Abstract

As a key feature among metals showing good plasmonic behavior, aluminum extends the spectrum of achievable plasmon resonances of optical antennas into the deep ultraviolet. Due to degradation, a native oxide layer gives rise to a metal-core/oxide-shell nanoparticle and influences the spectral resonance peak position. In this work, we examine the role of the underlying processes by applying numerical nanoantenna models that are experimentally not feasible. Finite-difference time-domain simulations are carried out for a large variety of elongated single-arm and two-arm gap nanoantennas. In a detailed analysis, which takes into account the varying surface-to-volume ratio, we show that the overall spectral shift toward longer wavelengths is mainly driven by the higher index surrounding material rather than by the decrease of the initial aluminum volume. In addition, we demonstrate experimentally that this shifting can be minimized by an all-inert fabrication and subsequent proof-of-concept encapsulation.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
How an oxide shell affects the ultraviolet plasmonic behavior of Ga, Mg, and Al nanostructures

Yael Gutierrez, Dolores Ortiz, Juan M. Sanz, Jose M. Saiz, Francisco Gonzalez, Henry O. Everitt, and Fernando Moreno
Opt. Express 24(18) 20621-20631 (2016)

Analysis and design of a cross dipole nanoantenna for fluorescence-sensing applications

J. L. Stokes, Y. Yu, Z. H. Yuan, J. R. Pugh, M. Lopez-Garcia, N. Ahmad, and M. J. Cryan
J. Opt. Soc. Am. B 31(2) 302-310 (2014)

Gold nanoantenna resonance diagnostics via transversal particle plasmon luminescence

Matthias D. Wissert, Carola Moosmann, Konstantin S. Ilin, Michael Siegel, Uli Lemmer, and Hans-Jürgen Eisler
Opt. Express 19(4) 3686-3693 (2011)

References

  • View by:
  • |
  • |
  • |

  1. D. W. Pohl, “Near field optics seen as an antenna problem,” in Near-Field Optics: Principles and Applications, M. Ohtsu and X. Zhu, eds. (World Scientific, Singapore, 2000), pp. 9–21.
    [Crossref]
  2. P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005).
    [Crossref] [PubMed]
  3. P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4, 795–808 (2010).
    [Crossref]
  4. I. Zorić, M. Zäch, B. Kasemo, and C. Langhammer, “Gold, platinum, and aluminum nanodisk plasmons: Material independence, subradiance, and damping mechanisms,” ACS Nano 5, 2535–2546 (2011).
    [Crossref]
  5. J. M. McMahon, G. C. Schatz, and S. K. Gray, “Ultraviolet plasmonics: the poor metals Al, Ga, In, Sn, Tl, Pb, and Bi,” Phys. Chem. Chem. Phys,  15, 5415–5423 (2013).
    [Crossref] [PubMed]
  6. J. M. Sanz, D. Ortiz, R. Alcaraz De La Osa, J. M. Saiz, F. González, A. S. Brown, M. Losurdo, H. O. Everitt, and F. Moreno, “UV plasmonic behavior of various metal nanoparticles in the near- and far-field regimes: geometry and substrate effects,” J. Phys. Chem. C, 117, 19606–19615 (2013).
  7. J. Aizpurua, G. W. Bryant, L. J. Richter, F. J. García De Abajo, B. K. Kelley, and T. Mallouk, “Optical properties of coupled metallic nanorods for field-enhanced spectroscopy,” Phys. Rev. B 71, 235420 (2005).
    [Crossref]
  8. D. Smith, E. Shiles, and M. Inokuti, “The optical properties of metallic aluminum,” in “Handbook of optical constants of solids,” E. D. Palik, ed. (Academic Press, 1985).
    [Crossref]
  9. H.-W. Liu, F.-C. Lin, S.-W. Lin, J.-Y. Wu, B.-T. Chou, K.-J. Lai, S.-D. Lin, and J.-S. Huang, “Single-crystalline aluminum nanostructures on a semiconducting GaAs substrate for ultraviolet to near-infrared plasmonics,” ACS Nano 9, 3875–3886 (2015).
    [Crossref] [PubMed]
  10. M. W. Knight, L. Liu, Y. Wang, L. Brown, S. Mukherjee, N. S. King, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum plasmonic nanoantennas,” Nano Lett. 12, 6000–6004 (2012).
    [Crossref] [PubMed]
  11. P. M. Schwab, C. Moosmann, M. D. Wissert, E. W.-G. Schmidt, K. S. Ilin, M. Siegel, U. Lemmer, and H.-J. Eisler, “Linear and nonlinear optical characterization of aluminum nanoantennas,” Nano Lett. 13, 1535–1540 (2013).
    [PubMed]
  12. C. Langhammer, M. Schwind, B. Kasemo, and I. Zoric, “Localized surface plasmon resonances in aluminum nanodisks,” Nano Lett. 8, 1461–1471 (2008).
    [Crossref] [PubMed]
  13. K. Thyagarajan, S. Rivier, A. Lovera, and O. J. F. Martin, “Enhanced second-harmonic generation from double resonant plasmonic antennae,” Opt. Express 20, 12860 (2012).
    [Crossref] [PubMed]
  14. M. Rodriguez, C. Furse, J. S. Shumaker-Parry, and S. Blair, “Scaling the response of nanocrescent antennas into the ultraviolet,” ACS Photonics 1, 496–506 (2014).
    [Crossref]
  15. V. Kochergin, L. Neely, C. Y. Jao, and H. D. Robinson, “Aluminum plasmonic nanostructures for improved absorption in organic photovoltaic devices,” Appl. Phys. Lett. 98, 133305 (2011).
    [Crossref]
  16. N. P. Hylton, X. F. Li, V. Giannini, K.-H. Lee, N. J. Ekins-Daukes, J. Loo, D. Vercruysse, P. Van Dorpe, H. Sodabanlu, M. Sugiyama, and S. A. Maier, “Loss mitigation in plasmonic solar cells: aluminium nanoparticles for broadband photocurrent enhancements in GaAs photodiodes,” Sci. Rep. 3, 2874 (2013).
    [Crossref] [PubMed]
  17. Q. Xu, F. Liu, Y. Liu, W. Meng, K. Cui, X. Feng, W. Zhang, and Y. Huang, “Aluminum plasmonic nanoparticles enhanced dye sensitized solar cells,” Opt. Express 22, A301–A310 (2014).
    [Crossref] [PubMed]
  18. X. Jiao and S. Blair, “Optical antenna design for fluorescence enhancement in the ultraviolet,” Opt. Express 20, 29909–29922 (2012).
    [Crossref]
  19. C. Forestiere, A. Handin, and L. Dal Negro, “Enhancement of molecular fluorescence in the UV spectral range using aluminum nanoantennas,” Plasmonics 9, 715–725 (2014).
    [Crossref]
  20. K. B. Mogensen, M. Gühlke, J. Kneipp, S. Kadkhodazadeh, J. B. Wagner, M. Espina Palanco, H. Kneipp, and K. Kneipp, “Surface-enhanced Raman scattering on aluminum using near infrared and visible excitation,” Chem. Commun. 50, 3744–3746 (2014).
    [Crossref]
  21. S. J. Tan, L. Zhang, D. Zhu, X. M. Goh, Y. Wang, K. Kumar, C.-W. Qiu, and J. K. W. Yang, “Plasmonic color palette for photorealistic printing with aluminum nanostructures,” Nano Lett. 14, 4023–4029 (2014).
    [Crossref] [PubMed]
  22. J. Olson, A. Manjavacas, L. Liu, W.-S. Chang, B. Foerster, N. S. King, M. W. Knight, P. Nordlander, N. J. Halas, and S. Link, “Vivid, full-color aluminum plasmonic pixels,” Proc. Natl. Acad. Sci. 111, 14348–14353 (2014).
    [Crossref]
  23. J. S. Clausen, E. Højlund-Nielsen, A. B. Christiansen, S. Yazdi, M. Grajower, H. Taha, U. Levy, A. Kristensen, and N. A. Mortensen, “Plasmonic metasurfaces for coloration of plastic consumer products,” Nano Lett. 14, 4499–4504 (2014).
    [Crossref] [PubMed]
  24. M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for plasmonics,” ACS Nano 8, 834–840 (2014).
    [Crossref]
  25. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House Publishers, 2004).
  26. O. L. Muskens, V. Giannini, J. A. Sánchez-Gil, and J. Gómez Rivas, “Optical scattering resonances of single and coupled dimer plasmonic nanoantennas,” Opt. Express 15, 17736–46 (2007).
    [Crossref] [PubMed]
  27. C. Moosmann, G. S. Sigurdsson, M. D. Wissert, K. Dopf, U. Lemmer, and H.-J. Eisler, “Investigating the influences of the precise manufactured shape of dipole nanoantennas on their optical properties,” Opt. Express 21, 594–604 (2013).
    [Crossref] [PubMed]
  28. A. L. Ramaswamy and P. Kaste, “A Nanovision of the physiochemical phenomena occurring in nanoparticles of aluminum,” J. Energ. Mater. 23, 1–25 (2005).
    [Crossref]
  29. S. K. Earl, D. E. Gómez, T. D. James, T. J. Davis, and A. Roberts, “Material effects on V-nanoantenna performance,” Nanoscale 7, 4179–4186 (2015).
    [Crossref] [PubMed]
  30. A. Mohammadi, V. Sandoghdar, and M. Agio, “Gold, copper, silver and aluminum nanoantennas to enhance spontaneous emission,” J. Comput. Theor. Nanosci. 6, 2024–2030 (2009).
    [Crossref]
  31. J. Zuloaga and P. Nordlander, “On the energy shift between near-field and far-field peak intensities in localized plasmon systems,” Nano Lett. 11, 1280–1283 (2011).
    [Crossref] [PubMed]

