavity enhanced spin measurement of the ground state spin of an NV center in diamond,” New J. Phys. 11(1), 013007 (2009).
[Crossref]

Hwang, H.

L. Li, R. R. Gattass, E. Gershgoren, H. Hwang, and J. T. Fourkas, “Achieving lambda/20 resolution by one-color initiation and deactivation of polymerization,” Science 324(5929), 910–913 (2009).
[Crossref] [PubMed]

Ibisate, M.

S. John, A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature 405(6785), 437–440 (2000).
[Crossref] [PubMed]

Imagawa, S.

S. Imagawa, K. Edagawa, and M. Notomi, “Strong light confinement in a photonic amorphous diamond structure,” Appl. Phys. Lett. 100(15), 151103 (2012).
[Crossref]

Inoshita, K.

K. Aoki, H. T. Miyazaki, H. Hirayama, K. Inoshita, T. Baba, K. Sakoda, N. Shinya, and Y. Aoyagi, “Microassembly of semiconductor three-dimensional photonic crystals,” Nat. Mater. 2(2), 117–121 (2003).
[Crossref] [PubMed]

Ippen, E. P.

M. Qi, E. Lidorikis, P. T. Rakich, S. G. Johnson, J. D. Joannopoulos, E. P. Ippen, and H. I. Smith, “A three-dimensional optical photonic crystal with designed point defects,” Nature 429(6991), 538–542 (2004).
[Crossref] [PubMed]

Ivanov, P. S.

Y. D. Ho, P. S. Ivanov, E. Engin, M. F. J. Nicol, M. P. C. Taverne, C. Hu, M. J. Cryan, S. Member, I. J. Craddock, C. J. Railton, and J. G. Rarity, “FDTD simulation of inverse 3-D face-centered cubic photonic crystal cavities,” IEEE J. Quantum Electron. 47(12), 1480–1492 (2011).
[Crossref]

Jelezko, F.

C. Simon, M. Afzelius, J. Appel, A. Boyer De La Giroday, S. J. Dewhurst, N. Gisin, C. Y. Hu, F. Jelezko, S. Kröll, J. H. Müller, J. Nunn, E. S. Polzik, J. G. Rarity, H. De Riedmatten, W. Rosenfeld, A. J. Shields, N. Sköld, R. M. Stevenson, R. Thew, I. A. Walmsley, M. C. Weber, H. Weinfurter, J. Wrachtrup, and R. J. Young, “Quantum memories : a review based on the European integrated project Qubit Applications (QAP),” Eur. Phys. J. D 58(1), 1–22 (2010).
[Crossref]

Jia, B.

M. Gu, B. Jia, J. Li, and M. Ventura, “Fabrication of three‐dimensional photonic crystals in quantum‐dot‐based materials,” Laser Photonics Rev. 4(3), 414–431 (2010).
[Crossref]

Joannopoulos, J.

Joannopoulos, J. D.

M. Qi, E. Lidorikis, P. T. Rakich, S. G. Johnson, J. D. Joannopoulos, E. P. Ippen, and H. I. Smith, “A three-dimensional optical photonic crystal with designed point defects,” Nature 429(6991), 538–542 (2004).
[Crossref] [PubMed]

John, S.

S. Wong, M. Deubel, F. Pérez-Willard, S. John, G. A. Ozin, M. Wegener, and G. Von Freymann, “Direct laser writing of three-dimensional photonic crystals with a complete photonic bandgap in chalcogenide glasses,” Adv. Mater. 18(3), 265–269 (2006).
[Crossref]

N. Tétreault, G. Von Freymann, M. Deubel, F. Pérez-Willard, S. John, M. Hermatschweiler, M. Wegener, and G.A. Ozin, “New route to three-dimensional photonic bandgap materials: silicon double inversion of polymer templates,” Adv. Mater. 18(4), 457–460 (2006).
[Crossref]

S. John, A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature 405(6785), 437–440 (2000).
[Crossref] [PubMed]

Johnson, S.

Johnson, S. G.

H. Men, K. Y. K. Lee, R. M. Freund, J. Peraire, and S. G. Johnson, “Robust topology optimization of three-dimensional photonic-crystal band-gap structures,” Opt. Express 22(19), 22632–22648 (2014).
[Crossref] [PubMed]

M. Qi, E. Lidorikis, P. T. Rakich, S. G. Johnson, J. D. Joannopoulos, E. P. Ippen, and H. I. Smith, “A three-dimensional optical photonic crystal with designed point defects,” Nature 429(6991), 538–542 (2004).
[Crossref] [PubMed]

Kawata, S.

Kröll, S.

C. Simon, M. Afzelius, J. Appel, A. Boyer De La Giroday, S. J. Dewhurst, N. Gisin, C. Y. Hu, F. Jelezko, S. Kröll, J. H. Müller, J. Nunn, E. S. Polzik, J. G. Rarity, H. De Riedmatten, W. Rosenfeld, A. J. Shields, N. Sköld, R. M. Stevenson, R. Thew, I. A. Walmsley, M. C. Weber, H. Weinfurter, J. Wrachtrup, and R. J. Young, “Quantum memories : a review based on the European integrated project Qubit Applications (QAP),” Eur. Phys. J. D 58(1), 1–22 (2010).
[Crossref]

Ledermann, A.

G. von Freymann, A. Ledermann, M. Thiel, I. Staude, S. Essig, K. Busch, and M. Wegener, “Three-Dimensional Nanostructures for Photonics,” Adv. Funct. Mater. 20(7), 1038–1052 (2010).
[Crossref]

Lee, K. Y. K.

Leonard, S. W.

S. John, A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature 405(6785), 437–440 (2000).
[Crossref] [PubMed]

Li, J.

M. Gu, B. Jia, J. Li, and M. Ventura, “Fabrication of three‐dimensional photonic crystals in quantum‐dot‐based materials,” Laser Photonics Rev. 4(3), 414–431 (2010).
[Crossref]

Li, L.

L. Li, R. R. Gattass, E. Gershgoren, H. Hwang, and J. T. Fourkas, “Achieving lambda/20 resolution by one-color initiation and deactivation of polymerization,” Science 324(5929), 910–913 (2009).
[Crossref] [PubMed]

Lidorikis, E.

M. Qi, E. Lidorikis, P. T. Rakich, S. G. Johnson, J. D. Joannopoulos, E. P. Ippen, and H. I. Smith, “A three-dimensional optical photonic crystal with designed point defects,” Nature 429(6991), 538–542 (2004).
[Crossref] [PubMed]

Lieb, M. A.

Linden, S.

M. Thiel, M. Decker, M. Deubel, M. Wegener, S. Linden, and G. Von Freymann, “Polarization stop bands in chiral polymeric three-dimensional photonic crystals,” Adv. Mater. 19(2), 207–210 (2007).
[Crossref]

M. Deubel, M. Wegener, S. Linden, and G. Von Freymann, “Angle-resolved transmission spectroscopy of three-dimensional photonic crystals fabricated by direct laser writing,” Appl. Phys. Lett. 87(22), 221104 (2005).
[Crossref]

Lopez, C.

