Abstract

Off-normal, polarization dependent second–harmonic generation (SHG) measurements were performed ex situ on plasmonic nanostructures grown by self–assembly on nanopatterned templates. These exploratory studies of Ag nanoparticle (NP) arrays show that the sensitivity of SHG to the local fields, which are modified by the NP size, shape and distribution, makes it a promising fixed wavelength characterization technique that avoids the complexity of spectroscopic SHG. The off–normal geometry provides access to the out–of–plane SH response, which is typically an order-of-magnitude larger than the in–surface–plane response measured using normal incidence, for example in SHG microscopy. By choosing the plane of incidence orthogonal to the NP array direction, it was shown that the p–polarized SH response, as a function of input polarization, is very sensitive to NP morphology, with a change of 20% in the aspect ratio of the NPs producing a variation of a factor of 30 in the easily measureable ratio of the p–polarized SH field strength for s– and p–polarized input. The results show that such a fixed geometry could be used for the in situ characterization of anisotropic nanostructure morphology during growth by self–assembly, which could be particularly useful in situations where rotating the sample may be neither desirable nor easily accomplished.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Second-order nonlinear response of composites containing aligned elongated silver nanoparticles

Israel Rocha-Mendoza, Raúl Rangel-Rojo, Luis Rodríguez-Fernández, and Alicia Oliver
Opt. Express 19(22) 21575-21587 (2011)

Magnetization-induced-second-harmonic generation from surfaces and interfaces

Andrei Kirilyuk and Theo Rasing
J. Opt. Soc. Am. B 22(1) 148-167 (2005)

Plasmonic enhancement of second harmonic generation from nonlinear RbTiOPO4 crystals by aggregates of silver nanostructures

Laura Sánchez-García, Christos Tserkezis, Mariola O Ramírez, Pablo Molina, Joan J. Carvajal, Magdalena Aguiló, Francesc Díaz, Javier Aizpurua, and Luisa E. Bausá
Opt. Express 24(8) 8491-8500 (2016)

References

  • View by:
  • |
  • |
  • |

  1. U. Kreibig and M. Vollmer, “Optical Properties of Metal Clusters” (Springer, 1995).
    [Crossref]
  2. S. A. Maier, P.G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nature Mater. 2, 229–232 (2003).
    [Crossref]
  3. P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Review of some interesting surface plasmon resonance–enhanced properties of noble metal nanoparticles and their applications to biosystems,” Plasmonics 2, 107–118 (2007).
    [Crossref]
  4. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nature Mater. 9, 205–213 (2010).
    [Crossref]
  5. B. Sharma B, R. R. Frontiera, A. I. Henry, E. Ringe, and R. P. Van Duyne, “SERS: materials, applications, and the future,” Mater. Today 15, 16–25 (2012).
    [Crossref]
  6. S. Camelio, D. Babonneau, D. Lantiat, and L. Simonot, “Self–organized growth and optical properties of silver nanoparticle chains and stripes,” Europhys. Lett.79, (2007).
    [Crossref]
  7. R. Verre, K. Fleischer, J. F. McGilp, D. Fox, G. Behan, H. Zhang, and I. V. Shvets, “Controlled in situ growth of tunable plasmonic self–assembled nanoparticle arrays,” Nanotechnology 23, 035606 (2012).
    [Crossref]
  8. A. Keller and S. Facsko S, “Ion-Induced Nanoscale Ripple Patterns on Si Surfaces: Theory and Experiment,” Materials 3, 4811–4841 (2010).
    [Crossref]
  9. A. Toma, D. Chiappe, C. Boragno, and F. Buatier de Mongeot, “Self-organized ion-beam synthesis of nanowires with broadband plasmonic functionality,” Phys. Rev. B 81, 165436 (2010).
    [Crossref]
  10. S. J. Chey, J. E. Van Nostrand, and D. G. Cahill, “Surface morphology of Ge(001) during etching by low–energy ions,” Phys. Rev. B 52, 16696–16701 (1995).
    [Crossref]
  11. W. L. Chan and E. Chason, “Making waves: kinetic processes controlling surface evolution during low energy ion sputtering,” J. Appl. Phys. 101, 121301 (2007).
    [Crossref]
  12. R. M. Bradley and J. M E. Harper, “Theory of ripple topography induced by ion bombardment,” J. Vac. Sci. Technol. A 6, 2390–2395 (1988).
    [Crossref]
  13. S. Camelio, E. Vandenhecke, S. Rousselet, and D. Babonneau, “Optimization of growth and ordering of Ag nanoparticle arrays on ripple patterned alumina surfaces for strong plasmonic coupling,” Nanotechnology 25, 035706 (2014).
    [Crossref]
  14. S. Rusponi, G. Costantini, C. Boragno, and U. Valbusa, “Ripple wave vector rotation in anisotropic crystal sputtering,” Phys. Rev. Lett. 81, 2735–2738 (1998).
    [Crossref]
  15. J. F. McGlip, “Optical characterisation of semiconductor surfaces and interfaces,” Prog. Surf. Sci. 49, 1–106 (1995).
    [Crossref]
  16. R. Verre, K. Fleischer, R. G. S. Sofin, N. McAlinden, J. F. McGilp, and I. V. Shvets, “In situ characterization of one–dimensional plasmonic Ag nanocluster arrays,” Phys. Rev. B.83, (2011).
    [Crossref]
  17. R. Verre, K. Fleischer, C. Smith, N. McAlinden, J. F. McGilp, and I. V. Shvets, “Probing the out-of-plane optical response of plasmonic nanostructures using spectroscopic ellipsometry,” Phys. Rev. B. 84, 085440 (2011).
    [Crossref]
  18. L. Persechini, R. Verre, N. McAlinden, J. J. Wang, M. Ranjan, S. Facsko, I. V. Shvets, and J. F. McGilp, “An analytic approach to modeling the optical response of anisotropic nanoparticle arrays at surfaces and interfaces,” J. Phys. Condens. Matter 26, 145302 (2014).
    [Crossref] [PubMed]
  19. J. Butet, B. Gallinet, K. Thyagarajan, and J. F. O. Martin, “Second-harmonic generation from periodic arrays of arbitrary shape plasmonic nanostructures: a surface integral approach,” J. Opt. Soc. Am. B 30, 2970–2979 (2013).
    [Crossref]
  20. V. K. Valev, “Characterization of Nanostructured Plasmonic surfaces with second harmonic generation,” Langmuir 28, 15454–15471 (2012).
    [Crossref] [PubMed]
  21. A. Belardini, M. C. Larciprete, M. Centini, E. Fazio E, C. Sibilia, M. Bertolotti, A. Toma, D. Chiappe, and F. Buatier De Mongeot, “Tailored second-harmonic generation from self-organized metal nano-wires arrays,” Opt. Exp. 17, 3603–3609 (2009).
    [Crossref]
  22. M. L. Ren, S. Y. Liu, B. L. Wang, B. Q. Chen, J. Li, and Z. Y. Li, “Giant enhancement of second harmonic generation by engineering double plasmonic resonances at nanoscale,” Opt. Express 22, 28653–28661 (2014).
    [Crossref] [PubMed]
  23. B. K. Canfield, S. Kujala, K. Jefimovs, T. Vallius, J. Turunen, and M. Kauranen, “Polarization effects in the linear and nonlinear optical responses of gold nanoparticle arrays,” J. Opt. A:Pure Appl. Op. 7, S110 (2005).
    [Crossref]
  24. B. K. Canfield, H. Husu, J. Laukkanen, B. Bai, M. Kuittinen, J. Turunen, and M. Kauranen, “Local field asymmetry drives second-harmonic generation in noncentrosymmetric nanodimers,” Nano Lett. 7, 1251–1255 (2007).
    [Crossref] [PubMed]
  25. C. Hubert, L. Billot, P. M. Adam, R. Bachelot, P. Royer, J. Grand, D. Gindre, K. D. Dorkenoo, and A. Fort, “Role of surface plasmon in second harmonic generation from gold nanorods,” Appl. Phys. Lett. 90, 181105 (2007).
    [Crossref]
  26. J. Butet, K. Thyagarajan, and O. J. F. Martin, “Ultrasensitive optical shape characterization of gold nanoantennas using second harmonic generation,” Nano Lett. 13, 1787–1792 (2013).
    [Crossref] [PubMed]
  27. C. Sauerbeck, M. Haderlein, B. Schürer, B. Braunschweig, W. Peuker, and R. N. K. Taylor, “Shedding light on the growth of gold nanoshells,” ACS Nano 8, 3088–3096 (2014).
    [Crossref] [PubMed]
  28. G. Luepke, “Characterization of semiconductor interfaces by second-harmonic generation,” Surf. Sci. Rep. 35, 3–4 (1999).
  29. R. Verre, M. Modreanu, O. Ualibek, D. Fox, K. Fleischer, C. Smith, H. Zhang, M. Pemble, J. F. McGilp, and I. V. Shvets, “General approach to the analysis of plasmonic structures using spectroscopic ellipsometry,” Phys. Rev. B. 87, 235428 (2013).
    [Crossref]
  30. T. W. H. Oates, A. Keller, S. Facsko, and S. Mücklich, “Aligned silver nanoparticles on rippled silicon templates exhibiting anisotropic plasmon absorption,” Plasmonics 2, 47–50 (2007).
    [Crossref]
  31. M. Ranjan and S. Facsko, “Anisotropic surface enhanced Raman scattering in nanoparticle and nanowire arrays,” Nanotechnology 23, 485307 (2012).
    [Crossref] [PubMed]
  32. M. Ranjan, S. Facsko, M. Fritzsche, and S. Mukherjee, “Plasmon resonance tuning in Ag nanoparticles arrays grown on ripple patterned templates,” Microelectron. Eng. 102, 44–47 (2013).
    [Crossref]
  33. A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408, 131–314 (2005).
    [Crossref]
  34. G. Bachelier, J. Butet, I. Russier-Antoine, C. Jonin, E. Benichou, and P. F. Brevet, “Origin of optical second-harmonic generation in spherical gold nanoparticles: local surface and nonlocal bulk contributions,” Phys. Rev. B. 82, 235403 (2010)
    [Crossref]
  35. J. R. Power, J. D. O’Mahony, S. Chandola, and J. F. McGilp, “Resonant optical second–harmonic generation at the steps of vicinal Si(001),” Phys. Rev. Lett. 75, 1138–1141 (1995).
    [Crossref] [PubMed]
  36. J. Jacob, A. G. Silva, K. Fleischer, and J. F. McGilp, “Optical second–harmonic generation studies of Si(111)- 3×3-Ag and Si(111)-3×1-Ag grown on vicinal Si(111),” Phys. Status Solidi C. 5, 2649–2652 (2008).
    [Crossref]
  37. L. Persechini, M. Ranjan, F. Grossmann, S. Facsko, and J. F. McGilp, “The linear and nonlinear optical response of native–oxide covered rippled Si templates with nanoscale periodicity,” Phys. Status Solidi B. 249, 1173–1177 (2012).
    [Crossref]

