Abstract

In recent years, a diode-pumped alkali laser (DPAL) has become one of the most hopeful candidates to achieve the high power performance. A series of models have been established to analyze the DPAL’s kinetic process and most of them were based on the algorithms in which only the ideal 3-level system was considered. In this paper, we developed a systematic model by taking into account the influence of excitation of neutral alkali atoms to even-higher levels and their ionization on the physical features of a static DPAL. The procedures of heat transfer and laser kinetics were combined together in our theoretical model. By using such a theme, the continuous temperature and number density distribution have been evaluated in the transverse section of a cesium vapor cell. The calculated results indicate that both energy pooling and ionization play important roles during the lasing process. The conclusions might deepen the understanding of the kinetic mechanism of a DPAL.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Optimization of physical conditions for a diode-pumped cesium vapor laser

Guofei An, You Wang, Juhong Han, He Cai, Shunyan Wang, Hang Yu, Kepeng Rong, Wei Zhang, Liangping Xue, Hongyuan Wang, and Jie Zhou
Opt. Express 25(4) 4335-4347 (2017)

Algorithm for evaluation of temperature distribution of a vapor cell in a diode-pumped alkali laser system: part I

Juhong Han, You Wang, He Cai, Wei Zhang, Liangping Xue, and Hongyuan Wang
Opt. Express 22(11) 13988-14003 (2014)

Algorithm for evaluation of temperature distribution of a vapor cell in a diode-pumped alkali laser system (part II)

Juhong Han, You Wang, He Cai, Guofei An, Wei Zhang, Liangping Xue, Hongyuan Wang, Jie Zhou, Zhigang Jiang, and Ming Gao
Opt. Express 23(7) 9508-9515 (2015)