2015 (2)

H.-W. Liu, F.-C. Lin, S.-W. Lin, J.-Y. Wu, B.-T. Chou, K.-J. Lai, S.-D. Lin, and J.-S. Huang, “Single-crystalline aluminum nanostructures on a semiconducting GaAs substrate for ultraviolet to near-infrared plasmonics,” ACS Nano 9, 3875–3886 (2015).
[Crossref] [PubMed]

S. K. Earl, D. E. Gómez, T. D. James, T. J. Davis, and A. Roberts, “Material effects on V-nanoantenna performance,” Nanoscale 7, 4179–4186 (2015).
[Crossref] [PubMed]

2014 (8)

Q. Xu, F. Liu, Y. Liu, W. Meng, K. Cui, X. Feng, W. Zhang, and Y. Huang, “Aluminum plasmonic nanoparticles enhanced dye sensitized solar cells,” Opt. Express 22, A301–A310 (2014).
[Crossref] [PubMed]

M. Rodriguez, C. Furse, J. S. Shumaker-Parry, and S. Blair, “Scaling the response of nanocrescent antennas into the ultraviolet,” ACS Photonics 1, 496–506 (2014).
[Crossref]

C. Forestiere, A. Handin, and L. Dal Negro, “Enhancement of molecular fluorescence in the UV spectral range using aluminum nanoantennas,” Plasmonics 9, 715–725 (2014).
[Crossref]

K. B. Mogensen, M. Gühlke, J. Kneipp, S. Kadkhodazadeh, J. B. Wagner, M. Espina Palanco, H. Kneipp, and K. Kneipp, “Surface-enhanced Raman scattering on aluminum using near infrared and visible excitation,” Chem. Commun. 50, 3744–3746 (2014).
[Crossref]

S. J. Tan, L. Zhang, D. Zhu, X. M. Goh, Y. Wang, K. Kumar, C.-W. Qiu, and J. K. W. Yang, “Plasmonic color palette for photorealistic printing with aluminum nanostructures,” Nano Lett. 14, 4023–4029 (2014).
[Crossref] [PubMed]

J. Olson, A. Manjavacas, L. Liu, W.-S. Chang, B. Foerster, N. S. King, M. W. Knight, P. Nordlander, N. J. Halas, and S. Link, “Vivid, full-color aluminum plasmonic pixels,” Proc. Natl. Acad. Sci. 111, 14348–14353 (2014).
[Crossref]

J. S. Clausen, E. Højlund-Nielsen, A. B. Christiansen, S. Yazdi, M. Grajower, H. Taha, U. Levy, A. Kristensen, and N. A. Mortensen, “Plasmonic metasurfaces for coloration of plastic consumer products,” Nano Lett. 14, 4499–4504 (2014).
[Crossref] [PubMed]

M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for plasmonics,” ACS Nano 8, 834–840 (2014).
[Crossref]

2013 (5)

P. M. Schwab, C. Moosmann, M. D. Wissert, E. W.-G. Schmidt, K. S. Ilin, M. Siegel, U. Lemmer, and H.-J. Eisler, “Linear and nonlinear optical characterization of aluminum nanoantennas,” Nano Lett. 13, 1535–1540 (2013).
[PubMed]

J. M. McMahon, G. C. Schatz, and S. K. Gray, “Ultraviolet plasmonics: the poor metals Al, Ga, In, Sn, Tl, Pb, and Bi,” Phys. Chem. Chem. Phys,  15, 5415–5423 (2013).
[Crossref] [PubMed]

J. M. Sanz, D. Ortiz, R. Alcaraz De La Osa, J. M. Saiz, F. González, A. S. Brown, M. Losurdo, H. O. Everitt, and F. Moreno, “UV plasmonic behavior of various metal nanoparticles in the near- and far-field regimes: geometry and substrate effects,” J. Phys. Chem. C, 117, 19606–19615 (2013).

C. Moosmann, G. S. Sigurdsson, M. D. Wissert, K. Dopf, U. Lemmer, and H.-J. Eisler, “Investigating the influences of the precise manufactured shape of dipole nanoantennas on their optical properties,” Opt. Express 21, 594–604 (2013).
[Crossref] [PubMed]

N. P. Hylton, X. F. Li, V. Giannini, K.-H. Lee, N. J. Ekins-Daukes, J. Loo, D. Vercruysse, P. Van Dorpe, H. Sodabanlu, M. Sugiyama, and S. A. Maier, “Loss mitigation in plasmonic solar cells: aluminium nanoparticles for broadband photocurrent enhancements in GaAs photodiodes,” Sci. Rep. 3, 2874 (2013).
[Crossref] [PubMed]

2012 (3)

2011 (3)

I. Zorić, M. Zäch, B. Kasemo, and C. Langhammer, “Gold, platinum, and aluminum nanodisk plasmons: Material independence, subradiance, and damping mechanisms,” ACS Nano 5, 2535–2546 (2011).
[Crossref]

V. Kochergin, L. Neely, C. Y. Jao, and H. D. Robinson, “Aluminum plasmonic nanostructures for improved absorption in organic photovoltaic devices,” Appl. Phys. Lett. 98, 133305 (2011).
[Crossref]

J. Zuloaga and P. Nordlander, “On the energy shift between near-field and far-field peak intensities in localized plasmon systems,” Nano Lett. 11, 1280–1283 (2011).
[Crossref] [PubMed]

2010 (1)

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4, 795–808 (2010).
[Crossref]

2009 (1)

A. Mohammadi, V. Sandoghdar, and M. Agio, “Gold, copper, silver and aluminum nanoantennas to enhance spontaneous emission,” J. Comput. Theor. Nanosci. 6, 2024–2030 (2009).
[Crossref]

2008 (1)

C. Langhammer, M. Schwind, B. Kasemo, and I. Zoric, “Localized surface plasmon resonances in aluminum nanodisks,” Nano Lett. 8, 1461–1471 (2008).
[Crossref] [PubMed]

2007 (1)

2005 (3)

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005).
[Crossref] [PubMed]

J. Aizpurua, G. W. Bryant, L. J. Richter, F. J. García De Abajo, B. K. Kelley, and T. Mallouk, “Optical properties of coupled metallic nanorods for field-enhanced spectroscopy,” Phys. Rev. B 71, 235420 (2005).
[Crossref]

A. L. Ramaswamy and P. Kaste, “A Nanovision of the physiochemical phenomena occurring in nanoparticles of aluminum,” J. Energ. Mater. 23, 1–25 (2005).
[Crossref]

Agio, M.

A. Mohammadi, V. Sandoghdar, and M. Agio, “Gold, copper, silver and aluminum nanoantennas to enhance spontaneous emission,” J. Comput. Theor. Nanosci. 6, 2024–2030 (2009).
[Crossref]

Aizpurua, J.

J. Aizpurua, G. W. Bryant, L. J. Richter, F. J. García De Abajo, B. K. Kelley, and T. Mallouk, “Optical properties of coupled metallic nanorods for field-enhanced spectroscopy,” Phys. Rev. B 71, 235420 (2005).
[Crossref]

Alcaraz De La Osa, R.

J. M. Sanz, D. Ortiz, R. Alcaraz De La Osa, J. M. Saiz, F. González, A. S. Brown, M. Losurdo, H. O. Everitt, and F. Moreno, “UV plasmonic behavior of various metal nanoparticles in the near- and far-field regimes: geometry and substrate effects,” J. Phys. Chem. C, 117, 19606–19615 (2013).

Blair, S.

M. Rodriguez, C. Furse, J. S. Shumaker-Parry, and S. Blair, “Scaling the response of nanocrescent antennas into the ultraviolet,” ACS Photonics 1, 496–506 (2014).
[Crossref]

X. Jiao and S. Blair, “Optical antenna design for fluorescence enhancement in the ultraviolet,” Opt. Express 20, 29909–29922 (2012).
[Crossref]

Boltasseva, A.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4, 795–808 (2010).
[Crossref]

Brown, A. S.