2014 (4)

S. Camelio, E. Vandenhecke, S. Rousselet, and D. Babonneau, “Optimization of growth and ordering of Ag nanoparticle arrays on ripple patterned alumina surfaces for strong plasmonic coupling,” Nanotechnology 25, 035706 (2014).
[Crossref]

L. Persechini, R. Verre, N. McAlinden, J. J. Wang, M. Ranjan, S. Facsko, I. V. Shvets, and J. F. McGilp, “An analytic approach to modeling the optical response of anisotropic nanoparticle arrays at surfaces and interfaces,” J. Phys. Condens. Matter 26, 145302 (2014).
[Crossref] [PubMed]

M. L. Ren, S. Y. Liu, B. L. Wang, B. Q. Chen, J. Li, and Z. Y. Li, “Giant enhancement of second harmonic generation by engineering double plasmonic resonances at nanoscale,” Opt. Express 22, 28653–28661 (2014).
[Crossref] [PubMed]

C. Sauerbeck, M. Haderlein, B. Schürer, B. Braunschweig, W. Peuker, and R. N. K. Taylor, “Shedding light on the growth of gold nanoshells,” ACS Nano 8, 3088–3096 (2014).
[Crossref] [PubMed]

2013 (4)

R. Verre, M. Modreanu, O. Ualibek, D. Fox, K. Fleischer, C. Smith, H. Zhang, M. Pemble, J. F. McGilp, and I. V. Shvets, “General approach to the analysis of plasmonic structures using spectroscopic ellipsometry,” Phys. Rev. B. 87, 235428 (2013).
[Crossref]

J. Butet, K. Thyagarajan, and O. J. F. Martin, “Ultrasensitive optical shape characterization of gold nanoantennas using second harmonic generation,” Nano Lett. 13, 1787–1792 (2013).
[Crossref] [PubMed]

M. Ranjan, S. Facsko, M. Fritzsche, and S. Mukherjee, “Plasmon resonance tuning in Ag nanoparticles arrays grown on ripple patterned templates,” Microelectron. Eng. 102, 44–47 (2013).
[Crossref]

J. Butet, B. Gallinet, K. Thyagarajan, and J. F. O. Martin, “Second-harmonic generation from periodic arrays of arbitrary shape plasmonic nanostructures: a surface integral approach,” J. Opt. Soc. Am. B 30, 2970–2979 (2013).
[Crossref]

2012 (5)

V. K. Valev, “Characterization of Nanostructured Plasmonic surfaces with second harmonic generation,” Langmuir 28, 15454–15471 (2012).
[Crossref] [PubMed]

B. Sharma B, R. R. Frontiera, A. I. Henry, E. Ringe, and R. P. Van Duyne, “SERS: materials, applications, and the future,” Mater. Today 15, 16–25 (2012).
[Crossref]

R. Verre, K. Fleischer, J. F. McGilp, D. Fox, G. Behan, H. Zhang, and I. V. Shvets, “Controlled in situ growth of tunable plasmonic self–assembled nanoparticle arrays,” Nanotechnology 23, 035606 (2012).
[Crossref]

M. Ranjan and S. Facsko, “Anisotropic surface enhanced Raman scattering in nanoparticle and nanowire arrays,” Nanotechnology 23, 485307 (2012).
[Crossref] [PubMed]

L. Persechini, M. Ranjan, F. Grossmann, S. Facsko, and J. F. McGilp, “The linear and nonlinear optical response of native–oxide covered rippled Si templates with nanoscale periodicity,” Phys. Status Solidi B. 249, 1173–1177 (2012).
[Crossref]

2011 (1)

R. Verre, K. Fleischer, C. Smith, N. McAlinden, J. F. McGilp, and I. V. Shvets, “Probing the out-of-plane optical response of plasmonic nanostructures using spectroscopic ellipsometry,” Phys. Rev. B. 84, 085440 (2011).
[Crossref]

2010 (4)

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nature Mater. 9, 205–213 (2010).
[Crossref]

A. Keller and S. Facsko S, “Ion-Induced Nanoscale Ripple Patterns on Si Surfaces: Theory and Experiment,” Materials 3, 4811–4841 (2010).
[Crossref]

A. Toma, D. Chiappe, C. Boragno, and F. Buatier de Mongeot, “Self-organized ion-beam synthesis of nanowires with broadband plasmonic functionality,” Phys. Rev. B 81, 165436 (2010).
[Crossref]

G. Bachelier, J. Butet, I. Russier-Antoine, C. Jonin, E. Benichou, and P. F. Brevet, “Origin of optical second-harmonic generation in spherical gold nanoparticles: local surface and nonlocal bulk contributions,” Phys. Rev. B. 82, 235403 (2010)
[Crossref]

2009 (1)

A. Belardini, M. C. Larciprete, M. Centini, E. Fazio E, C. Sibilia, M. Bertolotti, A. Toma, D. Chiappe, and F. Buatier De Mongeot, “Tailored second-harmonic generation from self-organized metal nano-wires arrays,” Opt. Exp. 17, 3603–3609 (2009).
[Crossref]

2008 (1)

J. Jacob, A. G. Silva, K. Fleischer, and J. F. McGilp, “Optical second–harmonic generation studies of Si(111)- 3×3-Ag and Si(111)-3×1-Ag grown on vicinal Si(111),” Phys. Status Solidi C. 5, 2649–2652 (2008).
[Crossref]

2007 (5)

T. W. H. Oates, A. Keller, S. Facsko, and S. Mücklich, “Aligned silver nanoparticles on rippled silicon templates exhibiting anisotropic plasmon absorption,” Plasmonics 2, 47–50 (2007).
[Crossref]

B. K. Canfield, H. Husu, J. Laukkanen, B. Bai, M. Kuittinen, J. Turunen, and M. Kauranen, “Local field asymmetry drives second-harmonic generation in noncentrosymmetric nanodimers,” Nano Lett. 7, 1251–1255 (2007).
[Crossref] [PubMed]

C. Hubert, L. Billot, P. M. Adam, R. Bachelot, P. Royer, J. Grand, D. Gindre, K. D. Dorkenoo, and A. Fort, “Role of surface plasmon in second harmonic generation from gold nanorods,” Appl. Phys. Lett. 90, 181105 (2007).
[Crossref]

P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Review of some interesting surface plasmon resonance–enhanced properties of noble metal nanoparticles and their applications to biosystems,” Plasmonics 2, 107–118 (2007).
[Crossref]

W. L. Chan and E. Chason, “Making waves: kinetic processes controlling surface evolution during low energy ion sputtering,” J. Appl. Phys. 101, 121301 (2007).
[Crossref]

2005 (2)

B. K. Canfield, S. Kujala, K. Jefimovs, T. Vallius, J. Turunen, and M. Kauranen, “Polarization effects in the linear and nonlinear optical responses of gold nanoparticle arrays,” J. Opt. A:Pure Appl. Op. 7, S110 (2005).
[Crossref]

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408, 131–314 (2005).
[Crossref]

2003 (1)

S. A. Maier, P.G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nature Mater. 2, 229–232 (2003).
[Crossref]

1999 (1)

G. Luepke, “Characterization of semiconductor interfaces by second-harmonic generation,” Surf. Sci. Rep. 35, 3–4 (1999).

1998 (1)

S. Rusponi, G. Costantini, C. Boragno, and U. Valbusa, “Ripple wave vector rotation in anisotropic crystal sputtering,” Phys. Rev. Lett. 81, 2735–2738 (1998).
[Crossref]

1995 (3)

J. F. McGlip, “Optical characterisation of semiconductor surfaces and interfaces,” Prog. Surf. Sci. 49, 1–106 (1995).
[Crossref]

S. J. Chey, J. E. Van Nostrand, and D. G. Cahill, “Surface morphology of Ge(001) during etching by low–energy ions,” Phys. Rev. B 52, 16696–16701 (1995).
[Crossref]

J. R. Power, J. D. O’Mahony, S. Chandola, and J. F. McGilp, “Resonant optical second–harmonic generation at the steps of vicinal Si(001),” Phys. Rev. Lett. 75, 1138–1141 (1995).
[Crossref] [PubMed]

1988 (1)

R. M. Bradley and J. M E. Harper, “Theory of ripple topography induced by ion bombardment,” J. Vac. Sci. Technol. A 6, 2390–2395 (1988).
[Crossref]

Adam, P. M.