S. John, A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature 405(6785), 437–440 (2000).
[Crossref] [PubMed]

López, C.

M. López-García, J. F. Galisteo-López, A. Blanco, J. Sánchez-Marcos, C. López, and A. García-Martín, “Enhancement and directionality of spontaneous emission in hybrid self-assembled photonic-plasmonic crystals,” Small 6(16), 1757–1761 (2010).
[Crossref] [PubMed]

López-García, M.

M. López-García, J. F. Galisteo-López, A. Blanco, J. Sánchez-Marcos, C. López, and A. García-Martín, “Enhancement and directionality of spontaneous emission in hybrid self-assembled photonic-plasmonic crystals,” Small 6(16), 1757–1761 (2010).
[Crossref] [PubMed]

Luther-Davis, B.

Maldovan, M.

M. Maldovan and E. L. E. L. Thomas, “Diamond-structured photonic crystals,” Nat. Mater. 3(9), 593–600 (2004).
[Crossref] [PubMed]

Marseglia, L.

A. Young, C. Y. Hu, L. Marseglia, J. P. Harrison, J. L. O’Brien, and J. G. Rarity, “Cavity enhanced spin measurement of the ground state spin of an NV center in diamond,” New J. Phys. 11(1), 013007 (2009).
[Crossref]

Maruo, S.

S. Maruo and J. T. Fourkas, “Recent progress in multiphoton microfabrication,” Laser Photonics Rev. 2(1–2), 100–111 (2008).
[Crossref]

S. Maruo, O. Nakamura, and S. Kawata, “Three-dimensional microfabrication with two-photon-absorbed photopolymerization,” Opt. Lett. 22(2), 132–134 (1997).
[Crossref] [PubMed]

Member, S.

Y. D. Ho, P. S. Ivanov, E. Engin, M. F. J. Nicol, M. P. C. Taverne, C. Hu, M. J. Cryan, S. Member, I. J. Craddock, C. J. Railton, and J. G. Rarity, “FDTD simulation of inverse 3-D face-centered cubic photonic crystal cavities,” IEEE J. Quantum Electron. 47(12), 1480–1492 (2011).
[Crossref]

Men, H.

Meseguer, F.

S. John, A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature 405(6785), 437–440 (2000).
[Crossref] [PubMed]

Michielsen, K.

B. D. Wilts, K. Michielsen, H. De Raedt, and D. G. Stavenga, “Hemispherical Brillouin zone imaging of a diamond-type biological photonic crystal,” J. R. Soc. Interface 9(72), 1609–1614 (2012).
[Crossref] [PubMed]

Miguez, H.

S. John, A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature 405(6785), 437–440 (2000).
[Crossref] [PubMed]

Miyazaki, H. T.

K. Aoki, H. T. Miyazaki, H. Hirayama, K. Inoshita, T. Baba, K. Sakoda, N. Shinya, and Y. Aoyagi, “Microassembly of semiconductor three-dimensional photonic crystals,” Nat. Mater. 2(2), 117–121 (2003).
[Crossref] [PubMed]

Mondia, J. P.

S. John, A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature 405(6785), 437–440 (2000).
[Crossref] [PubMed]

Mueller, P.

Müller, J. H.

C. Simon, M. Afzelius, J. Appel, A. Boyer De La Giroday, S. J. Dewhurst, N. Gisin, C. Y. Hu, F. Jelezko, S. Kröll, J. H. Müller, J. Nunn, E. S. Polzik, J. G. Rarity, H. De Riedmatten, W. Rosenfeld, A. J. Shields, N. Sköld, R. M. Stevenson, R. Thew, I. A. Walmsley, M. C. Weber, H. Weinfurter, J. Wrachtrup, and R. J. Young, “Quantum memories : a review based on the European integrated project Qubit Applications (QAP),” Eur. Phys. J. D 58(1), 1–22 (2010).
[Crossref]

Nakamura, O.

Nicol, M. F. J.

Y. D. Ho, P. S. Ivanov, E. Engin, M. F. J. Nicol, M. P. C. Taverne, C. Hu, M. J. Cryan, S. Member, I. J. Craddock, C. J. Railton, and J. G. Rarity, “FDTD simulation of inverse 3-D face-centered cubic photonic crystal cavities,” IEEE J. Quantum Electron. 47(12), 1480–1492 (2011).
[Crossref]

Noda, S.

S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, “Full three-dimensional photonic bandgap crystals at near-infrared wavelengths,” Science 289(5479), 604–606 (2000).
[Crossref] [PubMed]

Notomi, M.

S. Imagawa, K. Edagawa, and M. Notomi, “Strong light confinement in a photonic amorphous diamond structure,” Appl. Phys. Lett. 100(15), 151103 (2012).
[Crossref]

Novotny, L.

Nunn, J.

C. Simon, M. Afzelius, J. Appel, A. Boyer De La Giroday, S. J. Dewhurst, N. Gisin, C. Y. Hu, F. Jelezko, S. Kröll, J. H. Müller, J. Nunn, E. S. Polzik, J. G. Rarity, H. De Riedmatten, W. Rosenfeld, A. J. Shields, N. Sköld, R. M. Stevenson, R. Thew, I. A. Walmsley, M. C. Weber, H. Weinfurter, J. Wrachtrup, and R. J. Young, “Quantum memories : a review based on the European integrated project Qubit Applications (QAP),” Eur. Phys. J. D 58(1), 1–22 (2010).
[Crossref]

O’Brien, J. L.

A. Young, C. Y. Hu, L. Marseglia, J. P. Harrison, J. L. O’Brien, and J. G. Rarity, “Cavity enhanced spin measurement of the ground state spin of an NV center in diamond,” New J. Phys. 11(1), 013007 (2009).
[Crossref]

Ovsianikov, A.

Ozin, G. A.

S. H. Wong, M. Thiel, P. Brodersen, D. Fenske, G. A. Ozin, M. Wegener, and G. Von Freymann, “Highly selective wet etch for high-resolution three-dimensional nanostructures in arsenic sulfide all-inorganic photoresist,” Chem. Mater. 19(17), 4213–4221 (2007).
[Crossref]

S. Wong, M. Deubel, F. Pérez-Willard, S. John, G. A. Ozin, M. Wegener, and G. Von Freymann, “Direct laser writing of three-dimensional photonic crystals with a complete photonic bandgap in chalcogenide glasses,” Adv. Mater. 18(3), 265–269 (2006).
[Crossref]

S. John, A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature 405(6785), 437–440 (2000).
[Crossref] [PubMed]

Ozin, G.A.

N. Tétreault, G. Von Freymann, M. Deubel, F. Pérez-Willard, S. John, M. Hermatschweiler, M. Wegener, and G.A. Ozin, “New route to three-dimensional photonic bandgap materials: silicon double inversion of polymer templates,” Adv. Mater. 18(4), 457–460 (2006).
[Crossref]

Pendry, J. B.