J. M. Sanz, D. Ortiz, R. Alcaraz De La Osa, J. M. Saiz, F. González, A. S. Brown, M. Losurdo, H. O. Everitt, and F. Moreno, “UV plasmonic behavior of various metal nanoparticles in the near- and far-field regimes: geometry and substrate effects,” J. Phys. Chem. C, 117, 19606–19615 (2013).

Brown, L.

M. W. Knight, L. Liu, Y. Wang, L. Brown, S. Mukherjee, N. S. King, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum plasmonic nanoantennas,” Nano Lett. 12, 6000–6004 (2012).
[Crossref] [PubMed]

Bryant, G. W.

J. Aizpurua, G. W. Bryant, L. J. Richter, F. J. García De Abajo, B. K. Kelley, and T. Mallouk, “Optical properties of coupled metallic nanorods for field-enhanced spectroscopy,” Phys. Rev. B 71, 235420 (2005).
[Crossref]

Chang, W.-S.

J. Olson, A. Manjavacas, L. Liu, W.-S. Chang, B. Foerster, N. S. King, M. W. Knight, P. Nordlander, N. J. Halas, and S. Link, “Vivid, full-color aluminum plasmonic pixels,” Proc. Natl. Acad. Sci. 111, 14348–14353 (2014).
[Crossref]

Chou, B.-T.

H.-W. Liu, F.-C. Lin, S.-W. Lin, J.-Y. Wu, B.-T. Chou, K.-J. Lai, S.-D. Lin, and J.-S. Huang, “Single-crystalline aluminum nanostructures on a semiconducting GaAs substrate for ultraviolet to near-infrared plasmonics,” ACS Nano 9, 3875–3886 (2015).
[Crossref] [PubMed]

Christiansen, A. B.

J. S. Clausen, E. Højlund-Nielsen, A. B. Christiansen, S. Yazdi, M. Grajower, H. Taha, U. Levy, A. Kristensen, and N. A. Mortensen, “Plasmonic metasurfaces for coloration of plastic consumer products,” Nano Lett. 14, 4499–4504 (2014).
[Crossref] [PubMed]

Clausen, J. S.

J. S. Clausen, E. Højlund-Nielsen, A. B. Christiansen, S. Yazdi, M. Grajower, H. Taha, U. Levy, A. Kristensen, and N. A. Mortensen, “Plasmonic metasurfaces for coloration of plastic consumer products,” Nano Lett. 14, 4499–4504 (2014).
[Crossref] [PubMed]

Cui, K.

Dal Negro, L.

C. Forestiere, A. Handin, and L. Dal Negro, “Enhancement of molecular fluorescence in the UV spectral range using aluminum nanoantennas,” Plasmonics 9, 715–725 (2014).
[Crossref]

Davis, T. J.

S. K. Earl, D. E. Gómez, T. D. James, T. J. Davis, and A. Roberts, “Material effects on V-nanoantenna performance,” Nanoscale 7, 4179–4186 (2015).
[Crossref] [PubMed]

Dopf, K.

Earl, S. K.

S. K. Earl, D. E. Gómez, T. D. James, T. J. Davis, and A. Roberts, “Material effects on V-nanoantenna performance,” Nanoscale 7, 4179–4186 (2015).
[Crossref] [PubMed]

Eisler, H.-J.

C. Moosmann, G. S. Sigurdsson, M. D. Wissert, K. Dopf, U. Lemmer, and H.-J. Eisler, “Investigating the influences of the precise manufactured shape of dipole nanoantennas on their optical properties,” Opt. Express 21, 594–604 (2013).
[Crossref] [PubMed]

P. M. Schwab, C. Moosmann, M. D. Wissert, E. W.-G. Schmidt, K. S. Ilin, M. Siegel, U. Lemmer, and H.-J. Eisler, “Linear and nonlinear optical characterization of aluminum nanoantennas,” Nano Lett. 13, 1535–1540 (2013).
[PubMed]

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005).
[Crossref] [PubMed]

Ekins-Daukes, N. J.

N. P. Hylton, X. F. Li, V. Giannini, K.-H. Lee, N. J. Ekins-Daukes, J. Loo, D. Vercruysse, P. Van Dorpe, H. Sodabanlu, M. Sugiyama, and S. A. Maier, “Loss mitigation in plasmonic solar cells: aluminium nanoparticles for broadband photocurrent enhancements in GaAs photodiodes,” Sci. Rep. 3, 2874 (2013).
[Crossref] [PubMed]

Emani, N. K.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4, 795–808 (2010).
[Crossref]

Espina Palanco, M.

K. B. Mogensen, M. Gühlke, J. Kneipp, S. Kadkhodazadeh, J. B. Wagner, M. Espina Palanco, H. Kneipp, and K. Kneipp, “Surface-enhanced Raman scattering on aluminum using near infrared and visible excitation,” Chem. Commun. 50, 3744–3746 (2014).
[Crossref]

Everitt, H. O.

M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for plasmonics,” ACS Nano 8, 834–840 (2014).
[Crossref]

J. M. Sanz, D. Ortiz, R. Alcaraz De La Osa, J. M. Saiz, F. González, A. S. Brown, M. Losurdo, H. O. Everitt, and F. Moreno, “UV plasmonic behavior of various metal nanoparticles in the near- and far-field regimes: geometry and substrate effects,” J. Phys. Chem. C, 117, 19606–19615 (2013).

M. W. Knight, L. Liu, Y. Wang, L. Brown, S. Mukherjee, N. S. King, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum plasmonic nanoantennas,” Nano Lett. 12, 6000–6004 (2012).
[Crossref] [PubMed]

Feng, X.

Foerster, B.

J. Olson, A. Manjavacas, L. Liu, W.-S. Chang, B. Foerster, N. S. King, M. W. Knight, P. Nordlander, N. J. Halas, and S. Link, “Vivid, full-color aluminum plasmonic pixels,” Proc. Natl. Acad. Sci. 111, 14348–14353 (2014).
[Crossref]

Forestiere, C.

C. Forestiere, A. Handin, and L. Dal Negro, “Enhancement of molecular fluorescence in the UV spectral range using aluminum nanoantennas,” Plasmonics 9, 715–725 (2014).
[Crossref]

Furse, C.

M. Rodriguez, C. Furse, J. S. Shumaker-Parry, and S. Blair, “Scaling the response of nanocrescent antennas into the ultraviolet,” ACS Photonics 1, 496–506 (2014).
[Crossref]

García De Abajo, F. J.

J. Aizpurua, G. W. Bryant, L. J. Richter, F. J. García De Abajo, B. K. Kelley, and T. Mallouk, “Optical properties of coupled metallic nanorods for field-enhanced spectroscopy,” Phys. Rev. B 71, 235420 (2005).
[Crossref]

Giannini, V.

N. P. Hylton, X. F. Li, V. Giannini, K.-H. Lee, N. J. Ekins-Daukes, J. Loo, D. Vercruysse, P. Van Dorpe, H. Sodabanlu, M. Sugiyama, and S. A. Maier, “Loss mitigation in plasmonic solar cells: aluminium nanoparticles for broadband photocurrent enhancements in GaAs photodiodes,” Sci. Rep. 3, 2874 (2013).
[Crossref] [PubMed]

O. L. Muskens, V. Giannini, J. A. Sánchez-Gil, and J. Gómez Rivas, “Optical scattering resonances of single and coupled dimer plasmonic nanoantennas,” Opt. Express 15, 17736–46 (2007).
[Crossref] [PubMed]

Goh, X. M.

S. J. Tan, L. Zhang, D. Zhu, X. M. Goh, Y. Wang, K. Kumar, C.-W. Qiu, and J. K. W. Yang, “Plasmonic color palette for photorealistic printing with aluminum nanostructures,” Nano Lett. 14, 4023–4029 (2014).
[Crossref] [PubMed]

Gómez, D. E.

S. K. Earl, D. E. Gómez, T. D. James, T. J. Davis, and A. Roberts, “Material effects on V-nanoantenna performance,” Nanoscale 7, 4179–4186 (2015).
[Crossref] [PubMed]

Gómez Rivas, J.

González, F.

J. M. Sanz, D. Ortiz, R. Alcaraz De La Osa, J. M. Saiz, F. González, A. S. Brown, M. Losurdo, H. O. Everitt, and F. Moreno, “UV plasmonic behavior of various metal nanoparticles in the near- and far-field regimes: geometry and substrate effects,” J. Phys. Chem. C, 117, 19606–19615 (2013).

Grajower, M.

J. S. Clausen, E. Højlund-Nielsen, A. B. Christiansen, S. Yazdi, M. Grajower, H. Taha, U. Levy, A. Kristensen, and N. A. Mortensen, “Plasmonic metasurfaces for coloration of plastic consumer products,” Nano Lett. 14, 4499–4504 (2014).
[Crossref] [PubMed]

Gray, S. K.

