Abstract

We demonstrate direct modulation of a heterogeneously integrated C-band DFB laser on SOI at 28 Gb/s with a 2 dB extinction ratio. This is the highest direct modulation bitrate so far reported for a membrane laser coupled to an SOI waveguide. The laser operates single mode with 6 mW output power at 100 mA bias current. The 3 dB modulation bandwidth is 15 GHz. Transmission experiments using a 2 km non zero dispersion shifted single mode fiber were performed at 28 Gb/s bitrate using a 27-1 NRZ-PRBS pattern resulting in a 1 dB power penalty.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Low-bias current 10 Gbit/s direct modulation of GaInAsP/InP membrane DFB laser on silicon

Daisuke Inoue, Takuo Hiratani, Kai Fukuda, Takahiro Tomiyasu, Tomohiro Amemiya, Nobuhiko Nishiyama, and Shigehisa Arai
Opt. Express 24(16) 18571-18579 (2016)

A low–power high–speed InP microdisk modulator heterogeneously integrated on a SOI waveguide

Jens Hofrichter, Oded Raz, Antonio La Porta, Thomas Morf, Pauline Mechet, Geert Morthier, Tjibbe De Vries, Harm J. S. Dorren, and Bert J. Offrein
Opt. Express 20(9) 9363-9370 (2012)

GaInAsP/InP membrane BH-DFB lasers directly bonded on SOI substrate

Takeo Maruyama, Tadashi Okumura, Shinichi Sakamoto, Koji Miura, Yoshifumi Nishimoto, and Shigehisa Arai
Opt. Express 14(18) 8184-8188 (2006)

