Abstract

Spatially entangled twin photons provide a test of the Einstein-Podolsky-Rosen (EPR) paradox in its original form of position (image plane) versus impulsion (Fourier plane). We show that recording a single pair of images in each plane is sufficient to safely demonstrate an EPR paradox. On each pair of images, we have retrieved the fluctuations by subtracting the fitted deterministic intensity shape and then have obtained an intercorrelation peak with a sufficient signal to noise ratio to safely distinguish this peak from random fluctuations. A 95% confidence interval has been determined, confirming a high degree of paradox whatever the considered single pairs. Last, we have verified that the value of the variance of the difference between twin images is always below the quantum (poissonian) limit, in order to ensure the particle character of the demonstration. Our demonstration shows that a single image pattern can reveal the quantum and non-local behavior of light.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
80 years of steering and the Einstein–Podolsky–Rosen paradox: introduction

Eric G. Cavalcanti, Curtis J. Broadbent, Stephen P. Walborn, and Howard M. Wiseman
J. Opt. Soc. Am. B 32(4) EPR1-EPR2 (2015)

Einstein–Podolsky–Rosen paradox in a hybrid bipartite system

Michał Dąbrowski, Michał Parniak, and Wojciech Wasilewski
Optica 4(2) 272-275 (2017)

Einstein–Podolsky–Rosen steering and the steering ellipsoid

Sania Jevtic, Michael J. W. Hall, Malcolm R. Anderson, Marcin Zwierz, and Howard M. Wiseman
J. Opt. Soc. Am. B 32(4) A40-A49 (2015)

References

  • View by:
  • |
  • |
  • |

  1. P. B. Dixon, G. A. Howland, J. Schneeloch, and J. C. Howell, “Quantum mutual information capacity for high-dimensional entangled state,” Phys. Rev. Lett. 108, 143603 (2012).
    [Crossref]
  2. J. C. Howell, R. S. Bennink, S. J. Bentley, and R. W. Boyd, “Realization of the Einstein-Podolsky-Rosen paradox using momentum- and position-entangled photons from spontaneous parametric down conversion,” Phys. Rev. Lett. 92, 210403 (2004).
    [Crossref] [PubMed]
  3. M. Krenn, M. Huber, R. Fickler, S. Lapkiewicz, S. Ramelow, and A. Zeilinger, “Generation and confirmation of a (100×100)-dimensional entangled quantum system,” Proc. Nat. Acad. Sci. U. S. A. 111, 6243 (2014).
    [Crossref]
  4. G. Brida, L. Caspani, A. Gatti, M. Genovese, A. Meda, and I. Ruo Berchera, “Measurement of sub-shot-noise spatial correlations without background subtraction,” Phys. Rev. Lett. 102, 213602 (2009).
    [Crossref] [PubMed]
  5. O. Jedrkiewicz, Y.-K. Jiang, E. Brambilla, A. Gatti, M. Bache, L. A. Lugiato, and P. Di Trapani, “Detection of sub-shot-noise spatial correlation in high-gain parametric down conversion,” Phys. Rev. Lett. 93, 243601 (2004).
    [Crossref]
  6. J.-L. Blanchet, F. Devaux, L. Furfaro, and E. Lantz, “Measurement of sub-shot-soise correlations of spatial fluctuations in the photon-counting regime,” Phys. Rev. Lett. 101, 233604 (2008).
    [Crossref]
  7. G. Brida, M. Genovese, and I. Ruo Berchera, “Experimental realization of sub-shot-noise quantum imaging,” Nat. Photonics 4, 227–230 (2010).
    [Crossref]
  8. P.-A. Moreau, F. Devaux, and E. Lantz, “Einstein-Podolsky-Rosen Paradox in twin images,” Phys. Rev. Lett. 113, 160401 (2014).
    [Crossref] [PubMed]
  9. A. Einstein, B. Podolsky, and N. Rosen, “Can quantum-mechanical description of physical reality be considered complete?” Phys. Rev. 47, 777–780 (1935).
    [Crossref]
  10. J.S. Bell, “On the Einstein-Podolsky-Rosen paradox,” Physics 1, 195–200 (1964).
  11. A. Aspect, P. Grangier, and G. Roger, “Experimental tests of realistic local theories via Bell’s theorem,” Phys. Rev. Lett. 47, 460–463 (1981).
    [Crossref]
  12. K. Banaszek and K. Wodkiewicz, “Nonlocality of the Einstein-Podolsky-Rosen state in the Wigner representation,” Phys. Rev. A 58, 4345–4347 (1998).
    [Crossref]
  13. P.-A. Moreau, J. Mougin-Sisini, F. Devaux, and E. Lantz, “Realization of the purely spatial Einstein-Podolsky-Rosen paradox in full-field images of spontaneous parametric down-conversion,” Phys. Rev. A 86, 010101 (2012).
    [Crossref]
  14. M. P. Edgar, D. S. Tasca, F. Izdebski, R. E. Warburton, J. Leach, M. Agnew, G. S. Buller, R. W. Boyd, and M. J. Padgett, “Imaging high-dimensional spatial entanglement with a camera,” Nat. Commun. 3, 984 (2012).
    [Crossref] [PubMed]
  15. E. Lantz, P.-A. Moreau, and F. Devaux, “Optimizing the signal-to-noise ratio in the measurement of photon pairs with detector arrays,” Phys. Rev. A. 90, 063811 (2014).
    [Crossref]
  16. B. A. Saleh, A. F. Abouraddy, F. Ayman, A. V. Sergienko, and M. C. Teich, “Duality between partial coherence and partial entanglement,” Phys. Rev. A 62, 043816 (2000).
    [Crossref]
  17. F. Devaux, J. Mougin-Sisini, P.-A. Moreau, and E. Lantz, “Towards the evidence of a purely spatial Einstein-Podolsky-Rosen paradox in images: measurement scheme and first experimental results,” Eur. Phys. J. D. 66, 192 (2012).
    [Crossref]
  18. M. P. Van Exter, A. Aiello, S. S. R. Oemrawsingh, G. Nienhuis, and J. P. Woerdman, “Effect of spatial filtering on the Schmidt decomposition of entangled photons,” Phys. Rev. A. 74, 012309 (2006).
    [Crossref]
  19. E. Lantz, J.-L. Blanchet, L. Furfaro, and F. Devaux, “Multi-imaging and Bayesian estimation for photon counting with EMCCDs,” Mon. Not. Roy. Astron. Soc. 386, 2262–2270 (2008).
    [Crossref]