References

  • View by:
  • |
  • |
  • |

  1. W. F. Krupke, “Diode pumpedalkalilasers (DPALs)-A review (rev1),” Prog. Quantum Electron. 36(1), 4–28 (2012).
    [Crossref]
  2. B. V. Zhdanov and R. J. Knize, “Review of alkali laser research and development,” Opt. Eng. 52(2), 021010 (2012).
    [Crossref]
  3. Y. Wang, M. Niigaki, H. Fukuoka, Y. Zheng, H. Miyajima, S. Matsuoka, H. Kubomura, T. Hiruma, and H. Kan, “Approaches of output improvement for cesium vapor laser pumped by a volume-Bragg-grating coupled laser-diode-array,” Phys. Lett. A 360(4-5), 659–663 (2007).
    [Crossref]
  4. W. F. Krupke, R. J. Beach, V. K. Kanz, and S. A. Payne, “Resonance transition 795-nm rubidium laser,” Opt. Lett. 28(23), 2336–2338 (2003).
    [Crossref] [PubMed]
  5. R. J. Beach, W. F. Krupke, V. K. Kanz, S. A. Payne, M. A. Dubinskii, and L. D. Merkle, “End-pumped continuous-wave alkali vapor lasers: experiment, model, and power scaling,” J. Opt. Soc. Am. B 21(12), 2151–2163 (2004).
    [Crossref]
  6. B. Zhdanov and R. J. Knize, “Diode-pumped 10 W continuous wave cesium laser,” Opt. Lett. 32(15), 2167–2169 (2007).
    [Crossref] [PubMed]
  7. B. V. Zhdanov, A. Stooke, G. Boyadjian, A. Voci, and R. J. Knize, “Laser diode array pumped continuous wave Rubidium vapor laser,” Opt. Express 16(2), 748–751 (2008).
    [Crossref] [PubMed]
  8. R. H. Page, R. J. Beach, V. K. Kanz, and W. F. Krupke, “Multimode-diode-pumped gas (alkali-vapor) laser,” Opt. Lett. 31(3), 353–355 (2006).
    [Crossref] [PubMed]
  9. C. V. Sulham, G. P. Perram, M. P. Wilkinson, and D. A. Hostutler, “A pulsed, optically pumped rubidium laser at high pump intensity,” Opt. Commun. 283(21), 4328–4332 (2010).
    [Crossref]
  10. Z. Yang, H. Wang, Q. Lu, W. Hua, and X. Xu, “Modeling of an optically side-pumped alkali vapor amplifier with consideration of amplified spontaneous emission,” Opt. Express 19(23), 23118–23131 (2011).
    [Crossref] [PubMed]
  11. L. Ge, W. Hua, H. Wang, Z. Yang, and X. Xu, “Study on photoionization in a rubidium diode-pumped alkali laser gain medium with the optogalvanic method,” Opt. Lett. 38(2), 199–201 (2013).
    [Crossref] [PubMed]
  12. B. D. Barmashenko, S. Rosenwaks, and M. C. Heaven, “Static diode pumped alkali lasers: Model calculations of the effects of heating, ionization, high electronic excitation and chemical reactions,” Opt. Commun. 292, 123–125 (2013).
    [Crossref]
  13. B. Q. Oliker, J. D. Haiducek, D. A. Hostutler, G. A. Pitz, W. Rudolph, and T. J. Madden, “Simulation of Deleterious Processes in a Static-Cell Diode Pumped Alkali Laser,” Proc. SPIE 8962, 89620B (2014).
    [Crossref]
  14. K. Waichman, B. D. Barmashenko, and S. Rosenwaks, “Computational fluid dynamics modeling of subsonic flowing-gas diode-pumped alkali lasers: comparison with semi-analytical model calculations and with experimental results,” J. Opt. Soc. Am. B 31(11), 2628–2637 (2014).
    [Crossref]
  15. J. Han, Y. Wang, H. Cai, W. Zhang, L. Xue, and H. Wang, “Algorithm for evaluation of temperature distribution of a vapor cell in a diode-pumped alkali laser system: part I,” Opt. Express 22(11), 13988–14003 (2014).
    [Crossref] [PubMed]
  16. J. H. Han, Y. Wang, H. Cai, W. Zhang, L. P. Xu, and H. Y. Wang, “Investigation of thermal features of two types of alkali-vapor cells pumped by a laser diode,” Chin. Opt. Lett. 12, S20201 (2014).
  17. J. H. Han, Y. Wang, G. F. An, W. Zhang, H. Cai, L. P. Xue, and H. Y. Wang, “Investigation of Physical Features of Both Static and Flowing-gas Diode-pumped Rubidium Vapor Lasers,” Proc. SPIE 9266, 92660P (2014).
    [Crossref]
  18. W. Zhang, Y. Wang, H. Cai, L. Xue, J. Han, H. Wang, and Z. Liao, “Theoretical study on temperature features of a sealed cesium vapor cell pumped by laser diodes,” Appl. Opt. 53(19), 4180–4186 (2014).
    [Crossref] [PubMed]
  19. G. F. An, Y. Wang, J. H. Han, H. Cai, J. Zhou, W. Zhang, L. P. Xue, H. Y. Wang, M. Gao, and Z. G. Jiang, “Influence of excitation on physical features of a diode-pumped alkali laser,” Proc. SPIE 9543, 95431J (2015).
    [Crossref]
  20. S. S. Q. Wu, Hydrocarbon-free resonance transition 795 nm rubidium laser, University of California, San Diego, 2009.
  21. R. J. Knize, B. V. Zhdanov, and M. K. Shaffer, “Photoionization in alkali lasers,” Opt. Express 19(8), 7894–7902 (2011).
    [Crossref] [PubMed]
  22. G. P. Perram and G. D. Hager, “Influence of Broadband Excitation on the Performance of Diode Pumped Alkali Lasers”, 42nd AIAA Plasmadynamics and Lasers Conference, Honolulu, Hawaii, June 27–30, 2011, paper 2011–4002.
  23. M. J. Latif, Heat Conduction IIIed., (Verlag Berlin and Heidelberg GmbH & Co. K, 2009), Chap. 1.
  24. B. D. Barmashenko and S. Rosenwaks, “Detailed analysis of kinetic and fluid dynamic processes in diode-pumped alkali lasers,” J. Opt. Soc. Am. B 30(5), 1118–1126 (2013).
    [Crossref]
  25. B. D. Barmashenko and S. Rosenwaks, “Modeling of flowing gas diode pumped alkali lasers: dependence of the operation on the gas velocity and on the nature of the buffer gas,” Opt. Lett. 37(17), 3615–3617 (2012).
    [Crossref] [PubMed]
  26. D. A. Steck, “Cesium D Line Data,” Available: http://steck.us/alkalidata .
  27. Z. J. Jabbour, R. K. Namiotka, J. Huennekens, M. Allegrini, S. Milosevic, and F. de Tomasi, “Energy-pooling collisions in cesium: 6PJ+6PJ-->6S+(nl=7P,6D,8S,4F),” Phys. Rev. A 54(2), 1372–1384 (1996).
    [Crossref] [PubMed]
  28. J. Huennekens, Z. Wu, and T. G. Walker, “Ionization, excitation of high-lying atomic states, and molecular fluorescence in Cs vapor excited at lambda =455.7 and 459.4 nm,” Phys. Rev. A 31(1), 196–209 (1985).
    [Crossref] [PubMed]

2015 (1)

G. F. An, Y. Wang, J. H. Han, H. Cai, J. Zhou, W. Zhang, L. P. Xue, H. Y. Wang, M. Gao, and Z. G. Jiang, “Influence of excitation on physical features of a diode-pumped alkali laser,” Proc. SPIE 9543, 95431J (2015).
[Crossref]

2014 (6)

B. Q. Oliker, J. D. Haiducek, D. A. Hostutler, G. A. Pitz, W. Rudolph, and T. J. Madden, “Simulation of Deleterious Processes in a Static-Cell Diode Pumped Alkali Laser,” Proc. SPIE 8962, 89620B (2014).
[Crossref]

J. H. Han, Y. Wang, H. Cai, W. Zhang, L. P. Xu, and H. Y. Wang, “Investigation of thermal features of two types of alkali-vapor cells pumped by a laser diode,” Chin. Opt. Lett. 12, S20201 (2014).