J. M. McMahon, G. C. Schatz, and S. K. Gray, “Ultraviolet plasmonics: the poor metals Al, Ga, In, Sn, Tl, Pb, and Bi,” Phys. Chem. Chem. Phys,  15, 5415–5423 (2013).
[Crossref] [PubMed]

Gühlke, M.

K. B. Mogensen, M. Gühlke, J. Kneipp, S. Kadkhodazadeh, J. B. Wagner, M. Espina Palanco, H. Kneipp, and K. Kneipp, “Surface-enhanced Raman scattering on aluminum using near infrared and visible excitation,” Chem. Commun. 50, 3744–3746 (2014).
[Crossref]

Hagness, S. C.

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House Publishers, 2004).

Halas, N. J.

M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for plasmonics,” ACS Nano 8, 834–840 (2014).
[Crossref]

J. Olson, A. Manjavacas, L. Liu, W.-S. Chang, B. Foerster, N. S. King, M. W. Knight, P. Nordlander, N. J. Halas, and S. Link, “Vivid, full-color aluminum plasmonic pixels,” Proc. Natl. Acad. Sci. 111, 14348–14353 (2014).
[Crossref]

M. W. Knight, L. Liu, Y. Wang, L. Brown, S. Mukherjee, N. S. King, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum plasmonic nanoantennas,” Nano Lett. 12, 6000–6004 (2012).
[Crossref] [PubMed]

Handin, A.

C. Forestiere, A. Handin, and L. Dal Negro, “Enhancement of molecular fluorescence in the UV spectral range using aluminum nanoantennas,” Plasmonics 9, 715–725 (2014).
[Crossref]

Hecht, B.

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005).
[Crossref] [PubMed]

Højlund-Nielsen, E.

J. S. Clausen, E. Højlund-Nielsen, A. B. Christiansen, S. Yazdi, M. Grajower, H. Taha, U. Levy, A. Kristensen, and N. A. Mortensen, “Plasmonic metasurfaces for coloration of plastic consumer products,” Nano Lett. 14, 4499–4504 (2014).
[Crossref] [PubMed]

Huang, J.-S.

H.-W. Liu, F.-C. Lin, S.-W. Lin, J.-Y. Wu, B.-T. Chou, K.-J. Lai, S.-D. Lin, and J.-S. Huang, “Single-crystalline aluminum nanostructures on a semiconducting GaAs substrate for ultraviolet to near-infrared plasmonics,” ACS Nano 9, 3875–3886 (2015).
[Crossref] [PubMed]

Huang, Y.

Hylton, N. P.

N. P. Hylton, X. F. Li, V. Giannini, K.-H. Lee, N. J. Ekins-Daukes, J. Loo, D. Vercruysse, P. Van Dorpe, H. Sodabanlu, M. Sugiyama, and S. A. Maier, “Loss mitigation in plasmonic solar cells: aluminium nanoparticles for broadband photocurrent enhancements in GaAs photodiodes,” Sci. Rep. 3, 2874 (2013).
[Crossref] [PubMed]

Ilin, K. S.

P. M. Schwab, C. Moosmann, M. D. Wissert, E. W.-G. Schmidt, K. S. Ilin, M. Siegel, U. Lemmer, and H.-J. Eisler, “Linear and nonlinear optical characterization of aluminum nanoantennas,” Nano Lett. 13, 1535–1540 (2013).
[PubMed]

Inokuti, M.

D. Smith, E. Shiles, and M. Inokuti, “The optical properties of metallic aluminum,” in “Handbook of optical constants of solids,” E. D. Palik, ed. (Academic Press, 1985).
[Crossref]

Ishii, S.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4, 795–808 (2010).
[Crossref]

James, T. D.

S. K. Earl, D. E. Gómez, T. D. James, T. J. Davis, and A. Roberts, “Material effects on V-nanoantenna performance,” Nanoscale 7, 4179–4186 (2015).
[Crossref] [PubMed]

Jao, C. Y.

V. Kochergin, L. Neely, C. Y. Jao, and H. D. Robinson, “Aluminum plasmonic nanostructures for improved absorption in organic photovoltaic devices,” Appl. Phys. Lett. 98, 133305 (2011).
[Crossref]

Jiao, X.

Kadkhodazadeh, S.

K. B. Mogensen, M. Gühlke, J. Kneipp, S. Kadkhodazadeh, J. B. Wagner, M. Espina Palanco, H. Kneipp, and K. Kneipp, “Surface-enhanced Raman scattering on aluminum using near infrared and visible excitation,” Chem. Commun. 50, 3744–3746 (2014).
[Crossref]

Kasemo, B.

I. Zorić, M. Zäch, B. Kasemo, and C. Langhammer, “Gold, platinum, and aluminum nanodisk plasmons: Material independence, subradiance, and damping mechanisms,” ACS Nano 5, 2535–2546 (2011).
[Crossref]

C. Langhammer, M. Schwind, B. Kasemo, and I. Zoric, “Localized surface plasmon resonances in aluminum nanodisks,” Nano Lett. 8, 1461–1471 (2008).
[Crossref] [PubMed]

Kaste, P.

A. L. Ramaswamy and P. Kaste, “A Nanovision of the physiochemical phenomena occurring in nanoparticles of aluminum,” J. Energ. Mater. 23, 1–25 (2005).
[Crossref]

Kelley, B. K.

J. Aizpurua, G. W. Bryant, L. J. Richter, F. J. García De Abajo, B. K. Kelley, and T. Mallouk, “Optical properties of coupled metallic nanorods for field-enhanced spectroscopy,” Phys. Rev. B 71, 235420 (2005).
[Crossref]

King, N. S.

M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for plasmonics,” ACS Nano 8, 834–840 (2014).
[Crossref]

J. Olson, A. Manjavacas, L. Liu, W.-S. Chang, B. Foerster, N. S. King, M. W. Knight, P. Nordlander, N. J. Halas, and S. Link, “Vivid, full-color aluminum plasmonic pixels,” Proc. Natl. Acad. Sci. 111, 14348–14353 (2014).
[Crossref]

M. W. Knight, L. Liu, Y. Wang, L. Brown, S. Mukherjee, N. S. King, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum plasmonic nanoantennas,” Nano Lett. 12, 6000–6004 (2012).
[Crossref] [PubMed]

Kneipp, H.

K. B. Mogensen, M. Gühlke, J. Kneipp, S. Kadkhodazadeh, J. B. Wagner, M. Espina Palanco, H. Kneipp, and K. Kneipp, “Surface-enhanced Raman scattering on aluminum using near infrared and visible excitation,” Chem. Commun. 50, 3744–3746 (2014).
[Crossref]

Kneipp, J.

K. B. Mogensen, M. Gühlke, J. Kneipp, S. Kadkhodazadeh, J. B. Wagner, M. Espina Palanco, H. Kneipp, and K. Kneipp, “Surface-enhanced Raman scattering on aluminum using near infrared and visible excitation,” Chem. Commun. 50, 3744–3746 (2014).
[Crossref]

Kneipp, K.

K. B. Mogensen, M. Gühlke, J. Kneipp, S. Kadkhodazadeh, J. B. Wagner, M. Espina Palanco, H. Kneipp, and K. Kneipp, “Surface-enhanced Raman scattering on aluminum using near infrared and visible excitation,” Chem. Commun. 50, 3744–3746 (2014).
[Crossref]

Knight, M. W.

J. Olson, A. Manjavacas, L. Liu, W.-S. Chang, B. Foerster, N. S. King, M. W. Knight, P. Nordlander, N. J. Halas, and S. Link, “Vivid, full-color aluminum plasmonic pixels,” Proc. Natl. Acad. Sci. 111, 14348–14353 (2014).
[Crossref]

M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for plasmonics,” ACS Nano 8, 834–840 (2014).
[Crossref]

M. W. Knight, L. Liu, Y. Wang, L. Brown, S. Mukherjee, N. S. King, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum plasmonic nanoantennas,” Nano Lett. 12, 6000–6004 (2012).
[Crossref] [PubMed]

Kochergin, V.

V. Kochergin, L. Neely, C. Y. Jao, and H. D. Robinson, “Aluminum plasmonic nanostructures for improved absorption in organic photovoltaic devices,” Appl. Phys. Lett. 98, 133305 (2011).
[Crossref]

Kristensen, A.

J. S. Clausen, E. Højlund-Nielsen, A. B. Christiansen, S. Yazdi, M. Grajower, H. Taha, U. Levy, A. Kristensen, and N. A. Mortensen, “Plasmonic metasurfaces for coloration of plastic consumer products,” Nano Lett. 14, 4499–4504 (2014).
[Crossref] [PubMed]

Kumar, K.

S. J. Tan, L. Zhang, D. Zhu, X. M. Goh, Y. Wang, K. Kumar, C.-W. Qiu, and J. K. W. Yang, “Plasmonic color palette for photorealistic printing with aluminum nanostructures,” Nano Lett. 14, 4023–4029 (2014).
[Crossref] [PubMed]

Lai, K.-J.