2014 (3)

M. Krenn, M. Huber, R. Fickler, S. Lapkiewicz, S. Ramelow, and A. Zeilinger, “Generation and confirmation of a (100×100)-dimensional entangled quantum system,” Proc. Nat. Acad. Sci. U. S. A. 111, 6243 (2014).
[Crossref]

P.-A. Moreau, F. Devaux, and E. Lantz, “Einstein-Podolsky-Rosen Paradox in twin images,” Phys. Rev. Lett. 113, 160401 (2014).
[Crossref] [PubMed]

E. Lantz, P.-A. Moreau, and F. Devaux, “Optimizing the signal-to-noise ratio in the measurement of photon pairs with detector arrays,” Phys. Rev. A. 90, 063811 (2014).
[Crossref]

2012 (4)

F. Devaux, J. Mougin-Sisini, P.-A. Moreau, and E. Lantz, “Towards the evidence of a purely spatial Einstein-Podolsky-Rosen paradox in images: measurement scheme and first experimental results,” Eur. Phys. J. D. 66, 192 (2012).
[Crossref]

P.-A. Moreau, J. Mougin-Sisini, F. Devaux, and E. Lantz, “Realization of the purely spatial Einstein-Podolsky-Rosen paradox in full-field images of spontaneous parametric down-conversion,” Phys. Rev. A 86, 010101 (2012).
[Crossref]

M. P. Edgar, D. S. Tasca, F. Izdebski, R. E. Warburton, J. Leach, M. Agnew, G. S. Buller, R. W. Boyd, and M. J. Padgett, “Imaging high-dimensional spatial entanglement with a camera,” Nat. Commun. 3, 984 (2012).
[Crossref] [PubMed]

P. B. Dixon, G. A. Howland, J. Schneeloch, and J. C. Howell, “Quantum mutual information capacity for high-dimensional entangled state,” Phys. Rev. Lett. 108, 143603 (2012).
[Crossref]

2010 (1)

G. Brida, M. Genovese, and I. Ruo Berchera, “Experimental realization of sub-shot-noise quantum imaging,” Nat. Photonics 4, 227–230 (2010).
[Crossref]

2009 (1)

G. Brida, L. Caspani, A. Gatti, M. Genovese, A. Meda, and I. Ruo Berchera, “Measurement of sub-shot-noise spatial correlations without background subtraction,” Phys. Rev. Lett. 102, 213602 (2009).
[Crossref] [PubMed]

2008 (2)

J.-L. Blanchet, F. Devaux, L. Furfaro, and E. Lantz, “Measurement of sub-shot-soise correlations of spatial fluctuations in the photon-counting regime,” Phys. Rev. Lett. 101, 233604 (2008).
[Crossref]

E. Lantz, J.-L. Blanchet, L. Furfaro, and F. Devaux, “Multi-imaging and Bayesian estimation for photon counting with EMCCDs,” Mon. Not. Roy. Astron. Soc. 386, 2262–2270 (2008).
[Crossref]

2006 (1)

M. P. Van Exter, A. Aiello, S. S. R. Oemrawsingh, G. Nienhuis, and J. P. Woerdman, “Effect of spatial filtering on the Schmidt decomposition of entangled photons,” Phys. Rev. A. 74, 012309 (2006).
[Crossref]

2004 (2)

O. Jedrkiewicz, Y.-K. Jiang, E. Brambilla, A. Gatti, M. Bache, L. A. Lugiato, and P. Di Trapani, “Detection of sub-shot-noise spatial correlation in high-gain parametric down conversion,” Phys. Rev. Lett. 93, 243601 (2004).
[Crossref]