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328(5976), 337–339 (2010).
[Crossref] [PubMed]

Peraire, J.

Pérez-Willard, F.

N. Tétreault, G. Von Freymann, M. Deubel, F. Pérez-Willard, S. John, M. Hermatschweiler, M. Wegener, and G.A. Ozin, “New route to three-dimensional photonic bandgap materials: silicon double inversion of polymer templates,” Adv. Mater. 18(4), 457–460 (2006).
[Crossref]

S. Wong, M. Deubel, F. Pérez-Willard, S. John, G. A. Ozin, M. Wegener, and G. Von Freymann, “Direct laser writing of three-dimensional photonic crystals with a complete photonic bandgap in chalcogenide glasses,” Adv. Mater. 18(3), 265–269 (2006).
[Crossref]

Polzik, E. S.

C. Simon, M. Afzelius, J. Appel, A. Boyer De La Giroday, S. J. Dewhurst, N. Gisin, C. Y. Hu, F. Jelezko, S. Kröll, J. H. Müller, J. Nunn, E. S. Polzik, J. G. Rarity, H. De Riedmatten, W. Rosenfeld, A. J. Shields, N. Sköld, R. M. Stevenson, R. Thew, I. A. Walmsley, M. C. Weber, H. Weinfurter, J. Wrachtrup, and R. J. Young, “Quantum memories : a review based on the European integrated project Qubit Applications (QAP),” Eur. Phys. J. D 58(1), 1–22 (2010).
[Crossref]

Prawer, S.

I. Aharonovich, S. Castelletto, D. A. Simpson, C.-H. Su, A. D. Greentree, and S. Prawer, “Diamond-based single-photon emitters,” Rep. Prog. Phys. 74(7), 076501 (2011).
[Crossref]

Qi, M.

M. Qi, E. Lidorikis, P. T. Rakich, S. G. Johnson, J. D. Joannopoulos, E. P. Ippen, and H. I. Smith, “A three-dimensional optical photonic crystal with designed point defects,” Nature 429(6991), 538–542 (2004).
[Crossref] [PubMed]

Railton, C. J.

Y. D. Ho, P. S. Ivanov, E. Engin, M. F. J. Nicol, M. P. C. Taverne, C. Hu, M. J. Cryan, S. Member, I. J. Craddock, C. J. Railton, and J. G. Rarity, “FDTD simulation of inverse 3-D face-centered cubic photonic crystal cavities,” IEEE J. Quantum Electron. 47(12), 1480–1492 (2011).
[Crossref]

Rakich, P. T.

M. Qi, E. Lidorikis, P. T. Rakich, S. G. Johnson, J. D. Joannopoulos, E. P. Ippen, and H. I. Smith, “A three-dimensional optical photonic crystal with designed point defects,” Nature 429(6991), 538–542 (2004).
[Crossref] [PubMed]

Rarity, J. G.

M. P. C. Taverne, Y.-L. D. Ho, and J. G. Rarity, “Investigation of defect cavities formed in three-dimensional woodpile photonic crystals,” J. Opt. Soc. Am. B 32(4), 639–648 (2015).
[Crossref]

Y. D. Ho, P. S. Ivanov, E. Engin, M. F. J. Nicol, M. P. C. Taverne, C. Hu, M. J. Cryan, S. Member, I. J. Craddock, C. J. Railton, and J. G. Rarity, “FDTD simulation of inverse 3-D face-centered cubic photonic crystal cavities,” IEEE J. Quantum Electron. 47(12), 1480–1492 (2011).
[Crossref]

C. Simon, M. Afzelius, J. Appel, A. Boyer De La Giroday, S. J. Dewhurst, N. Gisin, C. Y. Hu, F. Jelezko, S. Kröll, J. H. Müller, J. Nunn, E. S. Polzik, J. G. Rarity, H. De Riedmatten, W. Rosenfeld, A. J. Shields, N. Sköld, R. M. Stevenson, R. Thew, I. A. Walmsley, M. C. Weber, H. Weinfurter, J. Wrachtrup, and R. J. Young, “Quantum memories : a review based on the European integrated project Qubit Applications (QAP),” Eur. Phys. J. D 58(1), 1–22 (2010).
[Crossref]

A. Young, C. Y. Hu, L. Marseglia, J. P. Harrison, J. L. O’Brien, and J. G. Rarity, “Cavity enhanced spin measurement of the ground state spin of an NV center in diamond,” New J. Phys. 11(1), 013007 (2009).
[Crossref]

Renner, M.

Richey, L. R.

J. W. Galusha, L. R. Richey, J. S. Gardner, J. N. Cha, and M. H. Bartl, “Discovery of a diamond-based photonic crystal structure in beetle scales,” Phys. Rev. E. 77(5), 050904 (2008).

Rivoire, K.

S. Buckley, K. Rivoire, and J. Vučković, “Engineered quantum dot single-photon sources,” Rep. Prog. Phys. 75(12), 126503 (2012).
[Crossref] [PubMed]

Rosenfeld, W.

C. Simon, M. Afzelius, J. Appel, A. Boyer De La Giroday, S. J. Dewhurst, N. Gisin, C. Y. Hu, F. Jelezko, S. Kröll, J. H. Müller, J. Nunn, E. S. Polzik, J. G. Rarity, H. De Riedmatten, W. Rosenfeld, A. J. Shields, N. Sköld, R. M. Stevenson, R. Thew, I. A. Walmsley, M. C. Weber, H. Weinfurter, J. Wrachtrup, and R. J. Young, “Quantum memories : a review based on the European integrated project Qubit Applications (QAP),” Eur. Phys. J. D 58(1), 1–22 (2010).
[Crossref]

Saba, M.

M. D. Turner, M. Saba, Q. Zhang, B. P. Cumming, G. E. Schröder-Turk, and M. Gu, “Miniature chiral beamsplitter based on gyroid photonic crystals,” Nat. Photonics 7(10), 801–805 (2013).
[Crossref]

Sakoda, K.

K. Aoki, H. T. Miyazaki, H. Hirayama, K. Inoshita, T. Baba, K. Sakoda, N. Shinya, and Y. Aoyagi, “Microassembly of semiconductor three-dimensional photonic crystals,” Nat. Mater. 2(2), 117–121 (2003).
[Crossref] [PubMed]

Sánchez-Marcos, J.

M. López-García, J. F. Galisteo-López, A. Blanco, J. Sánchez-Marcos, C. López, and A. García-Martín, “Enhancement and directionality of spontaneous emission in hybrid self-assembled photonic-plasmonic crystals,” Small 6(16), 1757–1761 (2010).
[Crossref] [PubMed]

Schröder-Turk, G. E.

M. D. Turner, M. Saba, Q. Zhang, B. P. Cumming, G. E. Schröder-Turk, and M. Gu, “Miniature chiral beamsplitter based on gyroid photonic crystals,” Nat. Photonics 7(10), 801–805 (2013).
[Crossref]

Serbin, J.