C. Hubert, L. Billot, P. M. Adam, R. Bachelot, P. Royer, J. Grand, D. Gindre, K. D. Dorkenoo, and A. Fort, “Role of surface plasmon in second harmonic generation from gold nanorods,” Appl. Phys. Lett. 90, 181105 (2007).
[Crossref]

Atwater, H. A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nature Mater. 9, 205–213 (2010).
[Crossref]

S. A. Maier, P.G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nature Mater. 2, 229–232 (2003).
[Crossref]

Babonneau, D.

S. Camelio, E. Vandenhecke, S. Rousselet, and D. Babonneau, “Optimization of growth and ordering of Ag nanoparticle arrays on ripple patterned alumina surfaces for strong plasmonic coupling,” Nanotechnology 25, 035706 (2014).
[Crossref]

S. Camelio, D. Babonneau, D. Lantiat, and L. Simonot, “Self–organized growth and optical properties of silver nanoparticle chains and stripes,” Europhys. Lett.79, (2007).
[Crossref]

Bachelier, G.

G. Bachelier, J. Butet, I. Russier-Antoine, C. Jonin, E. Benichou, and P. F. Brevet, “Origin of optical second-harmonic generation in spherical gold nanoparticles: local surface and nonlocal bulk contributions,” Phys. Rev. B. 82, 235403 (2010)
[Crossref]

Bachelot, R.

C. Hubert, L. Billot, P. M. Adam, R. Bachelot, P. Royer, J. Grand, D. Gindre, K. D. Dorkenoo, and A. Fort, “Role of surface plasmon in second harmonic generation from gold nanorods,” Appl. Phys. Lett. 90, 181105 (2007).
[Crossref]

Bai, B.

B. K. Canfield, H. Husu, J. Laukkanen, B. Bai, M. Kuittinen, J. Turunen, and M. Kauranen, “Local field asymmetry drives second-harmonic generation in noncentrosymmetric nanodimers,” Nano Lett. 7, 1251–1255 (2007).
[Crossref] [PubMed]

Behan, G.

R. Verre, K. Fleischer, J. F. McGilp, D. Fox, G. Behan, H. Zhang, and I. V. Shvets, “Controlled in situ growth of tunable plasmonic self–assembled nanoparticle arrays,” Nanotechnology 23, 035606 (2012).
[Crossref]

Belardini, A.

A. Belardini, M. C. Larciprete, M. Centini, E. Fazio E, C. Sibilia, M. Bertolotti, A. Toma, D. Chiappe, and F. Buatier De Mongeot, “Tailored second-harmonic generation from self-organized metal nano-wires arrays,” Opt. Exp. 17, 3603–3609 (2009).
[Crossref]

Benichou, E.

G. Bachelier, J. Butet, I. Russier-Antoine, C. Jonin, E. Benichou, and P. F. Brevet, “Origin of optical second-harmonic generation in spherical gold nanoparticles: local surface and nonlocal bulk contributions,” Phys. Rev. B. 82, 235403 (2010)
[Crossref]

Bertolotti, M.

A. Belardini, M. C. Larciprete, M. Centini, E. Fazio E, C. Sibilia, M. Bertolotti, A. Toma, D. Chiappe, and F. Buatier De Mongeot, “Tailored second-harmonic generation from self-organized metal nano-wires arrays,” Opt. Exp. 17, 3603–3609 (2009).
[Crossref]

Billot, L.

C. Hubert, L. Billot, P. M. Adam, R. Bachelot, P. Royer, J. Grand, D. Gindre, K. D. Dorkenoo, and A. Fort, “Role of surface plasmon in second harmonic generation from gold nanorods,” Appl. Phys. Lett. 90, 181105 (2007).
[Crossref]

Boragno, C.

A. Toma, D. Chiappe, C. Boragno, and F. Buatier de Mongeot, “Self-organized ion-beam synthesis of nanowires with broadband plasmonic functionality,” Phys. Rev. B 81, 165436 (2010).
[Crossref]

S. Rusponi, G. Costantini, C. Boragno, and U. Valbusa, “Ripple wave vector rotation in anisotropic crystal sputtering,” Phys. Rev. Lett. 81, 2735–2738 (1998).
[Crossref]

Bradley, R. M.

R. M. Bradley and J. M E. Harper, “Theory of ripple topography induced by ion bombardment,” J. Vac. Sci. Technol. A 6, 2390–2395 (1988).
[Crossref]

Braunschweig, B.

C. Sauerbeck, M. Haderlein, B. Schürer, B. Braunschweig, W. Peuker, and R. N. K. Taylor, “Shedding light on the growth of gold nanoshells,” ACS Nano 8, 3088–3096 (2014).
[Crossref] [PubMed]

Brevet, P. F.

G. Bachelier, J. Butet, I. Russier-Antoine, C. Jonin, E. Benichou, and P. F. Brevet, “Origin of optical second-harmonic generation in spherical gold nanoparticles: local surface and nonlocal bulk contributions,” Phys. Rev. B. 82, 235403 (2010)
[Crossref]

Buatier de Mongeot, F.

A. Toma, D. Chiappe, C. Boragno, and F. Buatier de Mongeot, “Self-organized ion-beam synthesis of nanowires with broadband plasmonic functionality,” Phys. Rev. B 81, 165436 (2010).
[Crossref]

A. Belardini, M. C. Larciprete, M. Centini, E. Fazio E, C. Sibilia, M. Bertolotti, A. Toma, D. Chiappe, and F. Buatier De Mongeot, “Tailored second-harmonic generation from self-organized metal nano-wires arrays,” Opt. Exp. 17, 3603–3609 (2009).
[Crossref]

Butet, J.

J. Butet, B. Gallinet, K. Thyagarajan, and J. F. O. Martin, “Second-harmonic generation from periodic arrays of arbitrary shape plasmonic nanostructures: a surface integral approach,” J. Opt. Soc. Am. B 30, 2970–2979 (2013).
[Crossref]

J. Butet, K. Thyagarajan, and O. J. F. Martin, “Ultrasensitive optical shape characterization of gold nanoantennas using second harmonic generation,” Nano Lett. 13, 1787–1792 (2013).
[Crossref] [PubMed]

G. Bachelier, J. Butet, I. Russier-Antoine, C. Jonin, E. Benichou, and P. F. Brevet, “Origin of optical second-harmonic generation in spherical gold nanoparticles: local surface and nonlocal bulk contributions,” Phys. Rev. B. 82, 235403 (2010)
[Crossref]

Cahill, D. G.

S. J. Chey, J. E. Van Nostrand, and D. G. Cahill, “Surface morphology of Ge(001) during etching by low–energy ions,” Phys. Rev. B 52, 16696–16701 (1995).
[Crossref]

Camelio, S.

S. Camelio, E. Vandenhecke, S. Rousselet, and D. Babonneau, “Optimization of growth and ordering of Ag nanoparticle arrays on ripple patterned alumina surfaces for strong plasmonic coupling,” Nanotechnology 25, 035706 (2014).
[Crossref]

S. Camelio, D. Babonneau, D. Lantiat, and L. Simonot, “Self–organized growth and optical properties of silver nanoparticle chains and stripes,” Europhys. Lett.79, (2007).
[Crossref]

Canfield, B. K.

B. K. Canfield, H. Husu, J. Laukkanen, B. Bai, M. Kuittinen, J. Turunen, and M. Kauranen, “Local field asymmetry drives second-harmonic generation in noncentrosymmetric nanodimers,” Nano Lett. 7, 1251–1255 (2007).
[Crossref] [PubMed]

B. K. Canfield, S. Kujala, K. Jefimovs, T. Vallius, J. Turunen, and M. Kauranen, “Polarization effects in the linear and nonlinear optical responses of gold nanoparticle arrays,” J. Opt. A:Pure Appl. Op. 7, S110 (2005).
[Crossref]

Centini, M.

A. Belardini, M. C. Larciprete, M. Centini, E. Fazio E, C. Sibilia, M. Bertolotti, A. Toma, D. Chiappe, and F. Buatier De Mongeot, “Tailored second-harmonic generation from self-organized metal nano-wires arrays,” Opt. Exp. 17, 3603–3609 (2009).
[Crossref]

Chan, W. L.

W. L. Chan and E. Chason, “Making waves: kinetic processes controlling surface evolution during low energy ion sputtering,” J. Appl. Phys. 101, 121301 (2007).
[Crossref]

Chandola, S.

J. R. Power, J. D. O’Mahony, S. Chandola, and J. F. McGilp, “Resonant optical second–harmonic generation at the steps of vicinal Si(001),” Phys. Rev. Lett. 75, 1138–1141 (1995).
[Crossref] [PubMed]

Chason, E.

W. L. Chan and E. Chason, “Making waves: kinetic processes controlling surface evolution during low energy ion sputtering,” J. Appl. Phys. 101, 121301 (2007).
[Crossref]

Chen, B. Q.

Chey, S. J.