H.-W. Liu, F.-C. Lin, S.-W. Lin, J.-Y. Wu, B.-T. Chou, K.-J. Lai, S.-D. Lin, and J.-S. Huang, “Single-crystalline aluminum nanostructures on a semiconducting GaAs substrate for ultraviolet to near-infrared plasmonics,” ACS Nano 9, 3875–3886 (2015).
[Crossref] [PubMed]

Langhammer, C.

I. Zorić, M. Zäch, B. Kasemo, and C. Langhammer, “Gold, platinum, and aluminum nanodisk plasmons: Material independence, subradiance, and damping mechanisms,” ACS Nano 5, 2535–2546 (2011).
[Crossref]

C. Langhammer, M. Schwind, B. Kasemo, and I. Zoric, “Localized surface plasmon resonances in aluminum nanodisks,” Nano Lett. 8, 1461–1471 (2008).
[Crossref] [PubMed]

Lee, K.-H.

N. P. Hylton, X. F. Li, V. Giannini, K.-H. Lee, N. J. Ekins-Daukes, J. Loo, D. Vercruysse, P. Van Dorpe, H. Sodabanlu, M. Sugiyama, and S. A. Maier, “Loss mitigation in plasmonic solar cells: aluminium nanoparticles for broadband photocurrent enhancements in GaAs photodiodes,” Sci. Rep. 3, 2874 (2013).
[Crossref] [PubMed]

Lemmer, U.

P. M. Schwab, C. Moosmann, M. D. Wissert, E. W.-G. Schmidt, K. S. Ilin, M. Siegel, U. Lemmer, and H.-J. Eisler, “Linear and nonlinear optical characterization of aluminum nanoantennas,” Nano Lett. 13, 1535–1540 (2013).
[PubMed]

C. Moosmann, G. S. Sigurdsson, M. D. Wissert, K. Dopf, U. Lemmer, and H.-J. Eisler, “Investigating the influences of the precise manufactured shape of dipole nanoantennas on their optical properties,” Opt. Express 21, 594–604 (2013).
[Crossref] [PubMed]

Levy, U.

J. S. Clausen, E. Højlund-Nielsen, A. B. Christiansen, S. Yazdi, M. Grajower, H. Taha, U. Levy, A. Kristensen, and N. A. Mortensen, “Plasmonic metasurfaces for coloration of plastic consumer products,” Nano Lett. 14, 4499–4504 (2014).
[Crossref] [PubMed]

Li, X. F.

N. P. Hylton, X. F. Li, V. Giannini, K.-H. Lee, N. J. Ekins-Daukes, J. Loo, D. Vercruysse, P. Van Dorpe, H. Sodabanlu, M. Sugiyama, and S. A. Maier, “Loss mitigation in plasmonic solar cells: aluminium nanoparticles for broadband photocurrent enhancements in GaAs photodiodes,” Sci. Rep. 3, 2874 (2013).
[Crossref] [PubMed]

Lin, F.-C.

H.-W. Liu, F.-C. Lin, S.-W. Lin, J.-Y. Wu, B.-T. Chou, K.-J. Lai, S.-D. Lin, and J.-S. Huang, “Single-crystalline aluminum nanostructures on a semiconducting GaAs substrate for ultraviolet to near-infrared plasmonics,” ACS Nano 9, 3875–3886 (2015).
[Crossref] [PubMed]

Lin, S.-D.

H.-W. Liu, F.-C. Lin, S.-W. Lin, J.-Y. Wu, B.-T. Chou, K.-J. Lai, S.-D. Lin, and J.-S. Huang, “Single-crystalline aluminum nanostructures on a semiconducting GaAs substrate for ultraviolet to near-infrared plasmonics,” ACS Nano 9, 3875–3886 (2015).
[Crossref] [PubMed]

Lin, S.-W.

H.-W. Liu, F.-C. Lin, S.-W. Lin, J.-Y. Wu, B.-T. Chou, K.-J. Lai, S.-D. Lin, and J.-S. Huang, “Single-crystalline aluminum nanostructures on a semiconducting GaAs substrate for ultraviolet to near-infrared plasmonics,” ACS Nano 9, 3875–3886 (2015).
[Crossref] [PubMed]

Link, S.

J. Olson, A. Manjavacas, L. Liu, W.-S. Chang, B. Foerster, N. S. King, M. W. Knight, P. Nordlander, N. J. Halas, and S. Link, “Vivid, full-color aluminum plasmonic pixels,” Proc. Natl. Acad. Sci. 111, 14348–14353 (2014).
[Crossref]

Liu, F.

Liu, H.-W.

H.-W. Liu, F.-C. Lin, S.-W. Lin, J.-Y. Wu, B.-T. Chou, K.-J. Lai, S.-D. Lin, and J.-S. Huang, “Single-crystalline aluminum nanostructures on a semiconducting GaAs substrate for ultraviolet to near-infrared plasmonics,” ACS Nano 9, 3875–3886 (2015).
[Crossref] [PubMed]

Liu, L.

J. Olson, A. Manjavacas, L. Liu, W.-S. Chang, B. Foerster, N. S. King, M. W. Knight, P. Nordlander, N. J. Halas, and S. Link, “Vivid, full-color aluminum plasmonic pixels,” Proc. Natl. Acad. Sci. 111, 14348–14353 (2014).
[Crossref]

M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for plasmonics,” ACS Nano 8, 834–840 (2014).
[Crossref]

M. W. Knight, L. Liu, Y. Wang, L. Brown, S. Mukherjee, N. S. King, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum plasmonic nanoantennas,” Nano Lett. 12, 6000–6004 (2012).
[Crossref] [PubMed]

Liu, Y.

Loo, J.

N. P. Hylton, X. F. Li, V. Giannini, K.-H. Lee, N. J. Ekins-Daukes, J. Loo, D. Vercruysse, P. Van Dorpe, H. Sodabanlu, M. Sugiyama, and S. A. Maier, “Loss mitigation in plasmonic solar cells: aluminium nanoparticles for broadband photocurrent enhancements in GaAs photodiodes,” Sci. Rep. 3, 2874 (2013).
[Crossref] [PubMed]

Losurdo, M.

J. M. Sanz, D. Ortiz, R. Alcaraz De La Osa, J. M. Saiz, F. González, A. S. Brown, M. Losurdo, H. O. Everitt, and F. Moreno, “UV plasmonic behavior of various metal nanoparticles in the near- and far-field regimes: geometry and substrate effects,” J. Phys. Chem. C, 117, 19606–19615 (2013).

Lovera, A.

Maier, S. A.

N. P. Hylton, X. F. Li, V. Giannini, K.-H. Lee, N. J. Ekins-Daukes, J. Loo, D. Vercruysse, P. Van Dorpe, H. Sodabanlu, M. Sugiyama, and S. A. Maier, “Loss mitigation in plasmonic solar cells: aluminium nanoparticles for broadband photocurrent enhancements in GaAs photodiodes,” Sci. Rep. 3, 2874 (2013).
[Crossref] [PubMed]

Mallouk, T.

J. Aizpurua, G. W. Bryant, L. J. Richter, F. J. García De Abajo, B. K. Kelley, and T. Mallouk, “Optical properties of coupled metallic nanorods for field-enhanced spectroscopy,” Phys. Rev. B 71, 235420 (2005).
[Crossref]

Manjavacas, A.

J. Olson, A. Manjavacas, L. Liu, W.-S. Chang, B. Foerster, N. S. King, M. W. Knight, P. Nordlander, N. J. Halas, and S. Link, “Vivid, full-color aluminum plasmonic pixels,” Proc. Natl. Acad. Sci. 111, 14348–14353 (2014).
[Crossref]

Martin, O. J. F.

K. Thyagarajan, S. Rivier, A. Lovera, and O. J. F. Martin, “Enhanced second-harmonic generation from double resonant plasmonic antennae,” Opt. Express 20, 12860 (2012).
[Crossref] [PubMed]

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005).
[Crossref] [PubMed]

McMahon, J. M.

J. M. McMahon, G. C. Schatz, and S. K. Gray, “Ultraviolet plasmonics: the poor metals Al, Ga, In, Sn, Tl, Pb, and Bi,” Phys. Chem. Chem. Phys,  15, 5415–5423 (2013).
[Crossref] [PubMed]

Meng, W.

Mogensen, K. B.

K. B. Mogensen, M. Gühlke, J. Kneipp, S. Kadkhodazadeh, J. B. Wagner, M. Espina Palanco, H. Kneipp, and K. Kneipp, “Surface-enhanced Raman scattering on aluminum using near infrared and visible excitation,” Chem. Commun. 50, 3744–3746 (2014).
[Crossref]

Mohammadi, A.

A. Mohammadi, V. Sandoghdar, and M. Agio, “Gold, copper, silver and aluminum nanoantennas to enhance spontaneous emission,” J. Comput. Theor. Nanosci. 6, 2024–2030 (2009).
[Crossref]

Moosmann, C.