J. Serbin and M. Gu, “Experimental evidence for superprism effects in three-dimensional polymer photonic crystals,” Adv. Mater. 18(2), 221–224 (2006).
[Crossref]

Shields, A. J.

C. Simon, M. Afzelius, J. Appel, A. Boyer De La Giroday, S. J. Dewhurst, N. Gisin, C. Y. Hu, F. Jelezko, S. Kröll, J. H. Müller, J. Nunn, E. S. Polzik, J. G. Rarity, H. De Riedmatten, W. Rosenfeld, A. J. Shields, N. Sköld, R. M. Stevenson, R. Thew, I. A. Walmsley, M. C. Weber, H. Weinfurter, J. Wrachtrup, and R. J. Young, “Quantum memories : a review based on the European integrated project Qubit Applications (QAP),” Eur. Phys. J. D 58(1), 1–22 (2010).
[Crossref]

Shinya, N.

K. Aoki, H. T. Miyazaki, H. Hirayama, K. Inoshita, T. Baba, K. Sakoda, N. Shinya, and Y. Aoyagi, “Microassembly of semiconductor three-dimensional photonic crystals,” Nat. Mater. 2(2), 117–121 (2003).
[Crossref] [PubMed]

Shizhou, X.

Sigalas, M.

K.-M. Ho, C. T. Chan, C. Soukoulis, R. Biswas, and M. Sigalas, “Photonic band gaps in three dimensions: new layer-by-layer periodic structures,” Solid State Commun. 89(5), 413–416 (1994).
[Crossref]

Simon, C.

C. Simon, M. Afzelius, J. Appel, A. Boyer De La Giroday, S. J. Dewhurst, N. Gisin, C. Y. Hu, F. Jelezko, S. Kröll, J. H. Müller, J. Nunn, E. S. Polzik, J. G. Rarity, H. De Riedmatten, W. Rosenfeld, A. J. Shields, N. Sköld, R. M. Stevenson, R. Thew, I. A. Walmsley, M. C. Weber, H. Weinfurter, J. Wrachtrup, and R. J. Young, “Quantum memories : a review based on the European integrated project Qubit Applications (QAP),” Eur. Phys. J. D 58(1), 1–22 (2010).
[Crossref]

Simpson, D. A.

I. Aharonovich, S. Castelletto, D. A. Simpson, C.-H. Su, A. D. Greentree, and S. Prawer, “Diamond-based single-photon emitters,” Rep. Prog. Phys. 74(7), 076501 (2011).
[Crossref]

Sköld, N.

C. Simon, M. Afzelius, J. Appel, A. Boyer De La Giroday, S. J. Dewhurst, N. Gisin, C. Y. Hu, F. Jelezko, S. Kröll, J. H. Müller, J. Nunn, E. S. Polzik, J. G. Rarity, H. De Riedmatten, W. Rosenfeld, A. J. Shields, N. Sköld, R. M. Stevenson, R. Thew, I. A. Walmsley, M. C. Weber, H. Weinfurter, J. Wrachtrup, and R. J. Young, “Quantum memories : a review based on the European integrated project Qubit Applications (QAP),” Eur. Phys. J. D 58(1), 1–22 (2010).
[Crossref]

Smith, H. I.

M. Qi, E. Lidorikis, P. T. Rakich, S. G. Johnson, J. D. Joannopoulos, E. P. Ippen, and H. I. Smith, “A three-dimensional optical photonic crystal with designed point defects,” Nature 429(6991), 538–542 (2004).
[Crossref] [PubMed]

Soukoulis, C.

K.-M. Ho, C. T. Chan, C. Soukoulis, R. Biswas, and M. Sigalas, “Photonic band gaps in three dimensions: new layer-by-layer periodic structures,” Solid State Commun. 89(5), 413–416 (1994).
[Crossref]

Soukoulis, C. M.

C. M. Soukoulis and M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nat. Photonics 5(9), 523–530 (2011).

C. T. C. Chan, S. Datta, K. M. K. Ho, and C. M. Soukoulis, “A7 structure: A family of photonic crystals,” Phys. Rev. B Condens. Matter 50(3), 1988–1991 (1994).
[Crossref] [PubMed]

C. T. Chan, K. M. Ho, and C. M. Soukoulis, “Photonic band gaps inexperimentally realizable periodic dielectric structures,” Europhys. Lett. 16(6), 563–568 (1991).
[Crossref]

Staude, I.

Stavenga, D. G.

B. D. Wilts, K. Michielsen, H. De Raedt, and D. G. Stavenga, “Hemispherical Brillouin zone imaging of a diamond-type biological photonic crystal,” J. R. Soc. Interface 9(72), 1609–1614 (2012).
[Crossref] [PubMed]

Steiner, U.

J. A. Dolan, B. D. Wilts, S. Vignolini, J. J. Baumberg, U. Steiner, and T. D. Wilkinson, “Optical properties of gyroid structured materials: from photonic crystals to metamaterials,” Adv. Opt. Mater. 3(1), 12–32 (2015).
[Crossref]

Stenger, N.

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328(5976), 337–339 (2010).
[Crossref] [PubMed]

Stevenson, R. M.

C. Simon, M. Afzelius, J. Appel, A. Boyer De La Giroday, S. J. Dewhurst, N. Gisin, C. Y. Hu, F. Jelezko, S. Kröll, J. H. Müller, J. Nunn, E. S. Polzik, J. G. Rarity, H. De Riedmatten, W. Rosenfeld, A. J. Shields, N. Sköld, R. M. Stevenson, R. Thew, I. A. Walmsley, M. C. Weber, H. Weinfurter, J. Wrachtrup, and R. J. Young, “Quantum memories : a review based on the European integrated project Qubit Applications (QAP),” Eur. Phys. J. D 58(1), 1–22 (2010).
[Crossref]

Straub, M.

Su, C.-H.

I. Aharonovich, S. Castelletto, D. A. Simpson, C.-H. Su, A. D. Greentree, and S. Prawer, “Diamond-based single-photon emitters,” Rep. Prog. Phys. 74(7), 076501 (2011).
[Crossref]

Taverne, M. P. C.

M. P. C. Taverne, Y.-L. D. Ho, and J. G. Rarity, “Investigation of defect cavities formed in three-dimensional woodpile photonic crystals,” J. Opt. Soc. Am. B 32(4), 639–648 (2015).
[Crossref]

Y. D. Ho, P. S. Ivanov, E. Engin, M. F. J. Nicol, M. P. C. Taverne, C. Hu, M. J. Cryan, S. Member, I. J. Craddock, C. J. Railton, and J. G. Rarity, “FDTD simulation of inverse 3-D face-centered cubic photonic crystal cavities,” IEEE J. Quantum Electron. 47(12), 1480–1492 (2011).
[Crossref]

Tétreault, N.

N. Tétreault, G. Von Freymann, M. Deubel, F. Pérez-Willard, S. John, M. Hermatschweiler, M. Wegener, and G.A. Ozin, “New route to three-dimensional photonic bandgap materials: silicon double inversion of polymer templates,” Adv. Mater. 18(4), 457–460 (2006).
[Crossref]

Thew, R.