J. H. Han, Y. Wang, G. F. An, W. Zhang, H. Cai, L. P. Xue, and H. Y. Wang, “Investigation of Physical Features of Both Static and Flowing-gas Diode-pumped Rubidium Vapor Lasers,” Proc. SPIE 9266, 92660P (2014).
[Crossref]

J. Han, Y. Wang, H. Cai, W. Zhang, L. Xue, and H. Wang, “Algorithm for evaluation of temperature distribution of a vapor cell in a diode-pumped alkali laser system: part I,” Opt. Express 22(11), 13988–14003 (2014).
[Crossref] [PubMed]

W. Zhang, Y. Wang, H. Cai, L. Xue, J. Han, H. Wang, and Z. Liao, “Theoretical study on temperature features of a sealed cesium vapor cell pumped by laser diodes,” Appl. Opt. 53(19), 4180–4186 (2014).
[Crossref] [PubMed]

K. Waichman, B. D. Barmashenko, and S. Rosenwaks, “Computational fluid dynamics modeling of subsonic flowing-gas diode-pumped alkali lasers: comparison with semi-analytical model calculations and with experimental results,” J. Opt. Soc. Am. B 31(11), 2628–2637 (2014).
[Crossref]

2013 (3)

2012 (3)

W. F. Krupke, “Diode pumpedalkalilasers (DPALs)-A review (rev1),” Prog. Quantum Electron. 36(1), 4–28 (2012).
[Crossref]

B. V. Zhdanov and R. J. Knize, “Review of alkali laser research and development,” Opt. Eng. 52(2), 021010 (2012).
[Crossref]

B. D. Barmashenko and S. Rosenwaks, “Modeling of flowing gas diode pumped alkali lasers: dependence of the operation on the gas velocity and on the nature of the buffer gas,” Opt. Lett. 37(17), 3615–3617 (2012).
[Crossref] [PubMed]

2011 (2)

2010 (1)

C. V. Sulham, G. P. Perram, M. P. Wilkinson, and D. A. Hostutler, “A pulsed, optically pumped rubidium laser at high pump intensity,” Opt. Commun. 283(21), 4328–4332 (2010).
[Crossref]

2008 (1)

2007 (2)

B. Zhdanov and R. J. Knize, “Diode-pumped 10 W continuous wave cesium laser,” Opt. Lett. 32(15), 2167–2169 (2007).
[Crossref] [PubMed]

Y. Wang, M. Niigaki, H. Fukuoka, Y. Zheng, H. Miyajima, S. Matsuoka, H. Kubomura, T. Hiruma, and H. Kan, “Approaches of output improvement for cesium vapor laser pumped by a volume-Bragg-grating coupled laser-diode-array,” Phys. Lett. A 360(4-5), 659–663 (2007).
[Crossref]

2006 (1)

2004 (1)

2003 (1)

1996 (1)

Z. J. Jabbour, R. K. Namiotka, J. Huennekens, M. Allegrini, S. Milosevic, and F. de Tomasi, “Energy-pooling collisions in cesium: 6PJ+6PJ-->6S+(nl=7P,6D,8S,4F),” Phys. Rev. A 54(2), 1372–1384 (1996).
[Crossref] [PubMed]

1985 (1)

J. Huennekens, Z. Wu, and T. G. Walker, “Ionization, excitation of high-lying atomic states, and molecular fluorescence in Cs vapor excited at lambda =455.7 and 459.4 nm,” Phys. Rev. A 31(1), 196–209 (1985).
[Crossref] [PubMed]

Allegrini, M.

Z. J. Jabbour, R. K. Namiotka, J. Huennekens, M. Allegrini, S. Milosevic, and F. de Tomasi, “Energy-pooling collisions in cesium: 6PJ+6PJ-->6S+(nl=7P,6D,8S,4F),” Phys. Rev. A 54(2), 1372–1384 (1996).
[Crossref] [PubMed]

An, G. F.

G. F. An, Y. Wang, J. H. Han, H. Cai, J. Zhou, W. Zhang, L. P. Xue, H. Y. Wang, M. Gao, and Z. G. Jiang, “Influence of excitation on physical features of a diode-pumped alkali laser,” Proc. SPIE 9543, 95431J (2015).
[Crossref]

J. H. Han, Y. Wang, G. F. An, W. Zhang, H. Cai, L. P. Xue, and H. Y. Wang, “Investigation of Physical Features of Both Static and Flowing-gas Diode-pumped Rubidium Vapor Lasers,” Proc. SPIE 9266, 92660P (2014).
[Crossref]

Barmashenko, B. D.