References

  • View by:
  • |
  • |
  • |

  1. D. Miller, “Device requirement for optical interconnects to Silicon chips,” Proc. IEEE 97(7), 1166–1185 (2009).
    [Crossref]
  2. G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
    [Crossref]
  3. S. Selvaraja, W. Bogaerts, P. Dumon, D. Van Thourhout, and R. Baets, “Subnanometer linewidth uniformity in silicon nanophotonic waveguide devices using CMOS fabrication technology,” IEEE J. Sel. Top. Quantum Electron. 16(1), 316–324 (2010).
    [Crossref]
  4. Y. T. Hu, M. Pantouvaki, S. Brems, I. Asselberghs, C. Huyghebaert, M. Geisler, C. Alessandri, R. Baets, P. Absil, D. Van Thourhout, and J. Van Campenhout, “Broadband 10Gb/s graphene electro-absorption modulator on silicon for chip-level optical interconnects,” IEEE Electron Devices Meeting (IEDM), San Francisco, CA, Dec. (2014).
    [Crossref]
  5. D. Feng, S. Liao, H. Liang, J. Fong, B. Bijlani, R. Shafiiha, B. J. Luff, Y. Luo, J. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “High speed GeSi electro-absorption modulator at 1550 nm wavelength on SOI waveguide,” Opt. Express 20(20), 22224–22232 (2012).
    [Crossref] [PubMed]
  6. L. Vivien, J. Osmond, J. M. Fédéli, D. Marris-Morini, P. Crozat, J. F. Damlencourt, E. Cassan, Y. Lecunff, and S. Laval, “42 GHz p.i.n Germanium photodetector integrated in a silicon-on-insulator waveguide,” Opt. Express 17(8), 6252–6257 (2009).
    [Crossref] [PubMed]
  7. M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19(4), 6100117 (2013).
    [Crossref]
  8. S. R. Jain, M. N. Sysak, G. Kurczveil, and J. E. Bowers, “Integrated hybrid silicon DFB laser-EAM array using quantum well intermixing,” Opt. Express 19(14), 13692–13699 (2011).
    [Crossref] [PubMed]
  9. S. Keyvaninia, S. Verstuyft, L. Van Landschoot, F. Lelarge, G.-H. Duan, S. Messaoudene, J. M. Fedeli, T. De Vries, B. Smalbrugge, E. J. Geluk, J. Bolk, M. Smit, G. Morthier, D. Van Thourhout, and G. Roelkens, “Heterogeneously integrated III-V/silicon distributed feedback lasers,” Opt. Lett. 38(24), 5434–5437 (2013).
    [Crossref] [PubMed]
  10. A. W. Fang, E. Lively, Y. H. Kuo, D. Liang, and J. E. Bowers, “A distributed feedback silicon evanescent laser,” Opt. Express 16(7), 4413–4419 (2008).
    [Crossref] [PubMed]
  11. R. S. Tucker, “Green optical communications-part I: energy limitations in transport,” IEEE J. Sel. Top. Quantum Electron. 17(2), 245–260 (2011).
    [Crossref]
  12. M. Asghari and A. V. Krishnamoorthy, “Silicon photonics: Energy-efficient communication,” Nat. Photonics 5(5), 268–270 (2011).
    [Crossref]
  13. C. Kachris, K. Kanonakis, I. Tomkos, “Optical interconnection networks in data centers: recent trends and future challenges,” IEEE Communication Magazine, Sept. 2013, 39 (2013).
    [Crossref]
  14. G. Sakaino, T. Takiguchi, H. Sakuma, C. Watatani, T. Nagira, D. Suzuki, T. Aoyagi, and T. Ishikawa, “25.8 Gbps direct modulation of BH AlGaInAs DFB lasers with p-InP substrate for low driving current,” in Proc. International Semiconductor Laser Conf. (ISLC), Sep. 2010, 197–198, ThB5.
    [Crossref]
  15. N. Nakamura, M. Shimada, G. Sakaino, T. Nagira, H. Yamaguchi, Y. Okunuki, A. Sugitatsu, and M. Takemi, “25.8Gbps direct modulation AlGaInAs DFB lasers of low power consumption and wide temperature range operation for data center,” in Optical Fiber Communication Conference, paper W2A.53 (2015).
    [Crossref]
  16. S. Matsuo, T. Fujii, K. Hasebe, K. Takeda, T. Sato, and T. Kakitsuka, “Directly modulated buried heterostructure DFB laser on SiO₂/Si substrate fabricated by regrowth of InP using bonded active layer,” Opt. Express 22(10), 12139–12147 (2014).
    [Crossref] [PubMed]
  17. C. Zhang, S. Srinivasan, Y. Tang, M. J. R. Heck, M. L. Davenport, and J. E. Bowers, “Low threshold and high speed short cavity distributed feedback hybrid silicon lasers,” Opt. Express 22(9), 10202–10209 (2014).
    [Crossref] [PubMed]
  18. G. de Valicourt, G. Levaufre, Y. Pointurier, A. Le Liepvre, J.-C. Antona, C. Jany, A. Accard, F. Lelarge, D. Make, and G.-H. Duan, “Direct Modulation of Hybrid-Integrated InP/Si Transmitters for Short and Long Reach Access Network,” J. Lightwave Technol. 33(8), 1608–1616 (2015).
    [Crossref]
  19. S. Keyvaninia, M. Muneeb, S. Stanković, P. J. Van Veldhoven, D. Van Thourhout, and G. Roelkens, “Ultra-thin DVS-BCB adhesive bonding of III-V wafers, dies and multiple dies to a patterned silicon-on-insulator substrate,” Opt. Mater. Express 3(1), 35–46 (2013).
    [Crossref]
  20. J. S. Gustavsson, A. Haglund, J. Bengtsson, and A. Larsson, “High-speed digital modulation characteristics of oxide-confined vertical-cavity surface-emitting lasers—numerical simulations consistent with experimental results,” IEEE J. Quantum Electron. 38(8), 1089–1096 (2002).
    [Crossref]
  21. H. Zhu, Y. Xia, and J.-J. He, “Pattern dependence in high-speed Q-modulated distributed feedback laser,” Opt. Express 23(9), 11887–11897 (2015).
    [Crossref] [PubMed]
  22. A. Chiuchiarelli, M. J. Fice, E. Ciaramella, and A. J. Seeds, “Effective homodyne optical phase locking to PSK signal by means of 8b10b line coding,” Opt. Express 19(3), 1707–1712 (2011).
    [Crossref] [PubMed]

2015 (2)

2014 (2)

2013 (3)

2012 (1)

2011 (4)

2010 (2)

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
[Crossref]

S. Selvaraja, W. Bogaerts, P. Dumon, D. Van Thourhout, and R. Baets, “Subnanometer linewidth uniformity in silicon nanophotonic waveguide devices using CMOS fabrication technology,” IEEE J. Sel. Top. Quantum Electron. 16(1), 316–324 (2010).
[Crossref]

2009 (2)

2008 (1)

2002 (1)

J. S. Gustavsson, A. Haglund, J. Bengtsson, and A. Larsson, “High-speed digital modulation characteristics of oxide-confined vertical-cavity surface-emitting lasers—numerical simulations consistent with experimental results,” IEEE J. Quantum Electron. 38(8), 1089–1096 (2002).
[Crossref]

Accard, A.