C. Simon, M. Afzelius, J. Appel, A. Boyer De La Giroday, S. J. Dewhurst, N. Gisin, C. Y. Hu, F. Jelezko, S. Kröll, J. H. Müller, J. Nunn, E. S. Polzik, J. G. Rarity, H. De Riedmatten, W. Rosenfeld, A. J. Shields, N. Sköld, R. M. Stevenson, R. Thew, I. A. Walmsley, M. C. Weber, H. Weinfurter, J. Wrachtrup, and R. J. Young, “Quantum memories : a review based on the European integrated project Qubit Applications (QAP),” Eur. Phys. J. D 58(1), 1–22 (2010).
[Crossref]

Thiel, M.

P. Mueller, M. Thiel, and M. Wegener, “3D direct laser writing using a 405 nm diode laser,” Opt. Lett. 39(24), 6847–6850 (2014).
[Crossref] [PubMed]

I. Staude, M. Thiel, S. Essig, C. Wolff, K. Busch, G. von Freymann, and M. Wegener, “Fabrication and characterization of silicon woodpile photonic crystals with a complete bandgap at telecom wavelengths,” Opt. Lett. 35(7), 1094–1096 (2010).
[Crossref] [PubMed]

G. von Freymann, A. Ledermann, M. Thiel, I. Staude, S. Essig, K. Busch, and M. Wegener, “Three-Dimensional Nanostructures for Photonics,” Adv. Funct. Mater. 20(7), 1038–1052 (2010).
[Crossref]

M. Thiel, M. Decker, M. Deubel, M. Wegener, S. Linden, and G. Von Freymann, “Polarization stop bands in chiral polymeric three-dimensional photonic crystals,” Adv. Mater. 19(2), 207–210 (2007).
[Crossref]

S. H. Wong, M. Thiel, P. Brodersen, D. Fenske, G. A. Ozin, M. Wegener, and G. Von Freymann, “Highly selective wet etch for high-resolution three-dimensional nanostructures in arsenic sulfide all-inorganic photoresist,” Chem. Mater. 19(17), 4213–4221 (2007).
[Crossref]

Thomas, E. L. E. L.

M. Maldovan and E. L. E. L. Thomas, “Diamond-structured photonic crystals,” Nat. Mater. 3(9), 593–600 (2004).
[Crossref] [PubMed]

Toader, O.

S. John, A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature 405(6785), 437–440 (2000).
[Crossref] [PubMed]

Tomoda, K.

S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, “Full three-dimensional photonic bandgap crystals at near-infrared wavelengths,” Science 289(5479), 604–606 (2000).
[Crossref] [PubMed]

Turner, M. D.

M. D. Turner, M. Saba, Q. Zhang, B. P. Cumming, G. E. Schröder-Turk, and M. Gu, “Miniature chiral beamsplitter based on gyroid photonic crystals,” Nat. Photonics 7(10), 801–805 (2013).
[Crossref]

Vamvakaki, M.

van Driel, H. M.

S. John, A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature 405(6785), 437–440 (2000).
[Crossref] [PubMed]

Ventura, M.

M. Gu, B. Jia, J. Li, and M. Ventura, “Fabrication of three‐dimensional photonic crystals in quantum‐dot‐based materials,” Laser Photonics Rev. 4(3), 414–431 (2010).
[Crossref]

Vignolini, S.

J. A. Dolan, B. D. Wilts, S. Vignolini, J. J. Baumberg, U. Steiner, and T. D. Wilkinson, “Optical properties of gyroid structured materials: from photonic crystals to metamaterials,” Adv. Opt. Mater. 3(1), 12–32 (2015).
[Crossref]

von Freymann, G.

E. H. Waller, M. Renner, and G. von Freymann, “Active aberration- and point-spread-function control in direct laser writing,” Opt. Express 20(22), 24949–24956 (2012).
[Crossref] [PubMed]

I. Staude, G. von Freymann, S. Essig, K. Busch, and M. Wegener, “Waveguides in three-dimensional photonic-bandgap materials by direct laser writing and silicon double inversion,” Opt. Lett. 36(1), 67–69 (2011).
[Crossref] [PubMed]

I. Staude, M. Thiel, S. Essig, C. Wolff, K. Busch, G. von Freymann, and M. Wegener, “Fabrication and characterization of silicon woodpile photonic crystals with a complete bandgap at telecom wavelengths,” Opt. Lett. 35(7), 1094–1096 (2010).
[Crossref] [PubMed]

G. von Freymann, A. Ledermann, M. Thiel, I. Staude, S. Essig, K. Busch, and M. Wegener, “Three-Dimensional Nanostructures for Photonics,” Adv. Funct. Mater. 20(7), 1038–1052 (2010).
[Crossref]

M. Thiel, M. Decker, M. Deubel, M. Wegener, S. Linden, and G. Von Freymann, “Polarization stop bands in chiral polymeric three-dimensional photonic crystals,” Adv. Mater. 19(2), 207–210 (2007).
[Crossref]

S. H. Wong, M. Thiel, P. Brodersen, D. Fenske, G. A. Ozin, M. Wegener, and G. Von Freymann, “Highly selective wet etch for high-resolution three-dimensional nanostructures in arsenic sulfide all-inorganic photoresist,” Chem. Mater. 19(17), 4213–4221 (2007).
[Crossref]

N. Tétreault, G. Von Freymann, M. Deubel, F. Pérez-Willard, S. John, M. Hermatschweiler, M. Wegener, and G.A. Ozin, “New route to three-dimensional photonic bandgap materials: silicon double inversion of polymer templates,” Adv. Mater. 18(4), 457–460 (2006).
[Crossref]

S. Wong, M. Deubel, F. Pérez-Willard, S. John, G. A. Ozin, M. Wegener, and G. Von Freymann, “Direct laser writing of three-dimensional photonic crystals with a complete photonic bandgap in chalcogenide glasses,” Adv. Mater. 18(3), 265–269 (2006).
[Crossref]

M. Deubel, M. Wegener, S. Linden, and G. Von Freymann, “Angle-resolved transmission spectroscopy of three-dimensional photonic crystals fabricated by direct laser writing,” Appl. Phys. Lett. 87(22), 221104 (2005).
[Crossref]

Vuckovic, J.

S. Buckley, K. Rivoire, and J. Vučković, “Engineered quantum dot single-photon sources,” Rep. Prog. Phys. 75(12), 126503 (2012).
[Crossref] [PubMed]

Waller, E. H.

Walmsley, I. A.

C. Simon, M. Afzelius, J. Appel, A. Boyer De La Giroday, S. J. Dewhurst, N. Gisin, C. Y. Hu, F. Jelezko, S. Kröll, J. H. Müller, J. Nunn, E. S. Polzik, J. G. Rarity, H. De Riedmatten, W. Rosenfeld, A. J. Shields, N. Sköld, R. M. Stevenson, R. Thew, I. A. Walmsley, M. C. Weber, H. Weinfurter, J. Wrachtrup, and R. J. Young, “Quantum memories : a review based on the European integrated project Qubit Applications (QAP),” Eur. Phys. J. D 58(1), 1–22 (2010).
[Crossref]

Weber, M. C.