Beach, R. J.

Boyadjian, G.

Cai, H.

G. F. An, Y. Wang, J. H. Han, H. Cai, J. Zhou, W. Zhang, L. P. Xue, H. Y. Wang, M. Gao, and Z. G. Jiang, “Influence of excitation on physical features of a diode-pumped alkali laser,” Proc. SPIE 9543, 95431J (2015).
[Crossref]

J. Han, Y. Wang, H. Cai, W. Zhang, L. Xue, and H. Wang, “Algorithm for evaluation of temperature distribution of a vapor cell in a diode-pumped alkali laser system: part I,” Opt. Express 22(11), 13988–14003 (2014).
[Crossref] [PubMed]

J. H. Han, Y. Wang, H. Cai, W. Zhang, L. P. Xu, and H. Y. Wang, “Investigation of thermal features of two types of alkali-vapor cells pumped by a laser diode,” Chin. Opt. Lett. 12, S20201 (2014).

W. Zhang, Y. Wang, H. Cai, L. Xue, J. Han, H. Wang, and Z. Liao, “Theoretical study on temperature features of a sealed cesium vapor cell pumped by laser diodes,” Appl. Opt. 53(19), 4180–4186 (2014).
[Crossref] [PubMed]

J. H. Han, Y. Wang, G. F. An, W. Zhang, H. Cai, L. P. Xue, and H. Y. Wang, “Investigation of Physical Features of Both Static and Flowing-gas Diode-pumped Rubidium Vapor Lasers,” Proc. SPIE 9266, 92660P (2014).
[Crossref]

de Tomasi, F.

Z. J. Jabbour, R. K. Namiotka, J. Huennekens, M. Allegrini, S. Milosevic, and F. de Tomasi, “Energy-pooling collisions in cesium: 6PJ+6PJ-->6S+(nl=7P,6D,8S,4F),” Phys. Rev. A 54(2), 1372–1384 (1996).
[Crossref] [PubMed]

Dubinskii, M. A.

Fukuoka, H.

Y. Wang, M. Niigaki, H. Fukuoka, Y. Zheng, H. Miyajima, S. Matsuoka, H. Kubomura, T. Hiruma, and H. Kan, “Approaches of output improvement for cesium vapor laser pumped by a volume-Bragg-grating coupled laser-diode-array,” Phys. Lett. A 360(4-5), 659–663 (2007).
[Crossref]

Gao, M.

G. F. An, Y. Wang, J. H. Han, H. Cai, J. Zhou, W. Zhang, L. P. Xue, H. Y. Wang, M. Gao, and Z. G. Jiang, “Influence of excitation on physical features of a diode-pumped alkali laser,” Proc. SPIE 9543, 95431J (2015).
[Crossref]

Ge, L.

Hager, G. D.

G. P. Perram and G. D. Hager, “Influence of Broadband Excitation on the Performance of Diode Pumped Alkali Lasers”, 42nd AIAA Plasmadynamics and Lasers Conference, Honolulu, Hawaii, June 27–30, 2011, paper 2011–4002.

Haiducek, J. D.

B. Q. Oliker, J. D. Haiducek, D. A. Hostutler, G. A. Pitz, W. Rudolph, and T. J. Madden, “Simulation of Deleterious Processes in a Static-Cell Diode Pumped Alkali Laser,” Proc. SPIE 8962, 89620B (2014).
[Crossref]

Han, J.

Han, J. H.

G. F. An, Y. Wang, J. H. Han, H. Cai, J. Zhou, W. Zhang, L. P. Xue, H. Y. Wang, M. Gao, and Z. G. Jiang, “Influence of excitation on physical features of a diode-pumped alkali laser,” Proc. SPIE 9543, 95431J (2015).
[Crossref]

J. H. Han, Y. Wang, H. Cai, W. Zhang, L. P. Xu, and H. Y. Wang, “Investigation of thermal features of two types of alkali-vapor cells pumped by a laser diode,” Chin. Opt. Lett. 12, S20201 (2014).

J. H. Han, Y. Wang, G. F. An, W. Zhang, H. Cai, L. P. Xue, and H. Y. Wang, “Investigation of Physical Features of Both Static and Flowing-gas Diode-pumped Rubidium Vapor Lasers,” Proc. SPIE 9266, 92660P (2014).
[Crossref]

Heaven, M. C.

B. D. Barmashenko, S. Rosenwaks, and M. C. Heaven, “Static diode pumped alkali lasers: Model calculations of the effects of heating, ionization, high electronic excitation and chemical reactions,” Opt. Commun. 292, 123–125 (2013).
[Crossref]

Hiruma, T.