S. J. Chey, J. E. Van Nostrand, and D. G. Cahill, “Surface morphology of Ge(001) during etching by low–energy ions,” Phys. Rev. B 52, 16696–16701 (1995).
[Crossref]

Chiappe, D.

A. Toma, D. Chiappe, C. Boragno, and F. Buatier de Mongeot, “Self-organized ion-beam synthesis of nanowires with broadband plasmonic functionality,” Phys. Rev. B 81, 165436 (2010).
[Crossref]

A. Belardini, M. C. Larciprete, M. Centini, E. Fazio E, C. Sibilia, M. Bertolotti, A. Toma, D. Chiappe, and F. Buatier De Mongeot, “Tailored second-harmonic generation from self-organized metal nano-wires arrays,” Opt. Exp. 17, 3603–3609 (2009).
[Crossref]

Costantini, G.

S. Rusponi, G. Costantini, C. Boragno, and U. Valbusa, “Ripple wave vector rotation in anisotropic crystal sputtering,” Phys. Rev. Lett. 81, 2735–2738 (1998).
[Crossref]

Dorkenoo, K. D.

C. Hubert, L. Billot, P. M. Adam, R. Bachelot, P. Royer, J. Grand, D. Gindre, K. D. Dorkenoo, and A. Fort, “Role of surface plasmon in second harmonic generation from gold nanorods,” Appl. Phys. Lett. 90, 181105 (2007).
[Crossref]

El-Sayed, I. H.

P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Review of some interesting surface plasmon resonance–enhanced properties of noble metal nanoparticles and their applications to biosystems,” Plasmonics 2, 107–118 (2007).
[Crossref]

El-Sayed, M. A.

P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Review of some interesting surface plasmon resonance–enhanced properties of noble metal nanoparticles and their applications to biosystems,” Plasmonics 2, 107–118 (2007).
[Crossref]

Facsko, S.

L. Persechini, R. Verre, N. McAlinden, J. J. Wang, M. Ranjan, S. Facsko, I. V. Shvets, and J. F. McGilp, “An analytic approach to modeling the optical response of anisotropic nanoparticle arrays at surfaces and interfaces,” J. Phys. Condens. Matter 26, 145302 (2014).
[Crossref] [PubMed]

M. Ranjan, S. Facsko, M. Fritzsche, and S. Mukherjee, “Plasmon resonance tuning in Ag nanoparticles arrays grown on ripple patterned templates,” Microelectron. Eng. 102, 44–47 (2013).
[Crossref]

M. Ranjan and S. Facsko, “Anisotropic surface enhanced Raman scattering in nanoparticle and nanowire arrays,” Nanotechnology 23, 485307 (2012).
[Crossref] [PubMed]

L. Persechini, M. Ranjan, F. Grossmann, S. Facsko, and J. F. McGilp, “The linear and nonlinear optical response of native–oxide covered rippled Si templates with nanoscale periodicity,” Phys. Status Solidi B. 249, 1173–1177 (2012).
[Crossref]

T. W. H. Oates, A. Keller, S. Facsko, and S. Mücklich, “Aligned silver nanoparticles on rippled silicon templates exhibiting anisotropic plasmon absorption,” Plasmonics 2, 47–50 (2007).
[Crossref]

Facsko S, S.

A. Keller and S. Facsko S, “Ion-Induced Nanoscale Ripple Patterns on Si Surfaces: Theory and Experiment,” Materials 3, 4811–4841 (2010).
[Crossref]

Fazio E, E.

A. Belardini, M. C. Larciprete, M. Centini, E. Fazio E, C. Sibilia, M. Bertolotti, A. Toma, D. Chiappe, and F. Buatier De Mongeot, “Tailored second-harmonic generation from self-organized metal nano-wires arrays,” Opt. Exp. 17, 3603–3609 (2009).
[Crossref]

Fleischer, K.

R. Verre, M. Modreanu, O. Ualibek, D. Fox, K. Fleischer, C. Smith, H. Zhang, M. Pemble, J. F. McGilp, and I. V. Shvets, “General approach to the analysis of plasmonic structures using spectroscopic ellipsometry,” Phys. Rev. B. 87, 235428 (2013).
[Crossref]

R. Verre, K. Fleischer, J. F. McGilp, D. Fox, G. Behan, H. Zhang, and I. V. Shvets, “Controlled in situ growth of tunable plasmonic self–assembled nanoparticle arrays,” Nanotechnology 23, 035606 (2012).
[Crossref]

R. Verre, K. Fleischer, C. Smith, N. McAlinden, J. F. McGilp, and I. V. Shvets, “Probing the out-of-plane optical response of plasmonic nanostructures using spectroscopic ellipsometry,” Phys. Rev. B. 84, 085440 (2011).
[Crossref]

J. Jacob, A. G. Silva, K. Fleischer, and J. F. McGilp, “Optical second–harmonic generation studies of Si(111)- 3×3-Ag and Si(111)-3×1-Ag grown on vicinal Si(111),” Phys. Status Solidi C. 5, 2649–2652 (2008).
[Crossref]

R. Verre, K. Fleischer, R. G. S. Sofin, N. McAlinden, J. F. McGilp, and I. V. Shvets, “In situ characterization of one–dimensional plasmonic Ag nanocluster arrays,” Phys. Rev. B.83, (2011).
[Crossref]

Fort, A.

C. Hubert, L. Billot, P. M. Adam, R. Bachelot, P. Royer, J. Grand, D. Gindre, K. D. Dorkenoo, and A. Fort, “Role of surface plasmon in second harmonic generation from gold nanorods,” Appl. Phys. Lett. 90, 181105 (2007).
[Crossref]

Fox, D.

R. Verre, M. Modreanu, O. Ualibek, D. Fox, K. Fleischer, C. Smith, H. Zhang, M. Pemble, J. F. McGilp, and I. V. Shvets, “General approach to the analysis of plasmonic structures using spectroscopic ellipsometry,” Phys. Rev. B. 87, 235428 (2013).
[Crossref]

R. Verre, K. Fleischer, J. F. McGilp, D. Fox, G. Behan, H. Zhang, and I. V. Shvets, “Controlled in situ growth of tunable plasmonic self–assembled nanoparticle arrays,” Nanotechnology 23, 035606 (2012).
[Crossref]

Fritzsche, M.

M. Ranjan, S. Facsko, M. Fritzsche, and S. Mukherjee, “Plasmon resonance tuning in Ag nanoparticles arrays grown on ripple patterned templates,” Microelectron. Eng. 102, 44–47 (2013).
[Crossref]

Frontiera, R. R.

B. Sharma B, R. R. Frontiera, A. I. Henry, E. Ringe, and R. P. Van Duyne, “SERS: materials, applications, and the future,” Mater. Today 15, 16–25 (2012).
[Crossref]

Gallinet, B.

Gindre, D.

C. Hubert, L. Billot, P. M. Adam, R. Bachelot, P. Royer, J. Grand, D. Gindre, K. D. Dorkenoo, and A. Fort, “Role of surface plasmon in second harmonic generation from gold nanorods,” Appl. Phys. Lett. 90, 181105 (2007).
[Crossref]

Grand, J.

C. Hubert, L. Billot, P. M. Adam, R. Bachelot, P. Royer, J. Grand, D. Gindre, K. D. Dorkenoo, and A. Fort, “Role of surface plasmon in second harmonic generation from gold nanorods,” Appl. Phys. Lett. 90, 181105 (2007).
[Crossref]

Grossmann, F.

L. Persechini, M. Ranjan, F. Grossmann, S. Facsko, and J. F. McGilp, “The linear and nonlinear optical response of native–oxide covered rippled Si templates with nanoscale periodicity,” Phys. Status Solidi B. 249, 1173–1177 (2012).
[Crossref]

Haderlein, M.

C. Sauerbeck, M. Haderlein, B. Schürer, B. Braunschweig, W. Peuker, and R. N. K. Taylor, “Shedding light on the growth of gold nanoshells,” ACS Nano 8, 3088–3096 (2014).
[Crossref] [PubMed]

Harel, E.

S. A. Maier, P.G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nature Mater. 2, 229–232 (2003).
[Crossref]

Harper, J. M E.

R. M. Bradley and J. M E. Harper, “Theory of ripple topography induced by ion bombardment,” J. Vac. Sci. Technol. A 6, 2390–2395 (1988).
[Crossref]

Henry, A. I.

B. Sharma B, R. R. Frontiera, A. I. Henry, E. Ringe, and R. P. Van Duyne, “SERS: materials, applications, and the future,” Mater. Today 15, 16–25 (2012).
[Crossref]

Huang, X.

P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Review of some interesting surface plasmon resonance–enhanced properties of noble metal nanoparticles and their applications to biosystems,” Plasmonics 2, 107–118 (2007).
[Crossref]

Hubert, C.

C. Hubert, L. Billot, P. M. Adam, R. Bachelot, P. Royer, J. Grand, D. Gindre, K. D. Dorkenoo, and A. Fort, “Role of surface plasmon in second harmonic generation from gold nanorods,” Appl. Phys. Lett. 90, 181105 (2007).
[Crossref]

Husu, H.

B. K. Canfield, H. Husu, J. Laukkanen, B. Bai, M. Kuittinen, J. Turunen, and M. Kauranen, “Local field asymmetry drives second-harmonic generation in noncentrosymmetric nanodimers,” Nano Lett. 7, 1251–1255 (2007).
[Crossref] [PubMed]

Jacob, J.