C. Simon, M. Afzelius, J. Appel, A. Boyer De La Giroday, S. J. Dewhurst, N. Gisin, C. Y. Hu, F. Jelezko, S. Kröll, J. H. Müller, J. Nunn, E. S. Polzik, J. G. Rarity, H. De Riedmatten, W. Rosenfeld, A. J. Shields, N. Sköld, R. M. Stevenson, R. Thew, I. A. Walmsley, M. C. Weber, H. Weinfurter, J. Wrachtrup, and R. J. Young, “Quantum memories : a review based on the European integrated project Qubit Applications (QAP),” Eur. Phys. J. D 58(1), 1–22 (2010).
[Crossref]

Wegener, M.

P. Mueller, M. Thiel, and M. Wegener, “3D direct laser writing using a 405 nm diode laser,” Opt. Lett. 39(24), 6847–6850 (2014).
[Crossref] [PubMed]

A. Frölich, J. Fischer, C. Wolff, K. Busch, and M. Wegener, “Frequency-Resolved Reciprocal-Space Mapping of Visible Spontaneous Emission from 3D Photonic Crystals,” Adv. Opt. Mater. 2(9), 849–853 (2014).
[Crossref]

C. M. Soukoulis and M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nat. Photonics 5(9), 523–530 (2011).

I. Staude, G. von Freymann, S. Essig, K. Busch, and M. Wegener, “Waveguides in three-dimensional photonic-bandgap materials by direct laser writing and silicon double inversion,” Opt. Lett. 36(1), 67–69 (2011).
[Crossref] [PubMed]

I. Staude, M. Thiel, S. Essig, C. Wolff, K. Busch, G. von Freymann, and M. Wegener, “Fabrication and characterization of silicon woodpile photonic crystals with a complete bandgap at telecom wavelengths,” Opt. Lett. 35(7), 1094–1096 (2010).
[Crossref] [PubMed]

G. von Freymann, A. Ledermann, M. Thiel, I. Staude, S. Essig, K. Busch, and M. Wegener, “Three-Dimensional Nanostructures for Photonics,” Adv. Funct. Mater. 20(7), 1038–1052 (2010).
[Crossref]

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328(5976), 337–339 (2010).
[Crossref] [PubMed]

M. Thiel, M. Decker, M. Deubel, M. Wegener, S. Linden, and G. Von Freymann, “Polarization stop bands in chiral polymeric three-dimensional photonic crystals,” Adv. Mater. 19(2), 207–210 (2007).
[Crossref]

S. H. Wong, M. Thiel, P. Brodersen, D. Fenske, G. A. Ozin, M. Wegener, and G. Von Freymann, “Highly selective wet etch for high-resolution three-dimensional nanostructures in arsenic sulfide all-inorganic photoresist,” Chem. Mater. 19(17), 4213–4221 (2007).
[Crossref]

N. Tétreault, G. Von Freymann, M. Deubel, F. Pérez-Willard, S. John, M. Hermatschweiler, M. Wegener, and G.A. Ozin, “New route to three-dimensional photonic bandgap materials: silicon double inversion of polymer templates,” Adv. Mater. 18(4), 457–460 (2006).
[Crossref]

S. Wong, M. Deubel, F. Pérez-Willard, S. John, G. A. Ozin, M. Wegener, and G. Von Freymann, “Direct laser writing of three-dimensional photonic crystals with a complete photonic bandgap in chalcogenide glasses,” Adv. Mater. 18(3), 265–269 (2006).
[Crossref]

M. Deubel, M. Wegener, S. Linden, and G. Von Freymann, “Angle-resolved transmission spectroscopy of three-dimensional photonic crystals fabricated by direct laser writing,” Appl. Phys. Lett. 87(22), 221104 (2005).
[Crossref]

Weinfurter, H.

C. Simon, M. Afzelius, J. Appel, A. Boyer De La Giroday, S. J. Dewhurst, N. Gisin, C. Y. Hu, F. Jelezko, S. Kröll, J. H. Müller, J. Nunn, E. S. Polzik, J. G. Rarity, H. De Riedmatten, W. Rosenfeld, A. J. Shields, N. Sköld, R. M. Stevenson, R. Thew, I. A. Walmsley, M. C. Weber, H. Weinfurter, J. Wrachtrup, and R. J. Young, “Quantum memories : a review based on the European integrated project Qubit Applications (QAP),” Eur. Phys. J. D 58(1), 1–22 (2010).
[Crossref]

Wilkinson, T. D.

J. A. Dolan, B. D. Wilts, S. Vignolini, J. J. Baumberg, U. Steiner, and T. D. Wilkinson, “Optical properties of gyroid structured materials: from photonic crystals to metamaterials,” Adv. Opt. Mater. 3(1), 12–32 (2015).
[Crossref]

Wilts, B. D.

J. A. Dolan, B. D. Wilts, S. Vignolini, J. J. Baumberg, U. Steiner, and T. D. Wilkinson, “Optical properties of gyroid structured materials: from photonic crystals to metamaterials,” Adv. Opt. Mater. 3(1), 12–32 (2015).
[Crossref]

B. D. Wilts, K. Michielsen, H. De Raedt, and D. G. Stavenga, “Hemispherical Brillouin zone imaging of a diamond-type biological photonic crystal,” J. R. Soc. Interface 9(72), 1609–1614 (2012).
[Crossref] [PubMed]

Wolff, C.

A. Frölich, J. Fischer, C. Wolff, K. Busch, and M. Wegener, “Frequency-Resolved Reciprocal-Space Mapping of Visible Spontaneous Emission from 3D Photonic Crystals,” Adv. Opt. Mater. 2(9), 849–853 (2014).
[Crossref]

I. Staude, M. Thiel, S. Essig, C. Wolff, K. Busch, G. von Freymann, and M. Wegener, “Fabrication and characterization of silicon woodpile photonic crystals with a complete bandgap at telecom wavelengths,” Opt. Lett. 35(7), 1094–1096 (2010).
[Crossref] [PubMed]

Wong, S.

S. Wong, M. Deubel, F. Pérez-Willard, S. John, G. A. Ozin, M. Wegener, and G. Von Freymann, “Direct laser writing of three-dimensional photonic crystals with a complete photonic bandgap in chalcogenide glasses,” Adv. Mater. 18(3), 265–269 (2006).
[Crossref]

Wong, S. H.

S. H. Wong, M. Thiel, P. Brodersen, D. Fenske, G. A. Ozin, M. Wegener, and G. Von Freymann, “Highly selective wet etch for high-resolution three-dimensional nanostructures in arsenic sulfide all-inorganic photoresist,” Chem. Mater. 19(17), 4213–4221 (2007).
[Crossref]

Wrachtrup, J.