J. C. Howell, R. S. Bennink, S. J. Bentley, and R. W. Boyd, “Realization of the Einstein-Podolsky-Rosen paradox using momentum- and position-entangled photons from spontaneous parametric down conversion,” Phys. Rev. Lett. 92, 210403 (2004).
[Crossref] [PubMed]

2000 (1)

B. A. Saleh, A. F. Abouraddy, F. Ayman, A. V. Sergienko, and M. C. Teich, “Duality between partial coherence and partial entanglement,” Phys. Rev. A 62, 043816 (2000).
[Crossref]

1998 (1)

K. Banaszek and K. Wodkiewicz, “Nonlocality of the Einstein-Podolsky-Rosen state in the Wigner representation,” Phys. Rev. A 58, 4345–4347 (1998).
[Crossref]

1981 (1)

A. Aspect, P. Grangier, and G. Roger, “Experimental tests of realistic local theories via Bell’s theorem,” Phys. Rev. Lett. 47, 460–463 (1981).
[Crossref]

1964 (1)

J.S. Bell, “On the Einstein-Podolsky-Rosen paradox,” Physics 1, 195–200 (1964).

1935 (1)

A. Einstein, B. Podolsky, and N. Rosen, “Can quantum-mechanical description of physical reality be considered complete?” Phys. Rev. 47, 777–780 (1935).
[Crossref]

Abouraddy, A. F.

B. A. Saleh, A. F. Abouraddy, F. Ayman, A. V. Sergienko, and M. C. Teich, “Duality between partial coherence and partial entanglement,” Phys. Rev. A 62, 043816 (2000).
[Crossref]

Agnew, M.

M. P. Edgar, D. S. Tasca, F. Izdebski, R. E. Warburton, J. Leach, M. Agnew, G. S. Buller, R. W. Boyd, and M. J. Padgett, “Imaging high-dimensional spatial entanglement with a camera,” Nat. Commun. 3, 984 (2012).
[Crossref] [PubMed]

Aiello, A.

M. P. Van Exter, A. Aiello, S. S. R. Oemrawsingh, G. Nienhuis, and J. P. Woerdman, “Effect of spatial filtering on the Schmidt decomposition of entangled photons,” Phys. Rev. A. 74, 012309 (2006).
[Crossref]

Aspect, A.

A. Aspect, P. Grangier, and G. Roger, “Experimental tests of realistic local theories via Bell’s theorem,” Phys. Rev. Lett. 47, 460–463 (1981).
[Crossref]

Ayman, F.

B. A. Saleh, A. F. Abouraddy, F. Ayman, A. V. Sergienko, and M. C. Teich, “Duality between partial coherence and partial entanglement,” Phys. Rev. A 62, 043816 (2000).
[Crossref]

Bache, M.

O. Jedrkiewicz, Y.-K. Jiang, E. Brambilla, A. Gatti, M. Bache, L. A. Lugiato, and P. Di Trapani, “Detection of sub-shot-noise spatial correlation in high-gain parametric down conversion,” Phys. Rev. Lett. 93, 243601 (2004).
[Crossref]

Banaszek, K.

K. Banaszek and K. Wodkiewicz, “Nonlocality of the Einstein-Podolsky-Rosen state in the Wigner representation,” Phys. Rev. A 58, 4345–4347 (1998).
[Crossref]

Bell, J.S.

J.S. Bell, “On the Einstein-Podolsky-Rosen paradox,” Physics 1, 195–200 (1964).

Bennink, R. S.

J. C. Howell, R. S. Bennink, S. J. Bentley, and R. W. Boyd, “Realization of the Einstein-Podolsky-Rosen paradox using momentum- and position-entangled photons from spontaneous parametric down conversion,” Phys. Rev. Lett. 92, 210403 (2004).
[Crossref] [PubMed]

Bentley, S. J.

J. C. Howell, R. S. Bennink, S. J. Bentley, and R. W. Boyd, “Realization of the Einstein-Podolsky-Rosen paradox using momentum- and position-entangled photons from spontaneous parametric down conversion,” Phys. Rev. Lett. 92, 210403 (2004).
[Crossref] [PubMed]

Berchera, I. Ruo

G. Brida, M. Genovese, and I. Ruo Berchera, “Experimental realization of sub-shot-noise quantum imaging,” Nat. Photonics 4, 227–230 (2010).
[Crossref]

G. Brida, L. Caspani, A. Gatti, M. Genovese, A. Meda, and I. Ruo Berchera, “Measurement of sub-shot-noise spatial correlations without background subtraction,” Phys. Rev. Lett. 102, 213602 (2009).
[Crossref] [PubMed]

Blanchet, J.-L.

E. Lantz, J.-L. Blanchet, L. Furfaro, and F. Devaux, “Multi-imaging and Bayesian estimation for photon counting with EMCCDs,” Mon. Not. Roy. Astron. Soc. 386, 2262–2270 (2008).
[Crossref]

J.-L. Blanchet, F. Devaux, L. Furfaro, and E. Lantz, “Measurement of sub-shot-soise correlations of spatial fluctuations in the photon-counting regime,” Phys. Rev. Lett. 101, 233604 (2008).
[Crossref]

Boyd, R. W.