J. Jacob, A. G. Silva, K. Fleischer, and J. F. McGilp, “Optical second–harmonic generation studies of Si(111)- 3×3-Ag and Si(111)-3×1-Ag grown on vicinal Si(111),” Phys. Status Solidi C. 5, 2649–2652 (2008).
[Crossref]

Jain, P. K.

P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Review of some interesting surface plasmon resonance–enhanced properties of noble metal nanoparticles and their applications to biosystems,” Plasmonics 2, 107–118 (2007).
[Crossref]

Jefimovs, K.

B. K. Canfield, S. Kujala, K. Jefimovs, T. Vallius, J. Turunen, and M. Kauranen, “Polarization effects in the linear and nonlinear optical responses of gold nanoparticle arrays,” J. Opt. A:Pure Appl. Op. 7, S110 (2005).
[Crossref]

Jonin, C.

G. Bachelier, J. Butet, I. Russier-Antoine, C. Jonin, E. Benichou, and P. F. Brevet, “Origin of optical second-harmonic generation in spherical gold nanoparticles: local surface and nonlocal bulk contributions,” Phys. Rev. B. 82, 235403 (2010)
[Crossref]

Kauranen, M.

B. K. Canfield, H. Husu, J. Laukkanen, B. Bai, M. Kuittinen, J. Turunen, and M. Kauranen, “Local field asymmetry drives second-harmonic generation in noncentrosymmetric nanodimers,” Nano Lett. 7, 1251–1255 (2007).
[Crossref] [PubMed]

B. K. Canfield, S. Kujala, K. Jefimovs, T. Vallius, J. Turunen, and M. Kauranen, “Polarization effects in the linear and nonlinear optical responses of gold nanoparticle arrays,” J. Opt. A:Pure Appl. Op. 7, S110 (2005).
[Crossref]

Keller, A.

A. Keller and S. Facsko S, “Ion-Induced Nanoscale Ripple Patterns on Si Surfaces: Theory and Experiment,” Materials 3, 4811–4841 (2010).
[Crossref]

T. W. H. Oates, A. Keller, S. Facsko, and S. Mücklich, “Aligned silver nanoparticles on rippled silicon templates exhibiting anisotropic plasmon absorption,” Plasmonics 2, 47–50 (2007).
[Crossref]

Kik, P.G.

S. A. Maier, P.G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nature Mater. 2, 229–232 (2003).
[Crossref]

Koel, B. E.

S. A. Maier, P.G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nature Mater. 2, 229–232 (2003).
[Crossref]

Kreibig, U.

U. Kreibig and M. Vollmer, “Optical Properties of Metal Clusters” (Springer, 1995).
[Crossref]

Kuittinen, M.

B. K. Canfield, H. Husu, J. Laukkanen, B. Bai, M. Kuittinen, J. Turunen, and M. Kauranen, “Local field asymmetry drives second-harmonic generation in noncentrosymmetric nanodimers,” Nano Lett. 7, 1251–1255 (2007).
[Crossref] [PubMed]

Kujala, S.

B. K. Canfield, S. Kujala, K. Jefimovs, T. Vallius, J. Turunen, and M. Kauranen, “Polarization effects in the linear and nonlinear optical responses of gold nanoparticle arrays,” J. Opt. A:Pure Appl. Op. 7, S110 (2005).
[Crossref]

Lantiat, D.

S. Camelio, D. Babonneau, D. Lantiat, and L. Simonot, “Self–organized growth and optical properties of silver nanoparticle chains and stripes,” Europhys. Lett.79, (2007).
[Crossref]

Larciprete, M. C.

A. Belardini, M. C. Larciprete, M. Centini, E. Fazio E, C. Sibilia, M. Bertolotti, A. Toma, D. Chiappe, and F. Buatier De Mongeot, “Tailored second-harmonic generation from self-organized metal nano-wires arrays,” Opt. Exp. 17, 3603–3609 (2009).
[Crossref]

Laukkanen, J.

B. K. Canfield, H. Husu, J. Laukkanen, B. Bai, M. Kuittinen, J. Turunen, and M. Kauranen, “Local field asymmetry drives second-harmonic generation in noncentrosymmetric nanodimers,” Nano Lett. 7, 1251–1255 (2007).
[Crossref] [PubMed]

Li, J.

Li, Z. Y.

Liu, S. Y.

Luepke, G.

G. Luepke, “Characterization of semiconductor interfaces by second-harmonic generation,” Surf. Sci. Rep. 35, 3–4 (1999).

Maier, S. A.

S. A. Maier, P.G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nature Mater. 2, 229–232 (2003).
[Crossref]

Maradudin, A. A.

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408, 131–314 (2005).
[Crossref]

Martin, J. F. O.

Martin, O. J. F.

J. Butet, K. Thyagarajan, and O. J. F. Martin, “Ultrasensitive optical shape characterization of gold nanoantennas using second harmonic generation,” Nano Lett. 13, 1787–1792 (2013).
[Crossref] [PubMed]

McAlinden, N.

L. Persechini, R. Verre, N. McAlinden, J. J. Wang, M. Ranjan, S. Facsko, I. V. Shvets, and J. F. McGilp, “An analytic approach to modeling the optical response of anisotropic nanoparticle arrays at surfaces and interfaces,” J. Phys. Condens. Matter 26, 145302 (2014).
[Crossref] [PubMed]

R. Verre, K. Fleischer, C. Smith, N. McAlinden, J. F. McGilp, and I. V. Shvets, “Probing the out-of-plane optical response of plasmonic nanostructures using spectroscopic ellipsometry,” Phys. Rev. B. 84, 085440 (2011).
[Crossref]

R. Verre, K. Fleischer, R. G. S. Sofin, N. McAlinden, J. F. McGilp, and I. V. Shvets, “In situ characterization of one–dimensional plasmonic Ag nanocluster arrays,” Phys. Rev. B.83, (2011).
[Crossref]

McGilp, J. F.

L. Persechini, R. Verre, N. McAlinden, J. J. Wang, M. Ranjan, S. Facsko, I. V. Shvets, and J. F. McGilp, “An analytic approach to modeling the optical response of anisotropic nanoparticle arrays at surfaces and interfaces,” J. Phys. Condens. Matter 26, 145302 (2014).
[Crossref] [PubMed]

R. Verre, M. Modreanu, O. Ualibek, D. Fox, K. Fleischer, C. Smith, H. Zhang, M. Pemble, J. F. McGilp, and I. V. Shvets, “General approach to the analysis of plasmonic structures using spectroscopic ellipsometry,” Phys. Rev. B. 87, 235428 (2013).
[Crossref]

R. Verre, K. Fleischer, J. F. McGilp, D. Fox, G. Behan, H. Zhang, and I. V. Shvets, “Controlled in situ growth of tunable plasmonic self–assembled nanoparticle arrays,” Nanotechnology 23, 035606 (2012).
[Crossref]

L. Persechini, M. Ranjan, F. Grossmann, S. Facsko, and J. F. McGilp, “The linear and nonlinear optical response of native–oxide covered rippled Si templates with nanoscale periodicity,” Phys. Status Solidi B. 249, 1173–1177 (2012).
[Crossref]

R. Verre, K. Fleischer, C. Smith, N. McAlinden, J. F. McGilp, and I. V. Shvets, “Probing the out-of-plane optical response of plasmonic nanostructures using spectroscopic ellipsometry,” Phys. Rev. B. 84, 085440 (2011).
[Crossref]

J. Jacob, A. G. Silva, K. Fleischer, and J. F. McGilp, “Optical second–harmonic generation studies of Si(111)- 3×3-Ag and Si(111)-3×1-Ag grown on vicinal Si(111),” Phys. Status Solidi C. 5, 2649–2652 (2008).
[Crossref]

J. R. Power, J. D. O’Mahony, S. Chandola, and J. F. McGilp, “Resonant optical second–harmonic generation at the steps of vicinal Si(001),” Phys. Rev. Lett. 75, 1138–1141 (1995).
[Crossref] [PubMed]

R. Verre, K. Fleischer, R. G. S. Sofin, N. McAlinden, J. F. McGilp, and I. V. Shvets, “In situ characterization of one–dimensional plasmonic Ag nanocluster arrays,” Phys. Rev. B.83, (2011).
[Crossref]

McGlip, J. F.

J. F. McGlip, “Optical characterisation of semiconductor surfaces and interfaces,” Prog. Surf. Sci. 49, 1–106 (1995).
[Crossref]

Meltzer, S.

S. A. Maier, P.G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nature Mater. 2, 229–232 (2003).
[Crossref]

Modreanu, M.

R. Verre, M. Modreanu, O. Ualibek, D. Fox, K. Fleischer, C. Smith, H. Zhang, M. Pemble, J. F. McGilp, and I. V. Shvets, “General approach to the analysis of plasmonic structures using spectroscopic ellipsometry,” Phys. Rev. B. 87, 235428 (2013).
[Crossref]

Mücklich, S.

T. W. H. Oates, A. Keller, S. Facsko, and S. Mücklich, “Aligned silver nanoparticles on rippled silicon templates exhibiting anisotropic plasmon absorption,” Plasmonics 2, 47–50 (2007).
[Crossref]

Mukherjee, S.

M. Ranjan, S. Facsko, M. Fritzsche, and S. Mukherjee, “Plasmon resonance tuning in Ag nanoparticles arrays grown on ripple patterned templates,” Microelectron. Eng. 102, 44–47 (2013).
[Crossref]

O’Mahony, J. D.