Antona, J.-C.

Asghari, M.

Baets, R.

S. Selvaraja, W. Bogaerts, P. Dumon, D. Van Thourhout, and R. Baets, “Subnanometer linewidth uniformity in silicon nanophotonic waveguide devices using CMOS fabrication technology,” IEEE J. Sel. Top. Quantum Electron. 16(1), 316–324 (2010).
[Crossref]

Bauters, J. F.

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19(4), 6100117 (2013).
[Crossref]

Bengtsson, J.

J. S. Gustavsson, A. Haglund, J. Bengtsson, and A. Larsson, “High-speed digital modulation characteristics of oxide-confined vertical-cavity surface-emitting lasers—numerical simulations consistent with experimental results,” IEEE J. Quantum Electron. 38(8), 1089–1096 (2002).
[Crossref]

Bijlani, B.

Bogaerts, W.

S. Selvaraja, W. Bogaerts, P. Dumon, D. Van Thourhout, and R. Baets, “Subnanometer linewidth uniformity in silicon nanophotonic waveguide devices using CMOS fabrication technology,” IEEE J. Sel. Top. Quantum Electron. 16(1), 316–324 (2010).
[Crossref]

Bolk, J.

Bowers, J. E.

Cassan, E.

Chiuchiarelli, A.

Ciaramella, E.

Crozat, P.

Cunningham, J.

Damlencourt, J. F.

Davenport, M. L.

C. Zhang, S. Srinivasan, Y. Tang, M. J. R. Heck, M. L. Davenport, and J. E. Bowers, “Low threshold and high speed short cavity distributed feedback hybrid silicon lasers,” Opt. Express 22(9), 10202–10209 (2014).
[Crossref] [PubMed]

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19(4), 6100117 (2013).
[Crossref]

de Valicourt, G.

De Vries, T.

Doylend, J. K.

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19(4), 6100117 (2013).
[Crossref]

Duan, G.-H.

Dumon, P.

S. Selvaraja, W. Bogaerts, P. Dumon, D. Van Thourhout, and R. Baets, “Subnanometer linewidth uniformity in silicon nanophotonic waveguide devices using CMOS fabrication technology,” IEEE J. Sel. Top. Quantum Electron. 16(1), 316–324 (2010).
[Crossref]

Fang, A. W.

Fedeli, J. M.

Fédéli, J. M.

Feng, D.

Fice, M. J.

Fong, J.

Fujii, T.

Gardes, F. Y.

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
[Crossref]

Geluk, E. J.

Gustavsson, J. S.

J. S. Gustavsson, A. Haglund, J. Bengtsson, and A. Larsson, “High-speed digital modulation characteristics of oxide-confined vertical-cavity surface-emitting lasers—numerical simulations consistent with experimental results,” IEEE J. Quantum Electron. 38(8), 1089–1096 (2002).
[Crossref]

Haglund, A.

J. S. Gustavsson, A. Haglund, J. Bengtsson, and A. Larsson, “High-speed digital modulation characteristics of oxide-confined vertical-cavity surface-emitting lasers—numerical simulations consistent with experimental results,” IEEE J. Quantum Electron. 38(8), 1089–1096 (2002).
[Crossref]

Hasebe, K.

He, J.-J.

Heck, M. J. R.

C. Zhang, S. Srinivasan, Y. Tang, M. J. R. Heck, M. L. Davenport, and J. E. Bowers, “Low threshold and high speed short cavity distributed feedback hybrid silicon lasers,” Opt. Express 22(9), 10202–10209 (2014).
[Crossref] [PubMed]

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19(4), 6100117 (2013).
[Crossref]

Jain, S.

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19(4), 6100117 (2013).
[Crossref]

Jain, S. R.

Jany, C.

Kakitsuka, T.

Keyvaninia, S.

Krishnamoorthy, A. V.

Kuo, Y. H.

Kurczveil, G.

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19(4), 6100117 (2013).
[Crossref]

S. R. Jain, M. N. Sysak, G. Kurczveil, and J. E. Bowers, “Integrated hybrid silicon DFB laser-EAM array using quantum well intermixing,” Opt. Express 19(14), 13692–13699 (2011).
[Crossref] [PubMed]

Larsson, A.

J. S. Gustavsson, A. Haglund, J. Bengtsson, and A. Larsson, “High-speed digital modulation characteristics of oxide-confined vertical-cavity surface-emitting lasers—numerical simulations consistent with experimental results,” IEEE J. Quantum Electron. 38(8), 1089–1096 (2002).
[Crossref]

Laval, S.