M. P. Edgar, D. S. Tasca, F. Izdebski, R. E. Warburton, J. Leach, M. Agnew, G. S. Buller, R. W. Boyd, and M. J. Padgett, “Imaging high-dimensional spatial entanglement with a camera,” Nat. Commun. 3, 984 (2012).
[Crossref] [PubMed]

J. C. Howell, R. S. Bennink, S. J. Bentley, and R. W. Boyd, “Realization of the Einstein-Podolsky-Rosen paradox using momentum- and position-entangled photons from spontaneous parametric down conversion,” Phys. Rev. Lett. 92, 210403 (2004).
[Crossref] [PubMed]

Brambilla, E.

O. Jedrkiewicz, Y.-K. Jiang, E. Brambilla, A. Gatti, M. Bache, L. A. Lugiato, and P. Di Trapani, “Detection of sub-shot-noise spatial correlation in high-gain parametric down conversion,” Phys. Rev. Lett. 93, 243601 (2004).
[Crossref]

Brida, G.

G. Brida, M. Genovese, and I. Ruo Berchera, “Experimental realization of sub-shot-noise quantum imaging,” Nat. Photonics 4, 227–230 (2010).
[Crossref]

G. Brida, L. Caspani, A. Gatti, M. Genovese, A. Meda, and I. Ruo Berchera, “Measurement of sub-shot-noise spatial correlations without background subtraction,” Phys. Rev. Lett. 102, 213602 (2009).
[Crossref] [PubMed]

Buller, G. S.

M. P. Edgar, D. S. Tasca, F. Izdebski, R. E. Warburton, J. Leach, M. Agnew, G. S. Buller, R. W. Boyd, and M. J. Padgett, “Imaging high-dimensional spatial entanglement with a camera,” Nat. Commun. 3, 984 (2012).
[Crossref] [PubMed]

Caspani, L.

G. Brida, L. Caspani, A. Gatti, M. Genovese, A. Meda, and I. Ruo Berchera, “Measurement of sub-shot-noise spatial correlations without background subtraction,” Phys. Rev. Lett. 102, 213602 (2009).
[Crossref] [PubMed]

Devaux, F.

P.-A. Moreau, F. Devaux, and E. Lantz, “Einstein-Podolsky-Rosen Paradox in twin images,” Phys. Rev. Lett. 113, 160401 (2014).
[Crossref] [PubMed]

E. Lantz, P.-A. Moreau, and F. Devaux, “Optimizing the signal-to-noise ratio in the measurement of photon pairs with detector arrays,” Phys. Rev. A. 90, 063811 (2014).
[Crossref]

P.-A. Moreau, J. Mougin-Sisini, F. Devaux, and E. Lantz, “Realization of the purely spatial Einstein-Podolsky-Rosen paradox in full-field images of spontaneous parametric down-conversion,” Phys. Rev. A 86, 010101 (2012).
[Crossref]

F. Devaux, J. Mougin-Sisini, P.-A. Moreau, and E. Lantz, “Towards the evidence of a purely spatial Einstein-Podolsky-Rosen paradox in images: measurement scheme and first experimental results,” Eur. Phys. J. D. 66, 192 (2012).
[Crossref]

J.-L. Blanchet, F. Devaux, L. Furfaro, and E. Lantz, “Measurement of sub-shot-soise correlations of spatial fluctuations in the photon-counting regime,” Phys. Rev. Lett. 101, 233604 (2008).
[Crossref]

E. Lantz, J.-L. Blanchet, L. Furfaro, and F. Devaux, “Multi-imaging and Bayesian estimation for photon counting with EMCCDs,” Mon. Not. Roy. Astron. Soc. 386, 2262–2270 (2008).
[Crossref]

Di Trapani, P.

O. Jedrkiewicz, Y.-K. Jiang, E. Brambilla, A. Gatti, M. Bache, L. A. Lugiato, and P. Di Trapani, “Detection of sub-shot-noise spatial correlation in high-gain parametric down conversion,” Phys. Rev. Lett. 93, 243601 (2004).
[Crossref]

Dixon, P. B.

P. B. Dixon, G. A. Howland, J. Schneeloch, and J. C. Howell, “Quantum mutual information capacity for high-dimensional entangled state,” Phys. Rev. Lett. 108, 143603 (2012).
[Crossref]

Edgar, M. P.

M. P. Edgar, D. S. Tasca, F. Izdebski, R. E. Warburton, J. Leach, M. Agnew, G. S. Buller, R. W. Boyd, and M. J. Padgett, “Imaging high-dimensional spatial entanglement with a camera,” Nat. Commun. 3, 984 (2012).
[Crossref] [PubMed]

Einstein, A.

A. Einstein, B. Podolsky, and N. Rosen, “Can quantum-mechanical description of physical reality be considered complete?” Phys. Rev. 47, 777–780 (1935).
[Crossref]

Fickler, R.

