Abstract

Optical detection of objects hidden behind opaque screening layers is a challenging problem. We demonstrate an optically detected echographic-like method that combines collimated acoustic and laser beams. The acoustic waves cross the screening layers, and their back-reflection from the hidden objects is detected through the analysis of a dynamic laser speckle pattern created at the outer surface of the screening layer. Real-time remote detection of moving targets 15 meters away, with a few mm resolution is demonstrated using a very sensitive camera detection scheme.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Measuring the reflectance of hidden color objects with acoustically modulated laser speckle

Terence S. Leung and Shihong Jiang
Opt. Lett. 37(19) 4092-4094 (2012)

Tracking moving targets behind a scattering medium via speckle correlation

Chengfei Guo, Jietao Liu, Tengfei Wu, Lei Zhu, and Xiaopeng Shao
Appl. Opt. 57(4) 905-913 (2018)

Classifying hidden colors behind an opaque layer with the acoustically modulated laser speckle contrast technique

Terence S. Leung and Shihong Jiang
Opt. Express 21(17) 20197-20209 (2013)

References

  • View by:
  • |
  • |
  • |

  1. N. C. Wild, F. Doft, D. Bruene, and F. Felber, “Handheld ultrasonic concealed weapon detector,” Enabling Technologies for Law Enforcement and Security, S. K. Bramble, E. M. Carapezza and L. I Rudin, Eds. Proceeding of SPIE 4232,152–158 (2001).
  2. F. Felber, N. Wold, S. Nunan, D. Breuner and F. Dolf, “Handheld remote concealed-weapons detector,” Final Technical Report, J200–99–0031/3031, National institute of justice (1999).
  3. F. Febler, “Concealed weapons detection techniques,” AFRL-IF-RS-TR-1998–218 Final technical report (1998).
  4. J. S. Heyman, A. Achanta, M. Hinders, K. Rudd, and P. J. Costianes, “Non-linear acoustic concealed weapons detection (CWD),” Proc. SPIE 5807, 162 (2005).
  5. J. W. Goodman, Speckle Phenomena in Optics: Theory and Applications (Roberts & Company Publishers, 2007).
  6. F. A. Marks, H. W. Tomlinson, and G. W. Brooksby, “A comprehensive approach to breast cancer detection using light: photon localization by ultrasound modulation and tissue characterization by spectral discrimination,” Proc. SPIE 1888, 500–510 (1993).
  7. W. Leutz and G. Maret, “Ultrasonic modulation of multiply scattered light,” Phys. B.: Condens. Mat. 204(1-4), 14–19 (1995).
    [Crossref]
  8. L. Wang, S. L. Jacques, and X. Zhao, “Continuous-wave ultrasonic modulation of scattered laser light to image objects in turbid media,” Opt. Lett. 20(6), 629–631 (1995).
    [Crossref] [PubMed]
  9. S. Lévêque, A. C. Boccara, M. Lebec, and H. Saint-Jalmes, “Ultrasonic tagging of photon paths in scattering media: parallel speckle modulation processing,” Opt. Lett. 24(3), 181–183 (1999).
    [Crossref] [PubMed]
  10. A. Lev, Z. Kotler, and B. G. Sfez, “Ultrasound tagged light imaging in turbid media in a reflectance geometry,” Opt. Lett. 25(6), 378–380 (2000).
    [Crossref] [PubMed]
  11. J. Li and L. V. Wang, “Methods for parallel-detection-based ultrasound-modulated optical tomography,” Appl. Opt. 41(10), 2079–2084 (2002).
    [Crossref] [PubMed]
  12. A. Lev and B. G. Sfez, “Pulsed ultrasound-modulated light tomography,” Opt. Lett. 28(17), 1549–1551 (2003).
    [Crossref] [PubMed]
  13. D. A. Boas and A. K. Dunn, “Laser speckle contrast imaging in biomedical optics,” J. Biomed. Opt. 15(1), 011109 (2010).
    [Crossref] [PubMed]
  14. M. Locatelli, E. Pugliese, M. Paturzo, V. Bianco, A. Finizio, A. Pelagotti, P. Poggi, L. Miccio, R. Meucci, and P. Ferraro, “Imaging live humans through smoke and flames using far-infrared digital holography,” Opt. Express 21(5), 5379–5390 (2013).
    [Crossref] [PubMed]
  15. T. S. Leung and S. Jiang, “Acousto-optic imaging of a color picture hidden behind a scattering layer,” Opt. Express 21(22), 26780–26785 (2013).
    [Crossref] [PubMed]
  16. M. Dekiff, P. Berssenbrügge, B. Kemper, C. Denz, and D. Dirksen, “Three-dimensional data acquisition by digital correlation of projected speckle patterns,” Appl. Phys. B 99(3), 449–456 (2010).
    [Crossref]
  17. Z. Zalevsky, Y. Beiderman, I. Margalit, S. Gingold, M. Teicher, V. Mico, and J. Garcia, “Simultaneous remote extraction of multiple speech sources and heart beats from secondary speckles pattern,” Opt. Express 17(24), 21566–21580 (2009).
    [Crossref] [PubMed]