C. Simon, M. Afzelius, J. Appel, A. Boyer De La Giroday, S. J. Dewhurst, N. Gisin, C. Y. Hu, F. Jelezko, S. Kröll, J. H. Müller, J. Nunn, E. S. Polzik, J. G. Rarity, H. De Riedmatten, W. Rosenfeld, A. J. Shields, N. Sköld, R. M. Stevenson, R. Thew, I. A. Walmsley, M. C. Weber, H. Weinfurter, J. Wrachtrup, and R. J. Young, “Quantum memories : a review based on the European integrated project Qubit Applications (QAP),” Eur. Phys. J. D 58(1), 1–22 (2010).
[Crossref]

Yablonovitch, E.

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987).
[Crossref] [PubMed]

Yamamoto, N.

S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, “Full three-dimensional photonic bandgap crystals at near-infrared wavelengths,” Science 289(5479), 604–606 (2000).
[Crossref] [PubMed]

Young, A.

A. Young, C. Y. Hu, L. Marseglia, J. P. Harrison, J. L. O’Brien, and J. G. Rarity, “Cavity enhanced spin measurement of the ground state spin of an NV center in diamond,” New J. Phys. 11(1), 013007 (2009).
[Crossref]

Young, R. J.

C. Simon, M. Afzelius, J. Appel, A. Boyer De La Giroday, S. J. Dewhurst, N. Gisin, C. Y. Hu, F. Jelezko, S. Kröll, J. H. Müller, J. Nunn, E. S. Polzik, J. G. Rarity, H. De Riedmatten, W. Rosenfeld, A. J. Shields, N. Sköld, R. M. Stevenson, R. Thew, I. A. Walmsley, M. C. Weber, H. Weinfurter, J. Wrachtrup, and R. J. Young, “Quantum memories : a review based on the European integrated project Qubit Applications (QAP),” Eur. Phys. J. D 58(1), 1–22 (2010).
[Crossref]

Zavislan, J. M.

Zhang, Q.

M. D. Turner, M. Saba, Q. Zhang, B. P. Cumming, G. E. Schröder-Turk, and M. Gu, “Miniature chiral beamsplitter based on gyroid photonic crystals,” Nat. Photonics 7(10), 801–805 (2013).
[Crossref]

Adv. Funct. Mater. (1)

G. von Freymann, A. Ledermann, M. Thiel, I. Staude, S. Essig, K. Busch, and M. Wegener, “Three-Dimensional Nanostructures for Photonics,” Adv. Funct. Mater. 20(7), 1038–1052 (2010).
[Crossref]

Adv. Mater. (4)

S. Wong, M. Deubel, F. Pérez-Willard, S. John, G. A. Ozin, M. Wegener, and G. Von Freymann, “Direct laser writing of three-dimensional photonic crystals with a complete photonic bandgap in chalcogenide glasses,” Adv. Mater. 18(3), 265–269 (2006).
[Crossref]

J. Serbin and M. Gu, “Experimental evidence for superprism effects in three-dimensional polymer photonic crystals,” Adv. Mater. 18(2), 221–224 (2006).
[Crossref]

N. Tétreault, G. Von Freymann, M. Deubel, F. Pérez-Willard, S. John, M. Hermatschweiler, M. Wegener, and G.A. Ozin, “New route to three-dimensional photonic bandgap materials: silicon double inversion of polymer templates,” Adv. Mater. 18(4), 457–460 (2006).
[Crossref]

M. Thiel, M. Decker, M. Deubel, M. Wegener, S. Linden, and G. Von Freymann, “Polarization stop bands in chiral polymeric three-dimensional photonic crystals,” Adv. Mater. 19(2), 207–210 (2007).
[Crossref]

Adv. Opt. Mater. (2)

J. A. Dolan, B. D. Wilts, S. Vignolini, J. J. Baumberg, U. Steiner, and T. D. Wilkinson, “Optical properties of gyroid structured materials: from photonic crystals to metamaterials,” Adv. Opt. Mater. 3(1), 12–32 (2015).
[Crossref]

A. Frölich, J. Fischer, C. Wolff, K. Busch, and M. Wegener, “Frequency-Resolved Reciprocal-Space Mapping of Visible Spontaneous Emission from 3D Photonic Crystals,” Adv. Opt. Mater. 2(9), 849–853 (2014).
[Crossref]

Appl. Phys. Lett. (3)

S. Imagawa, K. Edagawa, and M. Notomi, “Strong light confinement in a photonic amorphous diamond structure,” Appl. Phys. Lett. 100(15), 151103 (2012).
[Crossref]

M. Deubel, M. Wegener, S. Linden, and G. Von Freymann, “Angle-resolved transmission spectroscopy of three-dimensional photonic crystals fabricated by direct laser writing,” Appl. Phys. Lett. 87(22), 221104 (2005).
[Crossref]

K. Aoki, “Practical approach for a rod-connected diamond photonic crystal operating at optical wavelengths,” Appl. Phys. Lett. 95(19), 191910 (2009).
[Crossref]

Chem. Mater. (1)

S. H. Wong, M. Thiel, P. Brodersen, D. Fenske, G. A. Ozin, M. Wegener, and G. Von Freymann, “Highly selective wet etch for high-resolution three-dimensional nanostructures in arsenic sulfide all-inorganic photoresist,” Chem. Mater. 19(17), 4213–4221 (2007).
[Crossref]

Eur. Phys. J. D (1)

C. Simon, M. Afzelius, J. Appel, A. Boyer De La Giroday, S. J. Dewhurst, N. Gisin, C. Y. Hu, F. Jelezko, S. Kröll, J. H. Müller, J. Nunn, E. S. Polzik, J. G. Rarity, H. De Riedmatten, W. Rosenfeld, A. J. Shields, N. Sköld, R. M. Stevenson, R. Thew, I. A. Walmsley, M. C. Weber, H. Weinfurter, J. Wrachtrup, and R. J. Young, “Quantum memories : a review based on the European integrated project Qubit Applications (QAP),” Eur. Phys. J. D 58(1), 1–22 (2010).
[Crossref]

Europhys. Lett. (1)

C. T. Chan, K. M. Ho, and C. M. Soukoulis, “Photonic band gaps inexperimentally realizable periodic dielectric structures,” Europhys. Lett. 16(6), 563–568 (1991).
[Crossref]

IEEE J. Quantum Electron. (1)

Y. D. Ho, P. S. Ivanov, E. Engin, M. F. J. Nicol, M. P. C. Taverne, C. Hu, M. J. Cryan, S. Member, I. J. Craddock, C. J. Railton, and J. G. Rarity, “FDTD simulation of inverse 3-D face-centered cubic photonic crystal cavities,” IEEE J. Quantum Electron. 47(12), 1480–1492 (2011).
[Crossref]

J. Opt. Soc. Am. B (2)

J. R. Soc. Interface (1)

B. D. Wilts, K. Michielsen, H. De Raedt, and D. G. Stavenga, “Hemispherical Brillouin zone imaging of a diamond-type biological photonic crystal,” J. R. Soc. Interface 9(72), 1609–1614 (2012).
[Crossref] [PubMed]