C. Moosmann, G. S. Sigurdsson, M. D. Wissert, K. Dopf, U. Lemmer, and H.-J. Eisler, “Investigating the influences of the precise manufactured shape of dipole nanoantennas on their optical properties,” Opt. Express 21, 594–604 (2013).
[Crossref] [PubMed]

P. M. Schwab, C. Moosmann, M. D. Wissert, E. W.-G. Schmidt, K. S. Ilin, M. Siegel, U. Lemmer, and H.-J. Eisler, “Linear and nonlinear optical characterization of aluminum nanoantennas,” Nano Lett. 13, 1535–1540 (2013).
[PubMed]

Moreno, F.

J. M. Sanz, D. Ortiz, R. Alcaraz De La Osa, J. M. Saiz, F. González, A. S. Brown, M. Losurdo, H. O. Everitt, and F. Moreno, “UV plasmonic behavior of various metal nanoparticles in the near- and far-field regimes: geometry and substrate effects,” J. Phys. Chem. C, 117, 19606–19615 (2013).

Mortensen, N. A.

J. S. Clausen, E. Højlund-Nielsen, A. B. Christiansen, S. Yazdi, M. Grajower, H. Taha, U. Levy, A. Kristensen, and N. A. Mortensen, “Plasmonic metasurfaces for coloration of plastic consumer products,” Nano Lett. 14, 4499–4504 (2014).
[Crossref] [PubMed]

Mühlschlegel, P.

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005).
[Crossref] [PubMed]

Mukherjee, S.

M. W. Knight, L. Liu, Y. Wang, L. Brown, S. Mukherjee, N. S. King, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum plasmonic nanoantennas,” Nano Lett. 12, 6000–6004 (2012).
[Crossref] [PubMed]

Muskens, O. L.

Naik, G. V.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4, 795–808 (2010).
[Crossref]

Neely, L.

V. Kochergin, L. Neely, C. Y. Jao, and H. D. Robinson, “Aluminum plasmonic nanostructures for improved absorption in organic photovoltaic devices,” Appl. Phys. Lett. 98, 133305 (2011).
[Crossref]

Nordlander, P.

M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for plasmonics,” ACS Nano 8, 834–840 (2014).
[Crossref]

J. Olson, A. Manjavacas, L. Liu, W.-S. Chang, B. Foerster, N. S. King, M. W. Knight, P. Nordlander, N. J. Halas, and S. Link, “Vivid, full-color aluminum plasmonic pixels,” Proc. Natl. Acad. Sci. 111, 14348–14353 (2014).
[Crossref]

M. W. Knight, L. Liu, Y. Wang, L. Brown, S. Mukherjee, N. S. King, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum plasmonic nanoantennas,” Nano Lett. 12, 6000–6004 (2012).
[Crossref] [PubMed]

J. Zuloaga and P. Nordlander, “On the energy shift between near-field and far-field peak intensities in localized plasmon systems,” Nano Lett. 11, 1280–1283 (2011).
[Crossref] [PubMed]

Olson, J.

J. Olson, A. Manjavacas, L. Liu, W.-S. Chang, B. Foerster, N. S. King, M. W. Knight, P. Nordlander, N. J. Halas, and S. Link, “Vivid, full-color aluminum plasmonic pixels,” Proc. Natl. Acad. Sci. 111, 14348–14353 (2014).
[Crossref]

Ortiz, D.

J. M. Sanz, D. Ortiz, R. Alcaraz De La Osa, J. M. Saiz, F. González, A. S. Brown, M. Losurdo, H. O. Everitt, and F. Moreno, “UV plasmonic behavior of various metal nanoparticles in the near- and far-field regimes: geometry and substrate effects,” J. Phys. Chem. C, 117, 19606–19615 (2013).

Pohl, D. W.

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005).
[Crossref] [PubMed]

D. W. Pohl, “Near field optics seen as an antenna problem,” in Near-Field Optics: Principles and Applications, M. Ohtsu and X. Zhu, eds. (World Scientific, Singapore, 2000), pp. 9–21.
[Crossref]

Qiu, C.-W.

S. J. Tan, L. Zhang, D. Zhu, X. M. Goh, Y. Wang, K. Kumar, C.-W. Qiu, and J. K. W. Yang, “Plasmonic color palette for photorealistic printing with aluminum nanostructures,” Nano Lett. 14, 4023–4029 (2014).
[Crossref] [PubMed]

Ramaswamy, A. L.

A. L. Ramaswamy and P. Kaste, “A Nanovision of the physiochemical phenomena occurring in nanoparticles of aluminum,” J. Energ. Mater. 23, 1–25 (2005).
[Crossref]

Richter, L. J.

J. Aizpurua, G. W. Bryant, L. J. Richter, F. J. García De Abajo, B. K. Kelley, and T. Mallouk, “Optical properties of coupled metallic nanorods for field-enhanced spectroscopy,” Phys. Rev. B 71, 235420 (2005).
[Crossref]

Rivier, S.

Roberts, A.

S. K. Earl, D. E. Gómez, T. D. James, T. J. Davis, and A. Roberts, “Material effects on V-nanoantenna performance,” Nanoscale 7, 4179–4186 (2015).
[Crossref] [PubMed]

Robinson, H. D.

V. Kochergin, L. Neely, C. Y. Jao, and H. D. Robinson, “Aluminum plasmonic nanostructures for improved absorption in organic photovoltaic devices,” Appl. Phys. Lett. 98, 133305 (2011).
[Crossref]

Rodriguez, M.

M. Rodriguez, C. Furse, J. S. Shumaker-Parry, and S. Blair, “Scaling the response of nanocrescent antennas into the ultraviolet,” ACS Photonics 1, 496–506 (2014).
[Crossref]

Saiz, J. M.

J. M. Sanz, D. Ortiz, R. Alcaraz De La Osa, J. M. Saiz, F. González, A. S. Brown, M. Losurdo, H. O. Everitt, and F. Moreno, “UV plasmonic behavior of various metal nanoparticles in the near- and far-field regimes: geometry and substrate effects,” J. Phys. Chem. C, 117, 19606–19615 (2013).

Sánchez-Gil, J. A.

Sandoghdar, V.

A. Mohammadi, V. Sandoghdar, and M. Agio, “Gold, copper, silver and aluminum nanoantennas to enhance spontaneous emission,” J. Comput. Theor. Nanosci. 6, 2024–2030 (2009).
[Crossref]

Sanz, J. M.

J. M. Sanz, D. Ortiz, R. Alcaraz De La Osa, J. M. Saiz, F. González, A. S. Brown, M. Losurdo, H. O. Everitt, and F. Moreno, “UV plasmonic behavior of various metal nanoparticles in the near- and far-field regimes: geometry and substrate effects,” J. Phys. Chem. C, 117, 19606–19615 (2013).

Schatz, G. C.

J. M. McMahon, G. C. Schatz, and S. K. Gray, “Ultraviolet plasmonics: the poor metals Al, Ga, In, Sn, Tl, Pb, and Bi,” Phys. Chem. Chem. Phys,  15, 5415–5423 (2013).
[Crossref] [PubMed]

Schmidt, E. W.-G.

P. M. Schwab, C. Moosmann, M. D. Wissert, E. W.-G. Schmidt, K. S. Ilin, M. Siegel, U. Lemmer, and H.-J. Eisler, “Linear and nonlinear optical characterization of aluminum nanoantennas,” Nano Lett. 13, 1535–1540 (2013).
[PubMed]

Schwab, P. M.

P. M. Schwab, C. Moosmann, M. D. Wissert, E. W.-G. Schmidt, K. S. Ilin, M. Siegel, U. Lemmer, and H.-J. Eisler, “Linear and nonlinear optical characterization of aluminum nanoantennas,” Nano Lett. 13, 1535–1540 (2013).
[PubMed]

Schwind, M.

C. Langhammer, M. Schwind, B. Kasemo, and I. Zoric, “Localized surface plasmon resonances in aluminum nanodisks,” Nano Lett. 8, 1461–1471 (2008).
[Crossref] [PubMed]

Shalaev, V. M.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4, 795–808 (2010).
[Crossref]

Shiles, E.

D. Smith, E. Shiles, and M. Inokuti, “The optical properties of metallic aluminum,” in “Handbook of optical constants of solids,” E. D. Palik, ed. (Academic Press, 1985).
[Crossref]

Shumaker-Parry, J. S.

M. Rodriguez, C. Furse, J. S. Shumaker-Parry, and S. Blair, “Scaling the response of nanocrescent antennas into the ultraviolet,” ACS Photonics 1, 496–506 (2014).
[Crossref]

Siegel, M.

P. M. Schwab, C. Moosmann, M. D. Wissert, E. W.-G. Schmidt, K. S. Ilin, M. Siegel, U. Lemmer, and H.-J. Eisler, “Linear and nonlinear optical characterization of aluminum nanoantennas,” Nano Lett. 13, 1535–1540 (2013).
[PubMed]

Sigurdsson, G. S.