2013 (2)

2010 (2)

M. Dekiff, P. Berssenbrügge, B. Kemper, C. Denz, and D. Dirksen, “Three-dimensional data acquisition by digital correlation of projected speckle patterns,” Appl. Phys. B 99(3), 449–456 (2010).
[Crossref]

D. A. Boas and A. K. Dunn, “Laser speckle contrast imaging in biomedical optics,” J. Biomed. Opt. 15(1), 011109 (2010).
[Crossref] [PubMed]

2009 (1)

2005 (1)

J. S. Heyman, A. Achanta, M. Hinders, K. Rudd, and P. J. Costianes, “Non-linear acoustic concealed weapons detection (CWD),” Proc. SPIE 5807, 162 (2005).

2003 (1)

2002 (1)

2000 (1)

1999 (1)

1995 (2)

1993 (1)

F. A. Marks, H. W. Tomlinson, and G. W. Brooksby, “A comprehensive approach to breast cancer detection using light: photon localization by ultrasound modulation and tissue characterization by spectral discrimination,” Proc. SPIE 1888, 500–510 (1993).

Achanta, A.

J. S. Heyman, A. Achanta, M. Hinders, K. Rudd, and P. J. Costianes, “Non-linear acoustic concealed weapons detection (CWD),” Proc. SPIE 5807, 162 (2005).

Beiderman, Y.

Berssenbrügge, P.

M. Dekiff, P. Berssenbrügge, B. Kemper, C. Denz, and D. Dirksen, “Three-dimensional data acquisition by digital correlation of projected speckle patterns,” Appl. Phys. B 99(3), 449–456 (2010).
[Crossref]

Bianco, V.

Boas, D. A.

D. A. Boas and A. K. Dunn, “Laser speckle contrast imaging in biomedical optics,” J. Biomed. Opt. 15(1), 011109 (2010).
[Crossref] [PubMed]

Boccara, A. C.

Brooksby, G. W.

F. A. Marks, H. W. Tomlinson, and G. W. Brooksby, “A comprehensive approach to breast cancer detection using light: photon localization by ultrasound modulation and tissue characterization by spectral discrimination,” Proc. SPIE 1888, 500–510 (1993).

Costianes, P. J.

J. S. Heyman, A. Achanta, M. Hinders, K. Rudd, and P. J. Costianes, “Non-linear acoustic concealed weapons detection (CWD),” Proc. SPIE 5807, 162 (2005).

Dekiff, M.

M. Dekiff, P. Berssenbrügge, B. Kemper, C. Denz, and D. Dirksen, “Three-dimensional data acquisition by digital correlation of projected speckle patterns,” Appl. Phys. B 99(3), 449–456 (2010).
[Crossref]

Denz, C.

M. Dekiff, P. Berssenbrügge, B. Kemper, C. Denz, and D. Dirksen, “Three-dimensional data acquisition by digital correlation of projected speckle patterns,” Appl. Phys. B 99(3), 449–456 (2010).
[Crossref]

Dirksen, D.