Y. Wang, M. Niigaki, H. Fukuoka, Y. Zheng, H. Miyajima, S. Matsuoka, H. Kubomura, T. Hiruma, and H. Kan, “Approaches of output improvement for cesium vapor laser pumped by a volume-Bragg-grating coupled laser-diode-array,” Phys. Lett. A 360(4-5), 659–663 (2007).
[Crossref]

Hostutler, D. A.

B. Q. Oliker, J. D. Haiducek, D. A. Hostutler, G. A. Pitz, W. Rudolph, and T. J. Madden, “Simulation of Deleterious Processes in a Static-Cell Diode Pumped Alkali Laser,” Proc. SPIE 8962, 89620B (2014).
[Crossref]

C. V. Sulham, G. P. Perram, M. P. Wilkinson, and D. A. Hostutler, “A pulsed, optically pumped rubidium laser at high pump intensity,” Opt. Commun. 283(21), 4328–4332 (2010).
[Crossref]

Hua, W.

Huennekens, J.

Z. J. Jabbour, R. K. Namiotka, J. Huennekens, M. Allegrini, S. Milosevic, and F. de Tomasi, “Energy-pooling collisions in cesium: 6PJ+6PJ-->6S+(nl=7P,6D,8S,4F),” Phys. Rev. A 54(2), 1372–1384 (1996).
[Crossref] [PubMed]

J. Huennekens, Z. Wu, and T. G. Walker, “Ionization, excitation of high-lying atomic states, and molecular fluorescence in Cs vapor excited at lambda =455.7 and 459.4 nm,” Phys. Rev. A 31(1), 196–209 (1985).
[Crossref] [PubMed]

Jabbour, Z. J.

Z. J. Jabbour, R. K. Namiotka, J. Huennekens, M. Allegrini, S. Milosevic, and F. de Tomasi, “Energy-pooling collisions in cesium: 6PJ+6PJ-->6S+(nl=7P,6D,8S,4F),” Phys. Rev. A 54(2), 1372–1384 (1996).
[Crossref] [PubMed]

Jiang, Z. G.

G. F. An, Y. Wang, J. H. Han, H. Cai, J. Zhou, W. Zhang, L. P. Xue, H. Y. Wang, M. Gao, and Z. G. Jiang, “Influence of excitation on physical features of a diode-pumped alkali laser,” Proc. SPIE 9543, 95431J (2015).
[Crossref]

Kan, H.

Y. Wang, M. Niigaki, H. Fukuoka, Y. Zheng, H. Miyajima, S. Matsuoka, H. Kubomura, T. Hiruma, and H. Kan, “Approaches of output improvement for cesium vapor laser pumped by a volume-Bragg-grating coupled laser-diode-array,” Phys. Lett. A 360(4-5), 659–663 (2007).
[Crossref]

Kanz, V. K.

Knize, R. J.

Krupke, W. F.

Kubomura, H.

Y. Wang, M. Niigaki, H. Fukuoka, Y. Zheng, H. Miyajima, S. Matsuoka, H. Kubomura, T. Hiruma, and H. Kan, “Approaches of output improvement for cesium vapor laser pumped by a volume-Bragg-grating coupled laser-diode-array,” Phys. Lett. A 360(4-5), 659–663 (2007).
[Crossref]

Liao, Z.

Lu, Q.

Madden, T. J.

B. Q. Oliker, J. D. Haiducek, D. A. Hostutler, G. A. Pitz, W. Rudolph, and T. J. Madden, “Simulation of Deleterious Processes in a Static-Cell Diode Pumped Alkali Laser,” Proc. SPIE 8962, 89620B (2014).
[Crossref]

Matsuoka, S.

Y. Wang, M. Niigaki, H. Fukuoka, Y. Zheng, H. Miyajima, S. Matsuoka, H. Kubomura, T. Hiruma, and H. Kan, “Approaches of output improvement for cesium vapor laser pumped by a volume-Bragg-grating coupled laser-diode-array,” Phys. Lett. A 360(4-5), 659–663 (2007).
[Crossref]

Merkle, L. D.

Milosevic, S.

Z. J. Jabbour, R. K. Namiotka, J. Huennekens, M. Allegrini, S. Milosevic, and F. de Tomasi, “Energy-pooling collisions in cesium: 6PJ+6PJ-->6S+(nl=7P,6D,8S,4F),” Phys. Rev. A 54(2), 1372–1384 (1996).
[Crossref] [PubMed]

Miyajima, H.

Y. Wang, M. Niigaki, H. Fukuoka, Y. Zheng, H. Miyajima, S. Matsuoka, H. Kubomura, T. Hiruma, and H. Kan, “Approaches of output improvement for cesium vapor laser pumped by a volume-Bragg-grating coupled laser-diode-array,” Phys. Lett. A 360(4-5), 659–663 (2007).
[Crossref]

Namiotka, R. K.