Smith, D.

D. Smith, E. Shiles, and M. Inokuti, “The optical properties of metallic aluminum,” in “Handbook of optical constants of solids,” E. D. Palik, ed. (Academic Press, 1985).
[Crossref]

Sodabanlu, H.

N. P. Hylton, X. F. Li, V. Giannini, K.-H. Lee, N. J. Ekins-Daukes, J. Loo, D. Vercruysse, P. Van Dorpe, H. Sodabanlu, M. Sugiyama, and S. A. Maier, “Loss mitigation in plasmonic solar cells: aluminium nanoparticles for broadband photocurrent enhancements in GaAs photodiodes,” Sci. Rep. 3, 2874 (2013).
[Crossref] [PubMed]

Sugiyama, M.

N. P. Hylton, X. F. Li, V. Giannini, K.-H. Lee, N. J. Ekins-Daukes, J. Loo, D. Vercruysse, P. Van Dorpe, H. Sodabanlu, M. Sugiyama, and S. A. Maier, “Loss mitigation in plasmonic solar cells: aluminium nanoparticles for broadband photocurrent enhancements in GaAs photodiodes,” Sci. Rep. 3, 2874 (2013).
[Crossref] [PubMed]

Taflove, A.

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House Publishers, 2004).

Taha, H.

J. S. Clausen, E. Højlund-Nielsen, A. B. Christiansen, S. Yazdi, M. Grajower, H. Taha, U. Levy, A. Kristensen, and N. A. Mortensen, “Plasmonic metasurfaces for coloration of plastic consumer products,” Nano Lett. 14, 4499–4504 (2014).
[Crossref] [PubMed]

Tan, S. J.

S. J. Tan, L. Zhang, D. Zhu, X. M. Goh, Y. Wang, K. Kumar, C.-W. Qiu, and J. K. W. Yang, “Plasmonic color palette for photorealistic printing with aluminum nanostructures,” Nano Lett. 14, 4023–4029 (2014).
[Crossref] [PubMed]

Thyagarajan, K.

Van Dorpe, P.

N. P. Hylton, X. F. Li, V. Giannini, K.-H. Lee, N. J. Ekins-Daukes, J. Loo, D. Vercruysse, P. Van Dorpe, H. Sodabanlu, M. Sugiyama, and S. A. Maier, “Loss mitigation in plasmonic solar cells: aluminium nanoparticles for broadband photocurrent enhancements in GaAs photodiodes,” Sci. Rep. 3, 2874 (2013).
[Crossref] [PubMed]

Vercruysse, D.

N. P. Hylton, X. F. Li, V. Giannini, K.-H. Lee, N. J. Ekins-Daukes, J. Loo, D. Vercruysse, P. Van Dorpe, H. Sodabanlu, M. Sugiyama, and S. A. Maier, “Loss mitigation in plasmonic solar cells: aluminium nanoparticles for broadband photocurrent enhancements in GaAs photodiodes,” Sci. Rep. 3, 2874 (2013).
[Crossref] [PubMed]

Wagner, J. B.

K. B. Mogensen, M. Gühlke, J. Kneipp, S. Kadkhodazadeh, J. B. Wagner, M. Espina Palanco, H. Kneipp, and K. Kneipp, “Surface-enhanced Raman scattering on aluminum using near infrared and visible excitation,” Chem. Commun. 50, 3744–3746 (2014).
[Crossref]

Wang, Y.

S. J. Tan, L. Zhang, D. Zhu, X. M. Goh, Y. Wang, K. Kumar, C.-W. Qiu, and J. K. W. Yang, “Plasmonic color palette for photorealistic printing with aluminum nanostructures,” Nano Lett. 14, 4023–4029 (2014).
[Crossref] [PubMed]

M. W. Knight, L. Liu, Y. Wang, L. Brown, S. Mukherjee, N. S. King, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum plasmonic nanoantennas,” Nano Lett. 12, 6000–6004 (2012).
[Crossref] [PubMed]

West, P. R.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4, 795–808 (2010).
[Crossref]

Wissert, M. D.

P. M. Schwab, C. Moosmann, M. D. Wissert, E. W.-G. Schmidt, K. S. Ilin, M. Siegel, U. Lemmer, and H.-J. Eisler, “Linear and nonlinear optical characterization of aluminum nanoantennas,” Nano Lett. 13, 1535–1540 (2013).
[PubMed]

C. Moosmann, G. S. Sigurdsson, M. D. Wissert, K. Dopf, U. Lemmer, and H.-J. Eisler, “Investigating the influences of the precise manufactured shape of dipole nanoantennas on their optical properties,” Opt. Express 21, 594–604 (2013).
[Crossref] [PubMed]

Wu, J.-Y.

H.-W. Liu, F.-C. Lin, S.-W. Lin, J.-Y. Wu, B.-T. Chou, K.-J. Lai, S.-D. Lin, and J.-S. Huang, “Single-crystalline aluminum nanostructures on a semiconducting GaAs substrate for ultraviolet to near-infrared plasmonics,” ACS Nano 9, 3875–3886 (2015).
[Crossref] [PubMed]

Xu, Q.

Yang, J. K. W.

S. J. Tan, L. Zhang, D. Zhu, X. M. Goh, Y. Wang, K. Kumar, C.-W. Qiu, and J. K. W. Yang, “Plasmonic color palette for photorealistic printing with aluminum nanostructures,” Nano Lett. 14, 4023–4029 (2014).
[Crossref] [PubMed]

Yazdi, S.

J. S. Clausen, E. Højlund-Nielsen, A. B. Christiansen, S. Yazdi, M. Grajower, H. Taha, U. Levy, A. Kristensen, and N. A. Mortensen, “Plasmonic metasurfaces for coloration of plastic consumer products,” Nano Lett. 14, 4499–4504 (2014).
[Crossref] [PubMed]

Zäch, M.

I. Zorić, M. Zäch, B. Kasemo, and C. Langhammer, “Gold, platinum, and aluminum nanodisk plasmons: Material independence, subradiance, and damping mechanisms,” ACS Nano 5, 2535–2546 (2011).
[Crossref]

Zhang, L.

S. J. Tan, L. Zhang, D. Zhu, X. M. Goh, Y. Wang, K. Kumar, C.-W. Qiu, and J. K. W. Yang, “Plasmonic color palette for photorealistic printing with aluminum nanostructures,” Nano Lett. 14, 4023–4029 (2014).
[Crossref] [PubMed]

Zhang, W.

Zhu, D.

S. J. Tan, L. Zhang, D. Zhu, X. M. Goh, Y. Wang, K. Kumar, C.-W. Qiu, and J. K. W. Yang, “Plasmonic color palette for photorealistic printing with aluminum nanostructures,” Nano Lett. 14, 4023–4029 (2014).
[Crossref] [PubMed]

Zoric, I.

I. Zorić, M. Zäch, B. Kasemo, and C. Langhammer, “Gold, platinum, and aluminum nanodisk plasmons: Material independence, subradiance, and damping mechanisms,” ACS Nano 5, 2535–2546 (2011).
[Crossref]

C. Langhammer, M. Schwind, B. Kasemo, and I. Zoric, “Localized surface plasmon resonances in aluminum nanodisks,” Nano Lett. 8, 1461–1471 (2008).
[Crossref] [PubMed]

Zuloaga, J.

J. Zuloaga and P. Nordlander, “On the energy shift between near-field and far-field peak intensities in localized plasmon systems,” Nano Lett. 11, 1280–1283 (2011).
[Crossref] [PubMed]

ACS Nano (3)

I. Zorić, M. Zäch, B. Kasemo, and C. Langhammer, “Gold, platinum, and aluminum nanodisk plasmons: Material independence, subradiance, and damping mechanisms,” ACS Nano 5, 2535–2546 (2011).
[Crossref]

H.-W. Liu, F.-C. Lin, S.-W. Lin, J.-Y. Wu, B.-T. Chou, K.-J. Lai, S.-D. Lin, and J.-S. Huang, “Single-crystalline aluminum nanostructures on a semiconducting GaAs substrate for ultraviolet to near-infrared plasmonics,” ACS Nano 9, 3875–3886 (2015).
[Crossref] [PubMed]

M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for plasmonics,” ACS Nano 8, 834–840 (2014).
[Crossref]

ACS Photonics (1)

M. Rodriguez, C. Furse, J. S. Shumaker-Parry, and S. Blair, “Scaling the response of nanocrescent antennas into the ultraviolet,” ACS Photonics 1, 496–506 (2014).
[Crossref]

Appl. Phys. Lett. (1)

V. Kochergin, L. Neely, C. Y. Jao, and H. D. Robinson, “Aluminum plasmonic nanostructures for improved absorption in organic photovoltaic devices,” Appl. Phys. Lett. 98, 133305 (2011).
[Crossref]

Chem. Commun. (1)

K. B. Mogensen, M. Gühlke, J. Kneipp, S. Kadkhodazadeh, J. B. Wagner, M. Espina Palanco, H. Kneipp, and K. Kneipp, “Surface-enhanced Raman scattering on aluminum using near infrared and visible excitation,” Chem. Commun. 50, 3744–3746 (2014).
[Crossref]

J. Comput. Theor. Nanosci. (1)

A. Mohammadi, V. Sandoghdar, and M. Agio, “Gold, copper, silver and aluminum nanoantennas to enhance spontaneous emission,” J. Comput. Theor. Nanosci. 6, 2024–2030 (2009).
[Crossref]

J. Energ. Mater. (1)

A. L. Ramaswamy and P. Kaste, “A Nanovision of the physiochemical phenomena occurring in nanoparticles of aluminum,” J. Energ. Mater. 23, 1–25 (2005).
[Crossref]

J. Phys. Chem. C, (1)

J. M. Sanz, D. Ortiz, R. Alcaraz De La Osa, J. M. Saiz, F. González, A. S. Brown, M. Losurdo, H. O. Everitt, and F. Moreno, “UV plasmonic behavior of various metal nanoparticles in the near- and far-field regimes: geometry and substrate effects,” J. Phys. Chem. C, 117, 19606–19615 (2013).