Le Liepvre, A.

Lecunff, Y.

Lelarge, F.

Levaufre, G.

Liang, D.

Liang, H.

Liao, S.

Lively, E.

Luff, B. J.

Luo, Y.

Make, D.

Marris-Morini, D.

Mashanovich, G.

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
[Crossref]

Matsuo, S.

Messaoudene, S.

Miller, D.

D. Miller, “Device requirement for optical interconnects to Silicon chips,” Proc. IEEE 97(7), 1166–1185 (2009).
[Crossref]

Morthier, G.

Muneeb, M.

Osmond, J.

Pointurier, Y.

Reed, G. T.

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
[Crossref]

Roelkens, G.

Sato, T.

Seeds, A. J.

Selvaraja, S.

S. Selvaraja, W. Bogaerts, P. Dumon, D. Van Thourhout, and R. Baets, “Subnanometer linewidth uniformity in silicon nanophotonic waveguide devices using CMOS fabrication technology,” IEEE J. Sel. Top. Quantum Electron. 16(1), 316–324 (2010).
[Crossref]

Shafiiha, R.

Smalbrugge, B.

Smit, M.

Srinivasan, S.

C. Zhang, S. Srinivasan, Y. Tang, M. J. R. Heck, M. L. Davenport, and J. E. Bowers, “Low threshold and high speed short cavity distributed feedback hybrid silicon lasers,” Opt. Express 22(9), 10202–10209 (2014).
[Crossref] [PubMed]

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19(4), 6100117 (2013).
[Crossref]

Stankovic, S.

Sysak, M. N.

Takeda, K.

Tang, Y.

C. Zhang, S. Srinivasan, Y. Tang, M. J. R. Heck, M. L. Davenport, and J. E. Bowers, “Low threshold and high speed short cavity distributed feedback hybrid silicon lasers,” Opt. Express 22(9), 10202–10209 (2014).
[Crossref] [PubMed]

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19(4), 6100117 (2013).
[Crossref]

Thomson, D. J.

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
[Crossref]

Tucker, R. S.

R. S. Tucker, “Green optical communications-part I: energy limitations in transport,” IEEE J. Sel. Top. Quantum Electron. 17(2), 245–260 (2011).
[Crossref]

Van Landschoot, L.

Van Thourhout, D.

Van Veldhoven, P. J.

Verstuyft, S.

Vivien, L.

Xia, Y.

Zhang, C.

Zhu, H.

IEEE J. Quantum Electron. (1)

J. S. Gustavsson, A. Haglund, J. Bengtsson, and A. Larsson, “High-speed digital modulation characteristics of oxide-confined vertical-cavity surface-emitting lasers—numerical simulations consistent with experimental results,” IEEE J. Quantum Electron. 38(8), 1089–1096 (2002).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (3)

S. Selvaraja, W. Bogaerts, P. Dumon, D. Van Thourhout, and R. Baets, “Subnanometer linewidth uniformity in silicon nanophotonic waveguide devices using CMOS fabrication technology,” IEEE J. Sel. Top. Quantum Electron. 16(1), 316–324 (2010).
[Crossref]

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19(4), 6100117 (2013).
[Crossref]

R. S. Tucker, “Green optical communications-part I: energy limitations in transport,” IEEE J. Sel. Top. Quantum Electron. 17(2), 245–260 (2011).
[Crossref]

J. Lightwave Technol. (1)

Nat. Photonics (2)

M. Asghari and A. V. Krishnamoorthy, “Silicon photonics: Energy-efficient communication,” Nat. Photonics 5(5), 268–270 (2011).
[Crossref]

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
[Crossref]

Opt. Express (8)

H. Zhu, Y. Xia, and J.-J. He, “Pattern dependence in high-speed Q-modulated distributed feedback laser,” Opt. Express 23(9), 11887–11897 (2015).
[Crossref] [PubMed]

C. Zhang, S. Srinivasan, Y. Tang, M. J. R. Heck, M. L. Davenport, and J. E. Bowers, “Low threshold and high speed short cavity distributed feedback hybrid silicon lasers,” Opt. Express 22(9), 10202–10209 (2014).
[Crossref] [PubMed]

S. Matsuo, T. Fujii, K. Hasebe, K. Takeda, T. Sato, and T. Kakitsuka, “Directly modulated buried heterostructure DFB laser on SiO₂/Si substrate fabricated by regrowth of InP using bonded active layer,” Opt. Express 22(10), 12139–12147 (2014).
[Crossref] [PubMed]