Z. J. Jabbour, R. K. Namiotka, J. Huennekens, M. Allegrini, S. Milosevic, and F. de Tomasi, “Energy-pooling collisions in cesium: 6PJ+6PJ-->6S+(nl=7P,6D,8S,4F),” Phys. Rev. A 54(2), 1372–1384 (1996).
[Crossref] [PubMed]

Niigaki, M.

Y. Wang, M. Niigaki, H. Fukuoka, Y. Zheng, H. Miyajima, S. Matsuoka, H. Kubomura, T. Hiruma, and H. Kan, “Approaches of output improvement for cesium vapor laser pumped by a volume-Bragg-grating coupled laser-diode-array,” Phys. Lett. A 360(4-5), 659–663 (2007).
[Crossref]

Oliker, B. Q.

B. Q. Oliker, J. D. Haiducek, D. A. Hostutler, G. A. Pitz, W. Rudolph, and T. J. Madden, “Simulation of Deleterious Processes in a Static-Cell Diode Pumped Alkali Laser,” Proc. SPIE 8962, 89620B (2014).
[Crossref]

Page, R. H.

Payne, S. A.

Perram, G. P.

C. V. Sulham, G. P. Perram, M. P. Wilkinson, and D. A. Hostutler, “A pulsed, optically pumped rubidium laser at high pump intensity,” Opt. Commun. 283(21), 4328–4332 (2010).
[Crossref]

G. P. Perram and G. D. Hager, “Influence of Broadband Excitation on the Performance of Diode Pumped Alkali Lasers”, 42nd AIAA Plasmadynamics and Lasers Conference, Honolulu, Hawaii, June 27–30, 2011, paper 2011–4002.

Pitz, G. A.

B. Q. Oliker, J. D. Haiducek, D. A. Hostutler, G. A. Pitz, W. Rudolph, and T. J. Madden, “Simulation of Deleterious Processes in a Static-Cell Diode Pumped Alkali Laser,” Proc. SPIE 8962, 89620B (2014).
[Crossref]

Rosenwaks, S.

Rudolph, W.

B. Q. Oliker, J. D. Haiducek, D. A. Hostutler, G. A. Pitz, W. Rudolph, and T. J. Madden, “Simulation of Deleterious Processes in a Static-Cell Diode Pumped Alkali Laser,” Proc. SPIE 8962, 89620B (2014).
[Crossref]

Shaffer, M. K.

Stooke, A.

Sulham, C. V.

C. V. Sulham, G. P. Perram, M. P. Wilkinson, and D. A. Hostutler, “A pulsed, optically pumped rubidium laser at high pump intensity,” Opt. Commun. 283(21), 4328–4332 (2010).
[Crossref]

Voci, A.

Waichman, K.

Walker, T. G.

J. Huennekens, Z. Wu, and T. G. Walker, “Ionization, excitation of high-lying atomic states, and molecular fluorescence in Cs vapor excited at lambda =455.7 and 459.4 nm,” Phys. Rev. A 31(1), 196–209 (1985).
[Crossref] [PubMed]

Wang, H.

Wang, H. Y.

G. F. An, Y. Wang, J. H. Han, H. Cai, J. Zhou, W. Zhang, L. P. Xue, H. Y. Wang, M. Gao, and Z. G. Jiang, “Influence of excitation on physical features of a diode-pumped alkali laser,” Proc. SPIE 9543, 95431J (2015).
[Crossref]

J. H. Han, Y. Wang, H. Cai, W. Zhang, L. P. Xu, and H. Y. Wang, “Investigation of thermal features of two types of alkali-vapor cells pumped by a laser diode,” Chin. Opt. Lett. 12, S20201 (2014).

J. H. Han, Y. Wang, G. F. An, W. Zhang, H. Cai, L. P. Xue, and H. Y. Wang, “Investigation of Physical Features of Both Static and Flowing-gas Diode-pumped Rubidium Vapor Lasers,” Proc. SPIE 9266, 92660P (2014).
[Crossref]

Wang, Y.

G. F. An, Y. Wang, J. H. Han, H. Cai, J. Zhou, W. Zhang, L. P. Xue, H. Y. Wang, M. Gao, and Z. G. Jiang, “Influence of excitation on physical features of a diode-pumped alkali laser,” Proc. SPIE 9543, 95431J (2015).
[Crossref]

J. H. Han, Y. Wang, H. Cai, W. Zhang, L. P. Xu, and H. Y. Wang, “Investigation of thermal features of two types of alkali-vapor cells pumped by a laser diode,” Chin. Opt. Lett. 12, S20201 (2014).