M. Krenn, M. Huber, R. Fickler, S. Lapkiewicz, S. Ramelow, and A. Zeilinger, “Generation and confirmation of a (100×100)-dimensional entangled quantum system,” Proc. Nat. Acad. Sci. U. S. A. 111, 6243 (2014).
[Crossref]

Furfaro, L.

J.-L. Blanchet, F. Devaux, L. Furfaro, and E. Lantz, “Measurement of sub-shot-soise correlations of spatial fluctuations in the photon-counting regime,” Phys. Rev. Lett. 101, 233604 (2008).
[Crossref]

E. Lantz, J.-L. Blanchet, L. Furfaro, and F. Devaux, “Multi-imaging and Bayesian estimation for photon counting with EMCCDs,” Mon. Not. Roy. Astron. Soc. 386, 2262–2270 (2008).
[Crossref]

Gatti, A.

G. Brida, L. Caspani, A. Gatti, M. Genovese, A. Meda, and I. Ruo Berchera, “Measurement of sub-shot-noise spatial correlations without background subtraction,” Phys. Rev. Lett. 102, 213602 (2009).
[Crossref] [PubMed]

O. Jedrkiewicz, Y.-K. Jiang, E. Brambilla, A. Gatti, M. Bache, L. A. Lugiato, and P. Di Trapani, “Detection of sub-shot-noise spatial correlation in high-gain parametric down conversion,” Phys. Rev. Lett. 93, 243601 (2004).
[Crossref]

Genovese, M.

G. Brida, M. Genovese, and I. Ruo Berchera, “Experimental realization of sub-shot-noise quantum imaging,” Nat. Photonics 4, 227–230 (2010).
[Crossref]

G. Brida, L. Caspani, A. Gatti, M. Genovese, A. Meda, and I. Ruo Berchera, “Measurement of sub-shot-noise spatial correlations without background subtraction,” Phys. Rev. Lett. 102, 213602 (2009).
[Crossref] [PubMed]

Grangier, P.

A. Aspect, P. Grangier, and G. Roger, “Experimental tests of realistic local theories via Bell’s theorem,” Phys. Rev. Lett. 47, 460–463 (1981).
[Crossref]

Howell, J. C.

P. B. Dixon, G. A. Howland, J. Schneeloch, and J. C. Howell, “Quantum mutual information capacity for high-dimensional entangled state,” Phys. Rev. Lett. 108, 143603 (2012).
[Crossref]

J. C. Howell, R. S. Bennink, S. J. Bentley, and R. W. Boyd, “Realization of the Einstein-Podolsky-Rosen paradox using momentum- and position-entangled photons from spontaneous parametric down conversion,” Phys. Rev. Lett. 92, 210403 (2004).
[Crossref] [PubMed]

Howland, G. A.

P. B. Dixon, G. A. Howland, J. Schneeloch, and J. C. Howell, “Quantum mutual information capacity for high-dimensional entangled state,” Phys. Rev. Lett. 108, 143603 (2012).
[Crossref]

Huber, M.

M. Krenn, M. Huber, R. Fickler, S. Lapkiewicz, S. Ramelow, and A. Zeilinger, “Generation and confirmation of a (100×100)-dimensional entangled quantum system,” Proc. Nat. Acad. Sci. U. S. A. 111, 6243 (2014).
[Crossref]

Izdebski, F.

M. P. Edgar, D. S. Tasca, F. Izdebski, R. E. Warburton, J. Leach, M. Agnew, G. S. Buller, R. W. Boyd, and M. J. Padgett, “Imaging high-dimensional spatial entanglement with a camera,” Nat. Commun. 3, 984 (2012).
[Crossref] [PubMed]

Jedrkiewicz, O.

O. Jedrkiewicz, Y.-K. Jiang, E. Brambilla, A. Gatti, M. Bache, L. A. Lugiato, and P. Di Trapani, “Detection of sub-shot-noise spatial correlation in high-gain parametric down conversion,” Phys. Rev. Lett. 93, 243601 (2004).
[Crossref]

Jiang, Y.-K.

O. Jedrkiewicz, Y.-K. Jiang, E. Brambilla, A. Gatti, M. Bache, L. A. Lugiato, and P. Di Trapani, “Detection of sub-shot-noise spatial correlation in high-gain parametric down conversion,” Phys. Rev. Lett. 93, 243601 (2004).
[Crossref]

Krenn, M.

M. Krenn, M. Huber, R. Fickler, S. Lapkiewicz, S. Ramelow, and A. Zeilinger, “Generation and confirmation of a (100×100)-dimensional entangled quantum system,” Proc. Nat. Acad. Sci. U. S. A. 111, 6243 (2014).
[Crossref]

Lantz, E.