Laser Photonics Rev. (1)

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4, 795–808 (2010).
[Crossref]

Nano Lett. (6)

J. S. Clausen, E. Højlund-Nielsen, A. B. Christiansen, S. Yazdi, M. Grajower, H. Taha, U. Levy, A. Kristensen, and N. A. Mortensen, “Plasmonic metasurfaces for coloration of plastic consumer products,” Nano Lett. 14, 4499–4504 (2014).
[Crossref] [PubMed]

J. Zuloaga and P. Nordlander, “On the energy shift between near-field and far-field peak intensities in localized plasmon systems,” Nano Lett. 11, 1280–1283 (2011).
[Crossref] [PubMed]

S. J. Tan, L. Zhang, D. Zhu, X. M. Goh, Y. Wang, K. Kumar, C.-W. Qiu, and J. K. W. Yang, “Plasmonic color palette for photorealistic printing with aluminum nanostructures,” Nano Lett. 14, 4023–4029 (2014).
[Crossref] [PubMed]

M. W. Knight, L. Liu, Y. Wang, L. Brown, S. Mukherjee, N. S. King, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum plasmonic nanoantennas,” Nano Lett. 12, 6000–6004 (2012).
[Crossref] [PubMed]

P. M. Schwab, C. Moosmann, M. D. Wissert, E. W.-G. Schmidt, K. S. Ilin, M. Siegel, U. Lemmer, and H.-J. Eisler, “Linear and nonlinear optical characterization of aluminum nanoantennas,” Nano Lett. 13, 1535–1540 (2013).
[PubMed]

C. Langhammer, M. Schwind, B. Kasemo, and I. Zoric, “Localized surface plasmon resonances in aluminum nanodisks,” Nano Lett. 8, 1461–1471 (2008).
[Crossref] [PubMed]

Nanoscale (1)

S. K. Earl, D. E. Gómez, T. D. James, T. J. Davis, and A. Roberts, “Material effects on V-nanoantenna performance,” Nanoscale 7, 4179–4186 (2015).
[Crossref] [PubMed]

Opt. Express (5)

Phys. Chem. Chem. Phys (1)

J. M. McMahon, G. C. Schatz, and S. K. Gray, “Ultraviolet plasmonics: the poor metals Al, Ga, In, Sn, Tl, Pb, and Bi,” Phys. Chem. Chem. Phys,  15, 5415–5423 (2013).
[Crossref] [PubMed]

Phys. Rev. B (1)

J. Aizpurua, G. W. Bryant, L. J. Richter, F. J. García De Abajo, B. K. Kelley, and T. Mallouk, “Optical properties of coupled metallic nanorods for field-enhanced spectroscopy,” Phys. Rev. B 71, 235420 (2005).
[Crossref]

Plasmonics (1)

C. Forestiere, A. Handin, and L. Dal Negro, “Enhancement of molecular fluorescence in the UV spectral range using aluminum nanoantennas,” Plasmonics 9, 715–725 (2014).
[Crossref]

Proc. Natl. Acad. Sci. (1)

J. Olson, A. Manjavacas, L. Liu, W.-S. Chang, B. Foerster, N. S. King, M. W. Knight, P. Nordlander, N. J. Halas, and S. Link, “Vivid, full-color aluminum plasmonic pixels,” Proc. Natl. Acad. Sci. 111, 14348–14353 (2014).
[Crossref]

Sci. Rep. (1)

N. P. Hylton, X. F. Li, V. Giannini, K.-H. Lee, N. J. Ekins-Daukes, J. Loo, D. Vercruysse, P. Van Dorpe, H. Sodabanlu, M. Sugiyama, and S. A. Maier, “Loss mitigation in plasmonic solar cells: aluminium nanoparticles for broadband photocurrent enhancements in GaAs photodiodes,” Sci. Rep. 3, 2874 (2013).
[Crossref] [PubMed]

Science (1)

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005).
[Crossref] [PubMed]

Other (3)

D. W. Pohl, “Near field optics seen as an antenna problem,” in Near-Field Optics: Principles and Applications, M. Ohtsu and X. Zhu, eds. (World Scientific, Singapore, 2000), pp. 9–21.
[Crossref]

D. Smith, E. Shiles, and M. Inokuti, “The optical properties of metallic aluminum,” in “Handbook of optical constants of solids,” E. D. Palik, ed. (Academic Press, 1985).
[Crossref]

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House Publishers, 2004).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Geometric model used for the numerical calculations of (a) a single-arm rod antenna and (b) a two-arm gap antenna with metallic core and oxide shell on an extended substrate. The geometric properties in the text refer to the sketch as indicated.
Fig. 2
Fig. 2 (a) Calculated scattering cross sections for the seven configurations defined in Tab. 1 for a single-arm antenna. The nominal length is 100 nm, the width and height are 30 nm. The oxide thickness is 3 nm. (b) Calculated peak energy shift relative to the non-oxidized structures for different lengths. The vertical and horizontal orange dashed lines are guides to the eye and refer to the nominal peak energy of the original antenna before degradation.
Fig. 3
Fig. 3 (a) Calculated scattering cross sections for the seven configurations defined in Tab. 1 for a two-arm gap antenna. The nominal length is 100 nm, the width and height are 30 nm and the gap width is 20 nm. The oxide thickness is 3 nm. (b) Calculated peak energy shift relative to the non-oxidized structures for different lengths. The vertical and horizontal orange dashed lines are guides to the eye and refer to the nominal peak energy of the original antenna before degradation.
Fig. 4
Fig. 4 Influence of the oxide thickness on the resonance peak position for (a) single-arm and (b) two-arm gap antennas of different arm lengths. The inset in (a) depicts the difference for a single-arm antenna with an arm length of 200 nm with (red) and without (black) a 1 nm oxide layer causing a jump in the peak energy as the main peak is suppressed by the interband absorption.
Fig. 5
Fig. 5 Peak energy as a function of the antenna arm length. Resonances of two-arm gap antennas are slightly red-shifted compared to single-arm antennas due to the additional coupling. Single-arm and two-arm gap antenna resonances show an energetic gap around 1.5 eV due to the interband damping. Oxide thickness: 3 nm.
Fig. 6
Fig. 6 (a) Scattering and absorption cross section as well as the near-field enhancement in the antenna gap for a two-arm gap antenna with (solid line) and without (dashed line) a 3 nm oxide layer. The nominal dimensions are: arm length 100 nm, gap width 20 nm, width and height 30 nm. Right: Normalized intensity distribution at resonance in the xz-plane (top view) at half the antenna height for the antenna (b) without and (c) with a 3 nm oxide layer covering the metallic core.
Fig. 7
Fig. 7 Peak position shifting as a function of time for an encapsulated and a non-encapsulated aluminum two-arm gap antenna with an arm length of 100 nm. While the peak energy remains constant for the encapsulated sample, there is a noticeable peak shift for the non-encapsulated sample.
Fig. 8
Fig. 8 Refractive index n and absorption index k for ITO as measured by ellipsometry.
Fig. 9
Fig. 9 Dark-field spectra of (a) an encapsulated (b) and a non-encapsulated aluminum two-arm gap antenna with a nominal arm length of 100 nm. All spectra have been normalized to unity and an offset of 0.2 has been introduced between individual spectra to facilitate discrimination. The horizontal dashed lines are guides to the eye. The standard deviation for the encapsulated sample is below 2.8 nm, which is in good accordance with the measurement uncertainty. Different signal-to-noise ratios arise from slight differences in the alignment between condenser and sample during individual measurements.

Tables (1)

Tables Icon

Table 1 Summary of the seven configurations used for the simulations.

Metrics