J. Han, Y. Wang, H. Cai, W. Zhang, L. Xue, and H. Wang, “Algorithm for evaluation of temperature distribution of a vapor cell in a diode-pumped alkali laser system: part I,” Opt. Express 22(11), 13988–14003 (2014).
[Crossref] [PubMed]

W. Zhang, Y. Wang, H. Cai, L. Xue, J. Han, H. Wang, and Z. Liao, “Theoretical study on temperature features of a sealed cesium vapor cell pumped by laser diodes,” Appl. Opt. 53(19), 4180–4186 (2014).
[Crossref] [PubMed]

J. H. Han, Y. Wang, G. F. An, W. Zhang, H. Cai, L. P. Xue, and H. Y. Wang, “Investigation of Physical Features of Both Static and Flowing-gas Diode-pumped Rubidium Vapor Lasers,” Proc. SPIE 9266, 92660P (2014).
[Crossref]

Y. Wang, M. Niigaki, H. Fukuoka, Y. Zheng, H. Miyajima, S. Matsuoka, H. Kubomura, T. Hiruma, and H. Kan, “Approaches of output improvement for cesium vapor laser pumped by a volume-Bragg-grating coupled laser-diode-array,” Phys. Lett. A 360(4-5), 659–663 (2007).
[Crossref]

Wilkinson, M. P.

C. V. Sulham, G. P. Perram, M. P. Wilkinson, and D. A. Hostutler, “A pulsed, optically pumped rubidium laser at high pump intensity,” Opt. Commun. 283(21), 4328–4332 (2010).
[Crossref]

Wu, Z.

J. Huennekens, Z. Wu, and T. G. Walker, “Ionization, excitation of high-lying atomic states, and molecular fluorescence in Cs vapor excited at lambda =455.7 and 459.4 nm,” Phys. Rev. A 31(1), 196–209 (1985).
[Crossref] [PubMed]

Xu, L. P.

J. H. Han, Y. Wang, H. Cai, W. Zhang, L. P. Xu, and H. Y. Wang, “Investigation of thermal features of two types of alkali-vapor cells pumped by a laser diode,” Chin. Opt. Lett. 12, S20201 (2014).

Xu, X.

Xue, L.

Xue, L. P.

G. F. An, Y. Wang, J. H. Han, H. Cai, J. Zhou, W. Zhang, L. P. Xue, H. Y. Wang, M. Gao, and Z. G. Jiang, “Influence of excitation on physical features of a diode-pumped alkali laser,” Proc. SPIE 9543, 95431J (2015).
[Crossref]

J. H. Han, Y. Wang, G. F. An, W. Zhang, H. Cai, L. P. Xue, and H. Y. Wang, “Investigation of Physical Features of Both Static and Flowing-gas Diode-pumped Rubidium Vapor Lasers,” Proc. SPIE 9266, 92660P (2014).
[Crossref]

Yang, Z.

Zhang, W.

G. F. An, Y. Wang, J. H. Han, H. Cai, J. Zhou, W. Zhang, L. P. Xue, H. Y. Wang, M. Gao, and Z. G. Jiang, “Influence of excitation on physical features of a diode-pumped alkali laser,” Proc. SPIE 9543, 95431J (2015).
[Crossref]

J. Han, Y. Wang, H. Cai, W. Zhang, L. Xue, and H. Wang, “Algorithm for evaluation of temperature distribution of a vapor cell in a diode-pumped alkali laser system: part I,” Opt. Express 22(11), 13988–14003 (2014).
[Crossref] [PubMed]

J. H. Han, Y. Wang, H. Cai, W. Zhang, L. P. Xu, and H. Y. Wang, “Investigation of thermal features of two types of alkali-vapor cells pumped by a laser diode,” Chin. Opt. Lett. 12, S20201 (2014).

W. Zhang, Y. Wang, H. Cai, L. Xue, J. Han, H. Wang, and Z. Liao, “Theoretical study on temperature features of a sealed cesium vapor cell pumped by laser diodes,” Appl. Opt. 53(19), 4180–4186 (2014).
[Crossref] [PubMed]

J. H. Han, Y. Wang, G. F. An, W. Zhang, H. Cai, L. P. Xue, and H. Y. Wang, “Investigation of Physical Features of Both Static and Flowing-gas Diode-pumped Rubidium Vapor Lasers,” Proc. SPIE 9266, 92660P (2014).
[Crossref]

Zhdanov, B.

Zhdanov, B. V.

Zheng, Y.

Y. Wang, M. Niigaki, H. Fukuoka, Y. Zheng, H. Miyajima, S. Matsuoka, H. Kubomura, T. Hiruma, and H. Kan, “Approaches of output improvement for cesium vapor laser pumped by a volume-Bragg-grating coupled laser-diode-array,” Phys. Lett. A 360(4-5), 659–663 (2007).
[Crossref]

Zhou, J.