P.-A. Moreau, F. Devaux, and E. Lantz, “Einstein-Podolsky-Rosen Paradox in twin images,” Phys. Rev. Lett. 113, 160401 (2014).
[Crossref] [PubMed]

E. Lantz, P.-A. Moreau, and F. Devaux, “Optimizing the signal-to-noise ratio in the measurement of photon pairs with detector arrays,” Phys. Rev. A. 90, 063811 (2014).
[Crossref]

P.-A. Moreau, J. Mougin-Sisini, F. Devaux, and E. Lantz, “Realization of the purely spatial Einstein-Podolsky-Rosen paradox in full-field images of spontaneous parametric down-conversion,” Phys. Rev. A 86, 010101 (2012).
[Crossref]

F. Devaux, J. Mougin-Sisini, P.-A. Moreau, and E. Lantz, “Towards the evidence of a purely spatial Einstein-Podolsky-Rosen paradox in images: measurement scheme and first experimental results,” Eur. Phys. J. D. 66, 192 (2012).
[Crossref]

J.-L. Blanchet, F. Devaux, L. Furfaro, and E. Lantz, “Measurement of sub-shot-soise correlations of spatial fluctuations in the photon-counting regime,” Phys. Rev. Lett. 101, 233604 (2008).
[Crossref]

E. Lantz, J.-L. Blanchet, L. Furfaro, and F. Devaux, “Multi-imaging and Bayesian estimation for photon counting with EMCCDs,” Mon. Not. Roy. Astron. Soc. 386, 2262–2270 (2008).
[Crossref]

Lapkiewicz, S.

M. Krenn, M. Huber, R. Fickler, S. Lapkiewicz, S. Ramelow, and A. Zeilinger, “Generation and confirmation of a (100×100)-dimensional entangled quantum system,” Proc. Nat. Acad. Sci. U. S. A. 111, 6243 (2014).
[Crossref]

Leach, J.

M. P. Edgar, D. S. Tasca, F. Izdebski, R. E. Warburton, J. Leach, M. Agnew, G. S. Buller, R. W. Boyd, and M. J. Padgett, “Imaging high-dimensional spatial entanglement with a camera,” Nat. Commun. 3, 984 (2012).
[Crossref] [PubMed]

Lugiato, L. A.

O. Jedrkiewicz, Y.-K. Jiang, E. Brambilla, A. Gatti, M. Bache, L. A. Lugiato, and P. Di Trapani, “Detection of sub-shot-noise spatial correlation in high-gain parametric down conversion,” Phys. Rev. Lett. 93, 243601 (2004).
[Crossref]

Meda, A.

G. Brida, L. Caspani, A. Gatti, M. Genovese, A. Meda, and I. Ruo Berchera, “Measurement of sub-shot-noise spatial correlations without background subtraction,” Phys. Rev. Lett. 102, 213602 (2009).
[Crossref] [PubMed]

Moreau, P.-A.

E. Lantz, P.-A. Moreau, and F. Devaux, “Optimizing the signal-to-noise ratio in the measurement of photon pairs with detector arrays,” Phys. Rev. A. 90, 063811 (2014).
[Crossref]

P.-A. Moreau, F. Devaux, and E. Lantz, “Einstein-Podolsky-Rosen Paradox in twin images,” Phys. Rev. Lett. 113, 160401 (2014).
[Crossref] [PubMed]

P.-A. Moreau, J. Mougin-Sisini, F. Devaux, and E. Lantz, “Realization of the purely spatial Einstein-Podolsky-Rosen paradox in full-field images of spontaneous parametric down-conversion,” Phys. Rev. A 86, 010101 (2012).
[Crossref]

F. Devaux, J. Mougin-Sisini, P.-A. Moreau, and E. Lantz, “Towards the evidence of a purely spatial Einstein-Podolsky-Rosen paradox in images: measurement scheme and first experimental results,” Eur. Phys. J. D. 66, 192 (2012).
[Crossref]

Mougin-Sisini, J.

P.-A. Moreau, J. Mougin-Sisini, F. Devaux, and E. Lantz, “Realization of the purely spatial Einstein-Podolsky-Rosen paradox in full-field images of spontaneous parametric down-conversion,” Phys. Rev. A 86, 010101 (2012).
[Crossref]

F. Devaux, J. Mougin-Sisini, P.-A. Moreau, and E. Lantz, “Towards the evidence of a purely spatial Einstein-Podolsky-Rosen paradox in images: measurement scheme and first experimental results,” Eur. Phys. J. D. 66, 192 (2012).
[Crossref]

Nienhuis, G.

M. P. Van Exter, A. Aiello, S. S. R. Oemrawsingh, G. Nienhuis, and J. P. Woerdman, “Effect of spatial filtering on the Schmidt decomposition of entangled photons,” Phys. Rev. A. 74, 012309 (2006).
[Crossref]

Oemrawsingh, S. S. R.

M. P. Van Exter, A. Aiello, S. S. R. Oemrawsingh, G. Nienhuis, and J. P. Woerdman, “Effect of spatial filtering on the Schmidt decomposition of entangled photons,” Phys. Rev. A. 74, 012309 (2006).
[Crossref]

Padgett, M. J.

M. P. Edgar, D. S. Tasca, F. Izdebski, R. E. Warburton, J. Leach, M. Agnew, G. S. Buller, R. W. Boyd, and M. J. Padgett, “Imaging high-dimensional spatial entanglement with a camera,” Nat. Commun. 3, 984 (2012).
[Crossref] [PubMed]

Podolsky, B.