A. W. Fang, E. Lively, Y. H. Kuo, D. Liang, and J. E. Bowers, “A distributed feedback silicon evanescent laser,” Opt. Express 16(7), 4413–4419 (2008).
[Crossref] [PubMed]

L. Vivien, J. Osmond, J. M. Fédéli, D. Marris-Morini, P. Crozat, J. F. Damlencourt, E. Cassan, Y. Lecunff, and S. Laval, “42 GHz p.i.n Germanium photodetector integrated in a silicon-on-insulator waveguide,” Opt. Express 17(8), 6252–6257 (2009).
[Crossref] [PubMed]

A. Chiuchiarelli, M. J. Fice, E. Ciaramella, and A. J. Seeds, “Effective homodyne optical phase locking to PSK signal by means of 8b10b line coding,” Opt. Express 19(3), 1707–1712 (2011).
[Crossref] [PubMed]

S. R. Jain, M. N. Sysak, G. Kurczveil, and J. E. Bowers, “Integrated hybrid silicon DFB laser-EAM array using quantum well intermixing,” Opt. Express 19(14), 13692–13699 (2011).
[Crossref] [PubMed]

D. Feng, S. Liao, H. Liang, J. Fong, B. Bijlani, R. Shafiiha, B. J. Luff, Y. Luo, J. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “High speed GeSi electro-absorption modulator at 1550 nm wavelength on SOI waveguide,” Opt. Express 20(20), 22224–22232 (2012).
[Crossref] [PubMed]

Opt. Lett. (1)

Opt. Mater. Express (1)

Proc. IEEE (1)

D. Miller, “Device requirement for optical interconnects to Silicon chips,” Proc. IEEE 97(7), 1166–1185 (2009).
[Crossref]

Other (4)

Y. T. Hu, M. Pantouvaki, S. Brems, I. Asselberghs, C. Huyghebaert, M. Geisler, C. Alessandri, R. Baets, P. Absil, D. Van Thourhout, and J. Van Campenhout, “Broadband 10Gb/s graphene electro-absorption modulator on silicon for chip-level optical interconnects,” IEEE Electron Devices Meeting (IEDM), San Francisco, CA, Dec. (2014).
[Crossref]

C. Kachris, K. Kanonakis, I. Tomkos, “Optical interconnection networks in data centers: recent trends and future challenges,” IEEE Communication Magazine, Sept. 2013, 39 (2013).
[Crossref]

G. Sakaino, T. Takiguchi, H. Sakuma, C. Watatani, T. Nagira, D. Suzuki, T. Aoyagi, and T. Ishikawa, “25.8 Gbps direct modulation of BH AlGaInAs DFB lasers with p-InP substrate for low driving current,” in Proc. International Semiconductor Laser Conf. (ISLC), Sep. 2010, 197–198, ThB5.
[Crossref]

N. Nakamura, M. Shimada, G. Sakaino, T. Nagira, H. Yamaguchi, Y. Okunuki, A. Sugitatsu, and M. Takemi, “25.8Gbps direct modulation AlGaInAs DFB lasers of low power consumption and wide temperature range operation for data center,” in Optical Fiber Communication Conference, paper W2A.53 (2015).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Schematic of the realized device with the lasing mode intensity profile, predominantly confined in the III-V waveguide; (b) cross section of the fabricated hybrid DFB laser

Fig. 2
Fig. 2

a) DFB spectrum and b) LIV curve of the device (waveguide-coupled single facet output power).

Fig. 3
Fig. 3

(a) Small signal response at different bias currents, (b) the dependence of relaxation oscillation frequency (fr) on the driving current.

Fig. 4
Fig. 4

Eye diagrams for back-to-back operation at 15, 20, 25 and 28 Gb/s using a 27-1 pattern length (bias current of 100 mA at 20 ̊C).

Fig. 5
Fig. 5

BER measurements for back-to-back and 1 km single mode fiber configurations using a 27-1 NRZ-PRBS pattern (bias current of 100 mA at 20 ̊C).

Fig. 6
Fig. 6

Eye diagrams for back-to-back (left) and after 2 km NZ_DSSMF fiber transmission (right) at 28 Gb/s using a 211-1 data pattern length (bias current of 100 mA at 20 ̊C).

Fig. 7
Fig. 7

28 Gb/s BER measurements for back-to-back and 2 km NZ_DSSMF configurations (bias current 100 mA).

Metrics