J. R. Power, J. D. O’Mahony, S. Chandola, and J. F. McGilp, “Resonant optical second–harmonic generation at the steps of vicinal Si(001),” Phys. Rev. Lett. 75, 1138–1141 (1995).
[Crossref] [PubMed]

Oates, T. W. H.

T. W. H. Oates, A. Keller, S. Facsko, and S. Mücklich, “Aligned silver nanoparticles on rippled silicon templates exhibiting anisotropic plasmon absorption,” Plasmonics 2, 47–50 (2007).
[Crossref]

Pemble, M.

R. Verre, M. Modreanu, O. Ualibek, D. Fox, K. Fleischer, C. Smith, H. Zhang, M. Pemble, J. F. McGilp, and I. V. Shvets, “General approach to the analysis of plasmonic structures using spectroscopic ellipsometry,” Phys. Rev. B. 87, 235428 (2013).
[Crossref]

Persechini, L.

L. Persechini, R. Verre, N. McAlinden, J. J. Wang, M. Ranjan, S. Facsko, I. V. Shvets, and J. F. McGilp, “An analytic approach to modeling the optical response of anisotropic nanoparticle arrays at surfaces and interfaces,” J. Phys. Condens. Matter 26, 145302 (2014).
[Crossref] [PubMed]

L. Persechini, M. Ranjan, F. Grossmann, S. Facsko, and J. F. McGilp, “The linear and nonlinear optical response of native–oxide covered rippled Si templates with nanoscale periodicity,” Phys. Status Solidi B. 249, 1173–1177 (2012).
[Crossref]

Peuker, W.

C. Sauerbeck, M. Haderlein, B. Schürer, B. Braunschweig, W. Peuker, and R. N. K. Taylor, “Shedding light on the growth of gold nanoshells,” ACS Nano 8, 3088–3096 (2014).
[Crossref] [PubMed]

Polman, A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nature Mater. 9, 205–213 (2010).
[Crossref]

Power, J. R.

J. R. Power, J. D. O’Mahony, S. Chandola, and J. F. McGilp, “Resonant optical second–harmonic generation at the steps of vicinal Si(001),” Phys. Rev. Lett. 75, 1138–1141 (1995).
[Crossref] [PubMed]

Ranjan, M.

L. Persechini, R. Verre, N. McAlinden, J. J. Wang, M. Ranjan, S. Facsko, I. V. Shvets, and J. F. McGilp, “An analytic approach to modeling the optical response of anisotropic nanoparticle arrays at surfaces and interfaces,” J. Phys. Condens. Matter 26, 145302 (2014).
[Crossref] [PubMed]

M. Ranjan, S. Facsko, M. Fritzsche, and S. Mukherjee, “Plasmon resonance tuning in Ag nanoparticles arrays grown on ripple patterned templates,” Microelectron. Eng. 102, 44–47 (2013).
[Crossref]

M. Ranjan and S. Facsko, “Anisotropic surface enhanced Raman scattering in nanoparticle and nanowire arrays,” Nanotechnology 23, 485307 (2012).
[Crossref] [PubMed]

L. Persechini, M. Ranjan, F. Grossmann, S. Facsko, and J. F. McGilp, “The linear and nonlinear optical response of native–oxide covered rippled Si templates with nanoscale periodicity,” Phys. Status Solidi B. 249, 1173–1177 (2012).
[Crossref]

Ren, M. L.

Requicha, A. A. G.

S. A. Maier, P.G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nature Mater. 2, 229–232 (2003).
[Crossref]

Ringe, E.

B. Sharma B, R. R. Frontiera, A. I. Henry, E. Ringe, and R. P. Van Duyne, “SERS: materials, applications, and the future,” Mater. Today 15, 16–25 (2012).
[Crossref]

Rousselet, S.

S. Camelio, E. Vandenhecke, S. Rousselet, and D. Babonneau, “Optimization of growth and ordering of Ag nanoparticle arrays on ripple patterned alumina surfaces for strong plasmonic coupling,” Nanotechnology 25, 035706 (2014).
[Crossref]

Royer, P.

C. Hubert, L. Billot, P. M. Adam, R. Bachelot, P. Royer, J. Grand, D. Gindre, K. D. Dorkenoo, and A. Fort, “Role of surface plasmon in second harmonic generation from gold nanorods,” Appl. Phys. Lett. 90, 181105 (2007).
[Crossref]

Rusponi, S.

S. Rusponi, G. Costantini, C. Boragno, and U. Valbusa, “Ripple wave vector rotation in anisotropic crystal sputtering,” Phys. Rev. Lett. 81, 2735–2738 (1998).
[Crossref]

Russier-Antoine, I.

G. Bachelier, J. Butet, I. Russier-Antoine, C. Jonin, E. Benichou, and P. F. Brevet, “Origin of optical second-harmonic generation in spherical gold nanoparticles: local surface and nonlocal bulk contributions,” Phys. Rev. B. 82, 235403 (2010)
[Crossref]

Sauerbeck, C.

C. Sauerbeck, M. Haderlein, B. Schürer, B. Braunschweig, W. Peuker, and R. N. K. Taylor, “Shedding light on the growth of gold nanoshells,” ACS Nano 8, 3088–3096 (2014).
[Crossref] [PubMed]

Schürer, B.

C. Sauerbeck, M. Haderlein, B. Schürer, B. Braunschweig, W. Peuker, and R. N. K. Taylor, “Shedding light on the growth of gold nanoshells,” ACS Nano 8, 3088–3096 (2014).
[Crossref] [PubMed]

Sharma B, B.

B. Sharma B, R. R. Frontiera, A. I. Henry, E. Ringe, and R. P. Van Duyne, “SERS: materials, applications, and the future,” Mater. Today 15, 16–25 (2012).
[Crossref]

Shvets, I. V.

L. Persechini, R. Verre, N. McAlinden, J. J. Wang, M. Ranjan, S. Facsko, I. V. Shvets, and J. F. McGilp, “An analytic approach to modeling the optical response of anisotropic nanoparticle arrays at surfaces and interfaces,” J. Phys. Condens. Matter 26, 145302 (2014).
[Crossref] [PubMed]

R. Verre, M. Modreanu, O. Ualibek, D. Fox, K. Fleischer, C. Smith, H. Zhang, M. Pemble, J. F. McGilp, and I. V. Shvets, “General approach to the analysis of plasmonic structures using spectroscopic ellipsometry,” Phys. Rev. B. 87, 235428 (2013).
[Crossref]

R. Verre, K. Fleischer, J. F. McGilp, D. Fox, G. Behan, H. Zhang, and I. V. Shvets, “Controlled in situ growth of tunable plasmonic self–assembled nanoparticle arrays,” Nanotechnology 23, 035606 (2012).
[Crossref]

R. Verre, K. Fleischer, C. Smith, N. McAlinden, J. F. McGilp, and I. V. Shvets, “Probing the out-of-plane optical response of plasmonic nanostructures using spectroscopic ellipsometry,” Phys. Rev. B. 84, 085440 (2011).
[Crossref]

R. Verre, K. Fleischer, R. G. S. Sofin, N. McAlinden, J. F. McGilp, and I. V. Shvets, “In situ characterization of one–dimensional plasmonic Ag nanocluster arrays,” Phys. Rev. B.83, (2011).
[Crossref]

Sibilia, C.

A. Belardini, M. C. Larciprete, M. Centini, E. Fazio E, C. Sibilia, M. Bertolotti, A. Toma, D. Chiappe, and F. Buatier De Mongeot, “Tailored second-harmonic generation from self-organized metal nano-wires arrays,” Opt. Exp. 17, 3603–3609 (2009).
[Crossref]

Silva, A. G.

J. Jacob, A. G. Silva, K. Fleischer, and J. F. McGilp, “Optical second–harmonic generation studies of Si(111)- 3×3-Ag and Si(111)-3×1-Ag grown on vicinal Si(111),” Phys. Status Solidi C. 5, 2649–2652 (2008).
[Crossref]

Simonot, L.

S. Camelio, D. Babonneau, D. Lantiat, and L. Simonot, “Self–organized growth and optical properties of silver nanoparticle chains and stripes,” Europhys. Lett.79, (2007).
[Crossref]

Smith, C.

R. Verre, M. Modreanu, O. Ualibek, D. Fox, K. Fleischer, C. Smith, H. Zhang, M. Pemble, J. F. McGilp, and I. V. Shvets, “General approach to the analysis of plasmonic structures using spectroscopic ellipsometry,” Phys. Rev. B. 87, 235428 (2013).
[Crossref]

R. Verre, K. Fleischer, C. Smith, N. McAlinden, J. F. McGilp, and I. V. Shvets, “Probing the out-of-plane optical response of plasmonic nanostructures using spectroscopic ellipsometry,” Phys. Rev. B. 84, 085440 (2011).
[Crossref]

Smolyaninov, I. I.

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408, 131–314 (2005).
[Crossref]

Sofin, R. G. S.

R. Verre, K. Fleischer, R. G. S. Sofin, N. McAlinden, J. F. McGilp, and I. V. Shvets, “In situ characterization of one–dimensional plasmonic Ag nanocluster arrays,” Phys. Rev. B.83, (2011).
[Crossref]

Taylor, R. N. K.

C. Sauerbeck, M. Haderlein, B. Schürer, B. Braunschweig, W. Peuker, and R. N. K. Taylor, “Shedding light on the growth of gold nanoshells,” ACS Nano 8, 3088–3096 (2014).
[Crossref] [PubMed]

Thyagarajan, K.