A. Einstein, B. Podolsky, and N. Rosen, “Can quantum-mechanical description of physical reality be considered complete?” Phys. Rev. 47, 777–780 (1935).
[Crossref]

Ramelow, S.

M. Krenn, M. Huber, R. Fickler, S. Lapkiewicz, S. Ramelow, and A. Zeilinger, “Generation and confirmation of a (100×100)-dimensional entangled quantum system,” Proc. Nat. Acad. Sci. U. S. A. 111, 6243 (2014).
[Crossref]

Roger, G.

A. Aspect, P. Grangier, and G. Roger, “Experimental tests of realistic local theories via Bell’s theorem,” Phys. Rev. Lett. 47, 460–463 (1981).
[Crossref]

Rosen, N.

A. Einstein, B. Podolsky, and N. Rosen, “Can quantum-mechanical description of physical reality be considered complete?” Phys. Rev. 47, 777–780 (1935).
[Crossref]

Saleh, B. A.

B. A. Saleh, A. F. Abouraddy, F. Ayman, A. V. Sergienko, and M. C. Teich, “Duality between partial coherence and partial entanglement,” Phys. Rev. A 62, 043816 (2000).
[Crossref]

Schneeloch, J.

P. B. Dixon, G. A. Howland, J. Schneeloch, and J. C. Howell, “Quantum mutual information capacity for high-dimensional entangled state,” Phys. Rev. Lett. 108, 143603 (2012).
[Crossref]

Sergienko, A. V.

B. A. Saleh, A. F. Abouraddy, F. Ayman, A. V. Sergienko, and M. C. Teich, “Duality between partial coherence and partial entanglement,” Phys. Rev. A 62, 043816 (2000).
[Crossref]

Tasca, D. S.

M. P. Edgar, D. S. Tasca, F. Izdebski, R. E. Warburton, J. Leach, M. Agnew, G. S. Buller, R. W. Boyd, and M. J. Padgett, “Imaging high-dimensional spatial entanglement with a camera,” Nat. Commun. 3, 984 (2012).
[Crossref] [PubMed]

Teich, M. C.

B. A. Saleh, A. F. Abouraddy, F. Ayman, A. V. Sergienko, and M. C. Teich, “Duality between partial coherence and partial entanglement,” Phys. Rev. A 62, 043816 (2000).
[Crossref]

Van Exter, M. P.

M. P. Van Exter, A. Aiello, S. S. R. Oemrawsingh, G. Nienhuis, and J. P. Woerdman, “Effect of spatial filtering on the Schmidt decomposition of entangled photons,” Phys. Rev. A. 74, 012309 (2006).
[Crossref]

Warburton, R. E.

M. P. Edgar, D. S. Tasca, F. Izdebski, R. E. Warburton, J. Leach, M. Agnew, G. S. Buller, R. W. Boyd, and M. J. Padgett, “Imaging high-dimensional spatial entanglement with a camera,” Nat. Commun. 3, 984 (2012).
[Crossref] [PubMed]

Wodkiewicz, K.

K. Banaszek and K. Wodkiewicz, “Nonlocality of the Einstein-Podolsky-Rosen state in the Wigner representation,” Phys. Rev. A 58, 4345–4347 (1998).
[Crossref]

Woerdman, J. P.

M. P. Van Exter, A. Aiello, S. S. R. Oemrawsingh, G. Nienhuis, and J. P. Woerdman, “Effect of spatial filtering on the Schmidt decomposition of entangled photons,” Phys. Rev. A. 74, 012309 (2006).
[Crossref]

Zeilinger, A.

M. Krenn, M. Huber, R. Fickler, S. Lapkiewicz, S. Ramelow, and A. Zeilinger, “Generation and confirmation of a (100×100)-dimensional entangled quantum system,” Proc. Nat. Acad. Sci. U. S. A. 111, 6243 (2014).
[Crossref]

Eur. Phys. J. D. (1)

F. Devaux, J. Mougin-Sisini, P.-A. Moreau, and E. Lantz, “Towards the evidence of a purely spatial Einstein-Podolsky-Rosen paradox in images: measurement scheme and first experimental results,” Eur. Phys. J. D. 66, 192 (2012).
[Crossref]

Mon. Not. Roy. Astron. Soc. (1)

E. Lantz, J.-L. Blanchet, L. Furfaro, and F. Devaux, “Multi-imaging and Bayesian estimation for photon counting with EMCCDs,” Mon. Not. Roy. Astron. Soc. 386, 2262–2270 (2008).
[Crossref]

Nat. Commun. (1)

M. P. Edgar, D. S. Tasca, F. Izdebski, R. E. Warburton, J. Leach, M. Agnew, G. S. Buller, R. W. Boyd, and M. J. Padgett, “Imaging high-dimensional spatial entanglement with a camera,” Nat. Commun. 3, 984 (2012).
[Crossref] [PubMed]

Nat. Photonics (1)

G. Brida, M. Genovese, and I. Ruo Berchera, “Experimental realization of sub-shot-noise quantum imaging,” Nat. Photonics 4, 227–230 (2010).
[Crossref]

Phys. Rev. (1)