M. Dekiff, P. Berssenbrügge, B. Kemper, C. Denz, and D. Dirksen, “Three-dimensional data acquisition by digital correlation of projected speckle patterns,” Appl. Phys. B 99(3), 449–456 (2010).
[Crossref]

Dunn, A. K.

D. A. Boas and A. K. Dunn, “Laser speckle contrast imaging in biomedical optics,” J. Biomed. Opt. 15(1), 011109 (2010).
[Crossref] [PubMed]

Ferraro, P.

Finizio, A.

Garcia, J.

Gingold, S.

Heyman, J. S.

J. S. Heyman, A. Achanta, M. Hinders, K. Rudd, and P. J. Costianes, “Non-linear acoustic concealed weapons detection (CWD),” Proc. SPIE 5807, 162 (2005).

Hinders, M.

J. S. Heyman, A. Achanta, M. Hinders, K. Rudd, and P. J. Costianes, “Non-linear acoustic concealed weapons detection (CWD),” Proc. SPIE 5807, 162 (2005).

Jacques, S. L.

Jiang, S.

Kemper, B.

M. Dekiff, P. Berssenbrügge, B. Kemper, C. Denz, and D. Dirksen, “Three-dimensional data acquisition by digital correlation of projected speckle patterns,” Appl. Phys. B 99(3), 449–456 (2010).
[Crossref]

Kotler, Z.

Lebec, M.

Leung, T. S.

Leutz, W.

W. Leutz and G. Maret, “Ultrasonic modulation of multiply scattered light,” Phys. B.: Condens. Mat. 204(1-4), 14–19 (1995).
[Crossref]

Lev, A.

Lévêque, S.

Li, J.

Locatelli, M.

Maret, G.

W. Leutz and G. Maret, “Ultrasonic modulation of multiply scattered light,” Phys. B.: Condens. Mat. 204(1-4), 14–19 (1995).
[Crossref]

Margalit, I.

Marks, F. A.

F. A. Marks, H. W. Tomlinson, and G. W. Brooksby, “A comprehensive approach to breast cancer detection using light: photon localization by ultrasound modulation and tissue characterization by spectral discrimination,” Proc. SPIE 1888, 500–510 (1993).

Meucci, R.

Miccio, L.

Mico, V.

Paturzo, M.

Pelagotti, A.

Poggi, P.

Pugliese, E.

Rudd, K.

J. S. Heyman, A. Achanta, M. Hinders, K. Rudd, and P. J. Costianes, “Non-linear acoustic concealed weapons detection (CWD),” Proc. SPIE 5807, 162 (2005).

Saint-Jalmes, H.

Sfez, B. G.

Teicher, M.

Tomlinson, H. W.

F. A. Marks, H. W. Tomlinson, and G. W. Brooksby, “A comprehensive approach to breast cancer detection using light: photon localization by ultrasound modulation and tissue characterization by spectral discrimination,” Proc. SPIE 1888, 500–510 (1993).

Wang, L.

Wang, L. V.

Zalevsky, Z.

Zhao, X.

Appl. Opt. (1)

Appl. Phys. B (1)

M. Dekiff, P. Berssenbrügge, B. Kemper, C. Denz, and D. Dirksen, “Three-dimensional data acquisition by digital correlation of projected speckle patterns,” Appl. Phys. B 99(3), 449–456 (2010).
[Crossref]

J. Biomed. Opt. (1)

D. A. Boas and A. K. Dunn, “Laser speckle contrast imaging in biomedical optics,” J. Biomed. Opt. 15(1), 011109 (2010).
[Crossref] [PubMed]

Opt. Express (3)

Opt. Lett. (4)

Phys. B.: Condens. Mat. (1)

W. Leutz and G. Maret, “Ultrasonic modulation of multiply scattered light,” Phys. B.: Condens. Mat. 204(1-4), 14–19 (1995).
[Crossref]

Proc. SPIE (2)

F. A. Marks, H. W. Tomlinson, and G. W. Brooksby, “A comprehensive approach to breast cancer detection using light: photon localization by ultrasound modulation and tissue characterization by spectral discrimination,” Proc. SPIE 1888, 500–510 (1993).