J. Butet, K. Thyagarajan, and O. J. F. Martin, “Ultrasensitive optical shape characterization of gold nanoantennas using second harmonic generation,” Nano Lett. 13, 1787–1792 (2013).
[Crossref] [PubMed]

J. Butet, B. Gallinet, K. Thyagarajan, and J. F. O. Martin, “Second-harmonic generation from periodic arrays of arbitrary shape plasmonic nanostructures: a surface integral approach,” J. Opt. Soc. Am. B 30, 2970–2979 (2013).
[Crossref]

Toma, A.

A. Toma, D. Chiappe, C. Boragno, and F. Buatier de Mongeot, “Self-organized ion-beam synthesis of nanowires with broadband plasmonic functionality,” Phys. Rev. B 81, 165436 (2010).
[Crossref]

A. Belardini, M. C. Larciprete, M. Centini, E. Fazio E, C. Sibilia, M. Bertolotti, A. Toma, D. Chiappe, and F. Buatier De Mongeot, “Tailored second-harmonic generation from self-organized metal nano-wires arrays,” Opt. Exp. 17, 3603–3609 (2009).
[Crossref]

Turunen, J.

B. K. Canfield, H. Husu, J. Laukkanen, B. Bai, M. Kuittinen, J. Turunen, and M. Kauranen, “Local field asymmetry drives second-harmonic generation in noncentrosymmetric nanodimers,” Nano Lett. 7, 1251–1255 (2007).
[Crossref] [PubMed]

B. K. Canfield, S. Kujala, K. Jefimovs, T. Vallius, J. Turunen, and M. Kauranen, “Polarization effects in the linear and nonlinear optical responses of gold nanoparticle arrays,” J. Opt. A:Pure Appl. Op. 7, S110 (2005).
[Crossref]

Ualibek, O.

R. Verre, M. Modreanu, O. Ualibek, D. Fox, K. Fleischer, C. Smith, H. Zhang, M. Pemble, J. F. McGilp, and I. V. Shvets, “General approach to the analysis of plasmonic structures using spectroscopic ellipsometry,” Phys. Rev. B. 87, 235428 (2013).
[Crossref]

Valbusa, U.

S. Rusponi, G. Costantini, C. Boragno, and U. Valbusa, “Ripple wave vector rotation in anisotropic crystal sputtering,” Phys. Rev. Lett. 81, 2735–2738 (1998).
[Crossref]

Valev, V. K.

V. K. Valev, “Characterization of Nanostructured Plasmonic surfaces with second harmonic generation,” Langmuir 28, 15454–15471 (2012).
[Crossref] [PubMed]

Vallius, T.

B. K. Canfield, S. Kujala, K. Jefimovs, T. Vallius, J. Turunen, and M. Kauranen, “Polarization effects in the linear and nonlinear optical responses of gold nanoparticle arrays,” J. Opt. A:Pure Appl. Op. 7, S110 (2005).
[Crossref]

Van Duyne, R. P.

B. Sharma B, R. R. Frontiera, A. I. Henry, E. Ringe, and R. P. Van Duyne, “SERS: materials, applications, and the future,” Mater. Today 15, 16–25 (2012).
[Crossref]

Van Nostrand, J. E.

S. J. Chey, J. E. Van Nostrand, and D. G. Cahill, “Surface morphology of Ge(001) during etching by low–energy ions,” Phys. Rev. B 52, 16696–16701 (1995).
[Crossref]

Vandenhecke, E.

S. Camelio, E. Vandenhecke, S. Rousselet, and D. Babonneau, “Optimization of growth and ordering of Ag nanoparticle arrays on ripple patterned alumina surfaces for strong plasmonic coupling,” Nanotechnology 25, 035706 (2014).
[Crossref]

Verre, R.

L. Persechini, R. Verre, N. McAlinden, J. J. Wang, M. Ranjan, S. Facsko, I. V. Shvets, and J. F. McGilp, “An analytic approach to modeling the optical response of anisotropic nanoparticle arrays at surfaces and interfaces,” J. Phys. Condens. Matter 26, 145302 (2014).
[Crossref] [PubMed]

R. Verre, M. Modreanu, O. Ualibek, D. Fox, K. Fleischer, C. Smith, H. Zhang, M. Pemble, J. F. McGilp, and I. V. Shvets, “General approach to the analysis of plasmonic structures using spectroscopic ellipsometry,” Phys. Rev. B. 87, 235428 (2013).
[Crossref]

R. Verre, K. Fleischer, J. F. McGilp, D. Fox, G. Behan, H. Zhang, and I. V. Shvets, “Controlled in situ growth of tunable plasmonic self–assembled nanoparticle arrays,” Nanotechnology 23, 035606 (2012).
[Crossref]

R. Verre, K. Fleischer, C. Smith, N. McAlinden, J. F. McGilp, and I. V. Shvets, “Probing the out-of-plane optical response of plasmonic nanostructures using spectroscopic ellipsometry,” Phys. Rev. B. 84, 085440 (2011).
[Crossref]

R. Verre, K. Fleischer, R. G. S. Sofin, N. McAlinden, J. F. McGilp, and I. V. Shvets, “In situ characterization of one–dimensional plasmonic Ag nanocluster arrays,” Phys. Rev. B.83, (2011).
[Crossref]

Vollmer, M.

U. Kreibig and M. Vollmer, “Optical Properties of Metal Clusters” (Springer, 1995).
[Crossref]

Wang, B. L.

Wang, J. J.

L. Persechini, R. Verre, N. McAlinden, J. J. Wang, M. Ranjan, S. Facsko, I. V. Shvets, and J. F. McGilp, “An analytic approach to modeling the optical response of anisotropic nanoparticle arrays at surfaces and interfaces,” J. Phys. Condens. Matter 26, 145302 (2014).
[Crossref] [PubMed]

Zayats, A. V.

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408, 131–314 (2005).
[Crossref]

Zhang, H.

R. Verre, M. Modreanu, O. Ualibek, D. Fox, K. Fleischer, C. Smith, H. Zhang, M. Pemble, J. F. McGilp, and I. V. Shvets, “General approach to the analysis of plasmonic structures using spectroscopic ellipsometry,” Phys. Rev. B. 87, 235428 (2013).
[Crossref]

R. Verre, K. Fleischer, J. F. McGilp, D. Fox, G. Behan, H. Zhang, and I. V. Shvets, “Controlled in situ growth of tunable plasmonic self–assembled nanoparticle arrays,” Nanotechnology 23, 035606 (2012).
[Crossref]

ACS Nano (1)

C. Sauerbeck, M. Haderlein, B. Schürer, B. Braunschweig, W. Peuker, and R. N. K. Taylor, “Shedding light on the growth of gold nanoshells,” ACS Nano 8, 3088–3096 (2014).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

C. Hubert, L. Billot, P. M. Adam, R. Bachelot, P. Royer, J. Grand, D. Gindre, K. D. Dorkenoo, and A. Fort, “Role of surface plasmon in second harmonic generation from gold nanorods,” Appl. Phys. Lett. 90, 181105 (2007).
[Crossref]

J. Appl. Phys. (1)

W. L. Chan and E. Chason, “Making waves: kinetic processes controlling surface evolution during low energy ion sputtering,” J. Appl. Phys. 101, 121301 (2007).
[Crossref]

J. Opt. A:Pure Appl. Op. (1)

B. K. Canfield, S. Kujala, K. Jefimovs, T. Vallius, J. Turunen, and M. Kauranen, “Polarization effects in the linear and nonlinear optical responses of gold nanoparticle arrays,” J. Opt. A:Pure Appl. Op. 7, S110 (2005).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. Condens. Matter (1)

L. Persechini, R. Verre, N. McAlinden, J. J. Wang, M. Ranjan, S. Facsko, I. V. Shvets, and J. F. McGilp, “An analytic approach to modeling the optical response of anisotropic nanoparticle arrays at surfaces and interfaces,” J. Phys. Condens. Matter 26, 145302 (2014).
[Crossref] [PubMed]

J. Vac. Sci. Technol. A (1)

R. M. Bradley and J. M E. Harper, “Theory of ripple topography induced by ion bombardment,” J. Vac. Sci. Technol. A 6, 2390–2395 (1988).
[Crossref]

Langmuir (1)

V. K. Valev, “Characterization of Nanostructured Plasmonic surfaces with second harmonic generation,” Langmuir 28, 15454–15471 (2012).
[Crossref] [PubMed]

Mater. Today (1)

B. Sharma B, R. R. Frontiera, A. I. Henry, E. Ringe, and R. P. Van Duyne, “SERS: materials, applications, and the future,” Mater. Today 15, 16–25 (2012).
[Crossref]

Materials (1)

A. Keller and S. Facsko S, “Ion-Induced Nanoscale Ripple Patterns on Si Surfaces: Theory and Experiment,” Materials 3, 4811–4841 (2010).
[Crossref]

Microelectron. Eng. (1)

M. Ranjan, S. Facsko, M. Fritzsche, and S. Mukherjee, “Plasmon resonance tuning in Ag nanoparticles arrays grown on ripple patterned templates,” Microelectron. Eng. 102, 44–47 (2013).
[Crossref]

Nano Lett. (2)