A. Einstein, B. Podolsky, and N. Rosen, “Can quantum-mechanical description of physical reality be considered complete?” Phys. Rev. 47, 777–780 (1935).
[Crossref]

Phys. Rev. A (3)

K. Banaszek and K. Wodkiewicz, “Nonlocality of the Einstein-Podolsky-Rosen state in the Wigner representation,” Phys. Rev. A 58, 4345–4347 (1998).
[Crossref]

P.-A. Moreau, J. Mougin-Sisini, F. Devaux, and E. Lantz, “Realization of the purely spatial Einstein-Podolsky-Rosen paradox in full-field images of spontaneous parametric down-conversion,” Phys. Rev. A 86, 010101 (2012).
[Crossref]

B. A. Saleh, A. F. Abouraddy, F. Ayman, A. V. Sergienko, and M. C. Teich, “Duality between partial coherence and partial entanglement,” Phys. Rev. A 62, 043816 (2000).
[Crossref]

Phys. Rev. A. (2)

M. P. Van Exter, A. Aiello, S. S. R. Oemrawsingh, G. Nienhuis, and J. P. Woerdman, “Effect of spatial filtering on the Schmidt decomposition of entangled photons,” Phys. Rev. A. 74, 012309 (2006).
[Crossref]

E. Lantz, P.-A. Moreau, and F. Devaux, “Optimizing the signal-to-noise ratio in the measurement of photon pairs with detector arrays,” Phys. Rev. A. 90, 063811 (2014).
[Crossref]

Phys. Rev. Lett. (7)

A. Aspect, P. Grangier, and G. Roger, “Experimental tests of realistic local theories via Bell’s theorem,” Phys. Rev. Lett. 47, 460–463 (1981).
[Crossref]

P.-A. Moreau, F. Devaux, and E. Lantz, “Einstein-Podolsky-Rosen Paradox in twin images,” Phys. Rev. Lett. 113, 160401 (2014).
[Crossref] [PubMed]

P. B. Dixon, G. A. Howland, J. Schneeloch, and J. C. Howell, “Quantum mutual information capacity for high-dimensional entangled state,” Phys. Rev. Lett. 108, 143603 (2012).
[Crossref]

J. C. Howell, R. S. Bennink, S. J. Bentley, and R. W. Boyd, “Realization of the Einstein-Podolsky-Rosen paradox using momentum- and position-entangled photons from spontaneous parametric down conversion,” Phys. Rev. Lett. 92, 210403 (2004).
[Crossref] [PubMed]

G. Brida, L. Caspani, A. Gatti, M. Genovese, A. Meda, and I. Ruo Berchera, “Measurement of sub-shot-noise spatial correlations without background subtraction,” Phys. Rev. Lett. 102, 213602 (2009).
[Crossref] [PubMed]

O. Jedrkiewicz, Y.-K. Jiang, E. Brambilla, A. Gatti, M. Bache, L. A. Lugiato, and P. Di Trapani, “Detection of sub-shot-noise spatial correlation in high-gain parametric down conversion,” Phys. Rev. Lett. 93, 243601 (2004).
[Crossref]

J.-L. Blanchet, F. Devaux, L. Furfaro, and E. Lantz, “Measurement of sub-shot-soise correlations of spatial fluctuations in the photon-counting regime,” Phys. Rev. Lett. 101, 233604 (2008).
[Crossref]

Physics (1)

J.S. Bell, “On the Einstein-Podolsky-Rosen paradox,” Physics 1, 195–200 (1964).

Proc. Nat. Acad. Sci. U. S. A. (1)

M. Krenn, M. Huber, R. Fickler, S. Lapkiewicz, S. Ramelow, and A. Zeilinger, “Generation and confirmation of a (100×100)-dimensional entangled quantum system,” Proc. Nat. Acad. Sci. U. S. A. 111, 6243 (2014).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Experimental setups used to imaging correlations. (a), measurement of momentum correlations with the cameras in the focal plane. (b), cameras in the crystal image plane.

Fig. 2
Fig. 2

Example of a pair of (a) a signal image and (b) an idler image in the far-field (focal) plane. px1, px2, py1, py2 are the coordinates of pixels versus the image center. Images have been thresholded and the white square lines encompass the pixels that are used for the correlation process.

Fig. 3
Fig. 3

Cross-correlation function of the pair of twin images of Fig. 2 (far-field) and comparison with decorrelated images. (a): Twin images without binning. (b): Twin images with 11×11 binned pixels. (c) and (d): Decorrelated images without (c) and with (d) binning.

Tables (1)

Tables Icon

Table 1 Inferred variances.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

S N R C K η m m + p n .
η = η f i l t e r × η o p t i c s × η c a m e r a = 0.56 × 0.64 × 0.74 = 0.26
0.25 2 / ( Δ 2 ( x 1 x 2 ) Δ 2 ( p x 1 + p x 2 ) ) = [ 31 224 ]
0.25 2 / ( Δ 2 ( y 1 y 2 ) Δ 2 ( p y 1 + p y 2 ) ) = [ 52 403 ]
r = Δ 2 ( N 1 N 2 ) N 1 + N 2

Metrics