Laser Photonics Rev. (2)

S. Maruo and J. T. Fourkas, “Recent progress in multiphoton microfabrication,” Laser Photonics Rev. 2(1–2), 100–111 (2008).
[Crossref]

M. Gu, B. Jia, J. Li, and M. Ventura, “Fabrication of three‐dimensional photonic crystals in quantum‐dot‐based materials,” Laser Photonics Rev. 4(3), 414–431 (2010).
[Crossref]

Nat. Commun. (1)

Z. Gan, Y. Cao, R. A. Evans, and M. Gu, “Three-dimensional deep sub-diffraction optical beam lithography with 9 nm feature size,” Nat. Commun. 4, 2061 (2013).
[Crossref] [PubMed]

Nat. Mater. (2)

M. Maldovan and E. L. E. L. Thomas, “Diamond-structured photonic crystals,” Nat. Mater. 3(9), 593–600 (2004).
[Crossref] [PubMed]

K. Aoki, H. T. Miyazaki, H. Hirayama, K. Inoshita, T. Baba, K. Sakoda, N. Shinya, and Y. Aoyagi, “Microassembly of semiconductor three-dimensional photonic crystals,” Nat. Mater. 2(2), 117–121 (2003).
[Crossref] [PubMed]

Nat. Photonics (2)

M. D. Turner, M. Saba, Q. Zhang, B. P. Cumming, G. E. Schröder-Turk, and M. Gu, “Miniature chiral beamsplitter based on gyroid photonic crystals,” Nat. Photonics 7(10), 801–805 (2013).
[Crossref]

C. M. Soukoulis and M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nat. Photonics 5(9), 523–530 (2011).

Nature (2)

M. Qi, E. Lidorikis, P. T. Rakich, S. G. Johnson, J. D. Joannopoulos, E. P. Ippen, and H. I. Smith, “A three-dimensional optical photonic crystal with designed point defects,” Nature 429(6991), 538–542 (2004).
[Crossref] [PubMed]

S. John, A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature 405(6785), 437–440 (2000).
[Crossref] [PubMed]

New J. Phys. (1)

A. Young, C. Y. Hu, L. Marseglia, J. P. Harrison, J. L. O’Brien, and J. G. Rarity, “Cavity enhanced spin measurement of the ground state spin of an NV center in diamond,” New J. Phys. 11(1), 013007 (2009).
[Crossref]

Opt. Express (5)

Opt. Lett. (5)

Phys. Rev. B Condens. Matter (1)

C. T. C. Chan, S. Datta, K. M. K. Ho, and C. M. Soukoulis, “A7 structure: A family of photonic crystals,” Phys. Rev. B Condens. Matter 50(3), 1988–1991 (1994).
[Crossref] [PubMed]

Phys. Rev. E. (1)

J. W. Galusha, L. R. Richey, J. S. Gardner, J. N. Cha, and M. H. Bartl, “Discovery of a diamond-based photonic crystal structure in beetle scales,” Phys. Rev. E. 77(5), 050904 (2008).

Phys. Rev. Lett. (1)

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987).
[Crossref] [PubMed]

Rep. Prog. Phys. (2)

S. Buckley, K. Rivoire, and J. Vučković, “Engineered quantum dot single-photon sources,” Rep. Prog. Phys. 75(12), 126503 (2012).
[Crossref] [PubMed]

I. Aharonovich, S. Castelletto, D. A. Simpson, C.-H. Su, A. D. Greentree, and S. Prawer, “Diamond-based single-photon emitters,” Rep. Prog. Phys. 74(7), 076501 (2011).
[Crossref]

Science (3)

L. Li, R. R. Gattass, E. Gershgoren, H. Hwang, and J. T. Fourkas, “Achieving lambda/20 resolution by one-color initiation and deactivation of polymerization,” Science 324(5929), 910–913 (2009).
[Crossref] [PubMed]

S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, “Full three-dimensional photonic bandgap crystals at near-infrared wavelengths,” Science 289(5479), 604–606 (2000).
[Crossref] [PubMed]

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328(5976), 337–339 (2010).
[Crossref] [PubMed]

Small (1)

M. López-García, J. F. Galisteo-López, A. Blanco, J. Sánchez-Marcos, C. López, and A. García-Martín, “Enhancement and directionality of spontaneous emission in hybrid self-assembled photonic-plasmonic crystals,” Small 6(16), 1757–1761 (2010).
[Crossref] [PubMed]

Solid State Commun. (1)

K.-M. Ho, C. T. Chan, C. Soukoulis, R. Biswas, and M. Sigalas, “Photonic band gaps in three dimensions: new layer-by-layer periodic structures,” Solid State Commun. 89(5), 413–416 (1994).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) Tetrahedral unit cell showing width (w) and height (h) of rod. (b) Brillouin zone of RCD, a is the lattice constant for a unit cell. SEM images of fabricated structures (c) and (d) show the feature sizes: (c) rod height h ∼600 nm and (d) rod width w ∼250 nm.
Fig. 2
Fig. 2 (a) SEM image of the overview of a whole RCD structure: 12 periods in plane (14 µm) and 6 periods in vertical direction (7.5 µm). Detailed side view image zoomed in (b) shows the non-uniform feature sizes formed with a chirped RCD structure. (c) Illustrates the rod height (h) against the vertical position of this 6 layers RCD structure. At the top layer h ∼600 nm while the bottom layer h ∼725 nm suggesting ∼25 nm increment of rod height, per layer.
Fig. 3
Fig. 3 Diagram of reflection spectroscopy setup, CCD camera is added for orientation on the sample substrate. Lenses L1 and L3 (L2 and L4) relay the back focal plane to the detection fiber in reflection (transmission).
Fig. 4
Fig. 4 (a) MIT photonic-bands (MPB) calculation of RCD bandstructure (wavelength against wavevector) showing our measurement range in terms of scattering angle. The insert defines the Brillouin zone of RCD showing the principle directions (X', U', L) with the path of wavevectors covered in our measurements X'→U'→L mapped by bold blue vectors. (b) Transmission and reflection measurements at normal incidence [the X' symmetry point at 0° in Fig. 3(a)] as a function of wavelength. The shadow region defines the relevant fundamental band gap estimated from Fig. 3.
Fig. 5
Fig. 5 False color plots of reflection spectra against collection angle (red is high intensity, blue is low) allowing us to visualize bandstructure. (a) Measured and (b) calculated using P-polarized incident light. (c) Measured and (d) calculated using S-polarized light.
Fig. 6
Fig. 6 FDTD simulation of normal incidence reflectivity as a function of wavelength for a chirped RCD structure. (a) Rod height incremented by δh; (b) rod width incremented by δw for each additional layer.
Fig. 7
Fig. 7 Plots of reflectivity against wavelength comparing simulations (dashed lines) and experiments (bold lines) at incident angle of 0°, 10° and 19° in (a), (b) and (c).

Metrics