B. K. Canfield, H. Husu, J. Laukkanen, B. Bai, M. Kuittinen, J. Turunen, and M. Kauranen, “Local field asymmetry drives second-harmonic generation in noncentrosymmetric nanodimers,” Nano Lett. 7, 1251–1255 (2007).
[Crossref] [PubMed]

J. Butet, K. Thyagarajan, and O. J. F. Martin, “Ultrasensitive optical shape characterization of gold nanoantennas using second harmonic generation,” Nano Lett. 13, 1787–1792 (2013).
[Crossref] [PubMed]

Nanotechnology (3)

R. Verre, K. Fleischer, J. F. McGilp, D. Fox, G. Behan, H. Zhang, and I. V. Shvets, “Controlled in situ growth of tunable plasmonic self–assembled nanoparticle arrays,” Nanotechnology 23, 035606 (2012).
[Crossref]

M. Ranjan and S. Facsko, “Anisotropic surface enhanced Raman scattering in nanoparticle and nanowire arrays,” Nanotechnology 23, 485307 (2012).
[Crossref] [PubMed]

S. Camelio, E. Vandenhecke, S. Rousselet, and D. Babonneau, “Optimization of growth and ordering of Ag nanoparticle arrays on ripple patterned alumina surfaces for strong plasmonic coupling,” Nanotechnology 25, 035706 (2014).
[Crossref]

Nature Mater. (2)

S. A. Maier, P.G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nature Mater. 2, 229–232 (2003).
[Crossref]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nature Mater. 9, 205–213 (2010).
[Crossref]

Opt. Exp. (1)

A. Belardini, M. C. Larciprete, M. Centini, E. Fazio E, C. Sibilia, M. Bertolotti, A. Toma, D. Chiappe, and F. Buatier De Mongeot, “Tailored second-harmonic generation from self-organized metal nano-wires arrays,” Opt. Exp. 17, 3603–3609 (2009).
[Crossref]

Opt. Express (1)

Phys. Rep. (1)

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408, 131–314 (2005).
[Crossref]

Phys. Rev. B (2)

A. Toma, D. Chiappe, C. Boragno, and F. Buatier de Mongeot, “Self-organized ion-beam synthesis of nanowires with broadband plasmonic functionality,” Phys. Rev. B 81, 165436 (2010).
[Crossref]

S. J. Chey, J. E. Van Nostrand, and D. G. Cahill, “Surface morphology of Ge(001) during etching by low–energy ions,” Phys. Rev. B 52, 16696–16701 (1995).
[Crossref]

Phys. Rev. B. (3)

G. Bachelier, J. Butet, I. Russier-Antoine, C. Jonin, E. Benichou, and P. F. Brevet, “Origin of optical second-harmonic generation in spherical gold nanoparticles: local surface and nonlocal bulk contributions,” Phys. Rev. B. 82, 235403 (2010)
[Crossref]

R. Verre, M. Modreanu, O. Ualibek, D. Fox, K. Fleischer, C. Smith, H. Zhang, M. Pemble, J. F. McGilp, and I. V. Shvets, “General approach to the analysis of plasmonic structures using spectroscopic ellipsometry,” Phys. Rev. B. 87, 235428 (2013).
[Crossref]

R. Verre, K. Fleischer, C. Smith, N. McAlinden, J. F. McGilp, and I. V. Shvets, “Probing the out-of-plane optical response of plasmonic nanostructures using spectroscopic ellipsometry,” Phys. Rev. B. 84, 085440 (2011).
[Crossref]

Phys. Rev. Lett. (2)

J. R. Power, J. D. O’Mahony, S. Chandola, and J. F. McGilp, “Resonant optical second–harmonic generation at the steps of vicinal Si(001),” Phys. Rev. Lett. 75, 1138–1141 (1995).
[Crossref] [PubMed]

S. Rusponi, G. Costantini, C. Boragno, and U. Valbusa, “Ripple wave vector rotation in anisotropic crystal sputtering,” Phys. Rev. Lett. 81, 2735–2738 (1998).
[Crossref]

Phys. Status Solidi B. (1)

L. Persechini, M. Ranjan, F. Grossmann, S. Facsko, and J. F. McGilp, “The linear and nonlinear optical response of native–oxide covered rippled Si templates with nanoscale periodicity,” Phys. Status Solidi B. 249, 1173–1177 (2012).
[Crossref]

Phys. Status Solidi C. (1)

J. Jacob, A. G. Silva, K. Fleischer, and J. F. McGilp, “Optical second–harmonic generation studies of Si(111)- 3×3-Ag and Si(111)-3×1-Ag grown on vicinal Si(111),” Phys. Status Solidi C. 5, 2649–2652 (2008).
[Crossref]

Plasmonics (2)

T. W. H. Oates, A. Keller, S. Facsko, and S. Mücklich, “Aligned silver nanoparticles on rippled silicon templates exhibiting anisotropic plasmon absorption,” Plasmonics 2, 47–50 (2007).
[Crossref]

P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Review of some interesting surface plasmon resonance–enhanced properties of noble metal nanoparticles and their applications to biosystems,” Plasmonics 2, 107–118 (2007).
[Crossref]

Prog. Surf. Sci. (1)

J. F. McGlip, “Optical characterisation of semiconductor surfaces and interfaces,” Prog. Surf. Sci. 49, 1–106 (1995).
[Crossref]

Surf. Sci. Rep. (1)

G. Luepke, “Characterization of semiconductor interfaces by second-harmonic generation,” Surf. Sci. Rep. 35, 3–4 (1999).

Other (3)

R. Verre, K. Fleischer, R. G. S. Sofin, N. McAlinden, J. F. McGilp, and I. V. Shvets, “In situ characterization of one–dimensional plasmonic Ag nanocluster arrays,” Phys. Rev. B.83, (2011).
[Crossref]

U. Kreibig and M. Vollmer, “Optical Properties of Metal Clusters” (Springer, 1995).
[Crossref]

S. Camelio, D. Babonneau, D. Lantiat, and L. Simonot, “Self–organized growth and optical properties of silver nanoparticle chains and stripes,” Europhys. Lett.79, (2007).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) SEM image of Ag clusters on faceted Al2O3. Inset: SEM image of Ag clusters on unannealed Al2O3, where the Ag is deposited perpendicularly to the sample surface (scale bar 100 nm). (b) SEM image of Ag clusters on rippled Si(001) prior to capping with amorphous Si. (c) High magnification cross–sectional TEM image of Ag along the step edge of a faceted template, with an 8 nm scale bar (after [29]). (d) Cross–sectional TEM image of Ag NPs on a native–oxide–covered rippled Si substrate, with a 20 nm scale bar (after [30]). The larger particles are located in the ripple valleys.

Fig. 2
Fig. 2

Geometry of SHG measurements, where the polarization vector of the input beam is rotated and either the s– or p–polarized SH intensity is measured. The plane of incidence is aligned either along (y–azimuth) or across (x–azimuth) the NP arrays.

Fig. 3
Fig. 3

Absorbance spectra of Ag NPs arrays [Fig. 1(a)] on flat and faceted alumina probed by spectrophotometry. A correction was applied to the UV region of the spectrum to eliminate an increased background signal due to scattering. Polarization dependent absorbance parallel (black line) and perpendicular (red line) to the islands on faceted Al2O3 is shown. The response from Ag islands on flat Al2O3 (blue line) is also shown. The fundamental and SH wavelengths are marked on the figure.

Fig. 4
Fig. 4

α–p and α–s SH response plotted as a function of polarizer angle in both azimuths, for Ag NPs on flat Al2O3, together with fits (black line) using Eqs. 1 and 2

Fig. 5
Fig. 5

α–p and α–s SH response plotted as a function of polarizer angle along both azimuths, for Ag NPs on faceted Al2O3 together with fits (black line) using Eqs. 1 and 2. Note the change of scale by a factor of 10 in the α-s measurements. The NP arrays are aligned along the y–azimuth

Fig. 6
Fig. 6

SH response of capped Ag on rippled Si substrates from both x and y azimuths plotted as a function of polarizer angle, with fits to Eqs. 1 and 2. Samples S1 (black), S2 (red) and S3 (blue) contain islands of aspect ratio 1.75, 1.60 and 1.47, respectively. Note the change of scale by a factor of 30 in the α-s measurements. The NP arrays are aligned along the y–azimuth

Tables (6)

Tables Icon

Table 1 Average dimensions of Ag NP structure on Al2O3 and rippled Si obtained from analysis of SEM images. S1, S2 and S3 are a–Si/Ag/rippled Si(001). The centre–to–centre NP distances along and across the islands are given by ly and lx, respectively. Estimated errors in parenthesis provide a guide to the variation in dimensions.

Tables Icon

Table 2 Allowed tensor components for each parameter, assuming no symmetry elements, for α-p and α-s measurements

Tables Icon

Table 3 Fitted parameter values for α-p and α-s measurements from Ag NPs on flat Al2O3. Estimated errors are given in parenthesis.

Tables Icon

Table 4 Fitted parameter values for α-p and α-s measurements from Ag NPs on faceted Al2O3. Estimated errors are given in parenthesis.

Tables Icon

Table 5 Fitted parameter values for α-p measurements from Ag NPs on rippled Si. Estimated errors are given in parenthesis.

Tables Icon

Table 6 Fitted parameter values for α-s measurements from Ag NPs on rippled Si. Estimated errors are given in parenthesis.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

I p α | A cos 2 α + B sin 2 α + C sin 2 α | 2
I s α | F cos 2 α + G sin 2 α + H sin 2 α | 2

Metrics