J. S. Heyman, A. Achanta, M. Hinders, K. Rudd, and P. J. Costianes, “Non-linear acoustic concealed weapons detection (CWD),” Proc. SPIE 5807, 162 (2005).

Other (4)

J. W. Goodman, Speckle Phenomena in Optics: Theory and Applications (Roberts & Company Publishers, 2007).

N. C. Wild, F. Doft, D. Bruene, and F. Felber, “Handheld ultrasonic concealed weapon detector,” Enabling Technologies for Law Enforcement and Security, S. K. Bramble, E. M. Carapezza and L. I Rudin, Eds. Proceeding of SPIE 4232,152–158 (2001).

F. Felber, N. Wold, S. Nunan, D. Breuner and F. Dolf, “Handheld remote concealed-weapons detector,” Final Technical Report, J200–99–0031/3031, National institute of justice (1999).

F. Febler, “Concealed weapons detection techniques,” AFRL-IF-RS-TR-1998–218 Final technical report (1998).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 A schematic description of the detection concept. An ultrasonic wave (US) is sent towards a target, together with a laser beam. When the ultrasonic wave is reflected by the inner layers, it makes the outer layer vibrate at the ultrasonic frequency which is detected by the dynamics of the speckle pattern of the laser light. At the positions where there is a concealed object under the clothes, the ultrasound wave is reflected back stronger, and the object can be visualized.
Fig. 2
Fig. 2 Example of target set-up: different objects are attached on the upper part of the body, and are covered by one or several fabric layers (clothes).
Fig. 3
Fig. 3 Experimental set-up: A signal generator (SG) generates a 50 KHz pure sine signal that is amplified and emitted through the ultrasound transmitter. On the other hand a diode laser beam is sent to the target through a motorized pan-tilt mirror. A photomultiplier detector (PMT) with limited aperture and dual amplifier stage detects the impinging optical signal which is then digitized using an analog to digital card (ADC). The signal is then processed in the computer. The detector is built around a linear array of 16 photomultipliers. One of the advantages of the photomultiplier tubes is their large dynamic range. Each element’s detecting area is 1x16 mm. The laser spot size on the target is chosen such that the speckle size fits the short dimension of the photomultipliers area.
Fig. 4
Fig. 4 Single detector scheme results: (a) Concealed object. (b) The modulated image at the ultrasonic frequency (scanned area) (c) The detected image obtained after a threshold operation on the data.
Fig. 5
Fig. 5 Characteristics of the detection set-up: The system is built around three main components: the ultrasonic transmitter (US), the 25W fiber laser and the fast SWIR camera. The system is controlled by a controller and process units that also performs real-time processing of the raw data and display it on the screen.
Fig. 6
Fig. 6 Scheme of the detection concept and processing. A series of frames is grabbed (a). Then for a given pixel, amplitude for each frame is reported as a function of the time (b). A power spectrum operation is then performed on this trace and the value at the ultrasound frequency is recorded.
Fig. 7
Fig. 7 (left) Plastic bags filled with organic powder (flour, sugar etc.) which resemble improvised explosives. (right) the AO image from the recorded movie. The bags are clearly visible.
Fig. 8
Fig. 8 (left) Plastic bottle containing liquid. (right) the AO image from the recorded movie. The bottle is clearly visible too.

Tables (1)

Tables Icon

Table 1 30KHz ultrasound transmitted in present throw difference clothes and clothes materials

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

S=DC+a*cos( ωt )b*cos( ωt+φ )
S 1 =S ( θ )= ( a+b*cosφ )*cosθ+b*sinφ*sinθ S 2 =S ( θ+ π )= ( a+b*cosφ )*cosθb*sinφ*sinθ S 3 =S ( θ+ π 2 )= ( a+b*cosφ )*sinθb*sinφ*cosθ S 4 =S ( θ+ 3π 2 )= ( a+b*cosφ )*sinθ+b*sinφ*cosθ

Metrics