G. F. An, Y. Wang, J. H. Han, H. Cai, J. Zhou, W. Zhang, L. P. Xue, H. Y. Wang, M. Gao, and Z. G. Jiang, “Influence of excitation on physical features of a diode-pumped alkali laser,” Proc. SPIE 9543, 95431J (2015).
[Crossref]

Appl. Opt. (1)

Chin. Opt. Lett. (1)

J. H. Han, Y. Wang, H. Cai, W. Zhang, L. P. Xu, and H. Y. Wang, “Investigation of thermal features of two types of alkali-vapor cells pumped by a laser diode,” Chin. Opt. Lett. 12, S20201 (2014).

J. Opt. Soc. Am. B (3)

Opt. Commun. (2)

C. V. Sulham, G. P. Perram, M. P. Wilkinson, and D. A. Hostutler, “A pulsed, optically pumped rubidium laser at high pump intensity,” Opt. Commun. 283(21), 4328–4332 (2010).
[Crossref]

B. D. Barmashenko, S. Rosenwaks, and M. C. Heaven, “Static diode pumped alkali lasers: Model calculations of the effects of heating, ionization, high electronic excitation and chemical reactions,” Opt. Commun. 292, 123–125 (2013).
[Crossref]

Opt. Eng. (1)

B. V. Zhdanov and R. J. Knize, “Review of alkali laser research and development,” Opt. Eng. 52(2), 021010 (2012).
[Crossref]

Opt. Express (4)

Opt. Lett. (5)

Phys. Lett. A (1)

Y. Wang, M. Niigaki, H. Fukuoka, Y. Zheng, H. Miyajima, S. Matsuoka, H. Kubomura, T. Hiruma, and H. Kan, “Approaches of output improvement for cesium vapor laser pumped by a volume-Bragg-grating coupled laser-diode-array,” Phys. Lett. A 360(4-5), 659–663 (2007).
[Crossref]

Phys. Rev. A (2)

Z. J. Jabbour, R. K. Namiotka, J. Huennekens, M. Allegrini, S. Milosevic, and F. de Tomasi, “Energy-pooling collisions in cesium: 6PJ+6PJ-->6S+(nl=7P,6D,8S,4F),” Phys. Rev. A 54(2), 1372–1384 (1996).
[Crossref] [PubMed]

J. Huennekens, Z. Wu, and T. G. Walker, “Ionization, excitation of high-lying atomic states, and molecular fluorescence in Cs vapor excited at lambda =455.7 and 459.4 nm,” Phys. Rev. A 31(1), 196–209 (1985).
[Crossref] [PubMed]

Proc. SPIE (3)

B. Q. Oliker, J. D. Haiducek, D. A. Hostutler, G. A. Pitz, W. Rudolph, and T. J. Madden, “Simulation of Deleterious Processes in a Static-Cell Diode Pumped Alkali Laser,” Proc. SPIE 8962, 89620B (2014).
[Crossref]

J. H. Han, Y. Wang, G. F. An, W. Zhang, H. Cai, L. P. Xue, and H. Y. Wang, “Investigation of Physical Features of Both Static and Flowing-gas Diode-pumped Rubidium Vapor Lasers,” Proc. SPIE 9266, 92660P (2014).
[Crossref]

G. F. An, Y. Wang, J. H. Han, H. Cai, J. Zhou, W. Zhang, L. P. Xue, H. Y. Wang, M. Gao, and Z. G. Jiang, “Influence of excitation on physical features of a diode-pumped alkali laser,” Proc. SPIE 9543, 95431J (2015).
[Crossref]

Prog. Quantum Electron. (1)

W. F. Krupke, “Diode pumpedalkalilasers (DPALs)-A review (rev1),” Prog. Quantum Electron. 36(1), 4–28 (2012).
[Crossref]

Other (4)

S. S. Q. Wu, Hydrocarbon-free resonance transition 795 nm rubidium laser, University of California, San Diego, 2009.

G. P. Perram and G. D. Hager, “Influence of Broadband Excitation on the Performance of Diode Pumped Alkali Lasers”, 42nd AIAA Plasmadynamics and Lasers Conference, Honolulu, Hawaii, June 27–30, 2011, paper 2011–4002.

M. J. Latif, Heat Conduction IIIed., (Verlag Berlin and Heidelberg GmbH & Co. K, 2009), Chap. 1.

D. A. Steck, “Cesium D Line Data,” Available: http://steck.us/alkalidata .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Energy level diagram of a cesium atom.
Fig. 2
Fig. 2 (a) Segmented configuration of a cesium vapor cell, (b) transverse view of a vapor cell.
Fig. 3
Fig. 3 Schematic illustration of generated and transferred heat at the transverse section of a vapor cell.
Fig. 4
Fig. 4 Temperature distributions of (a) Case 1 and (b) Case 5 with different pump power.
Fig. 5
Fig. 5 Temperature distributions with pump power of 1500 W in different cases, Inset shows the enlarged center part (r < 1.25 mm).
Fig. 6
Fig. 6 Population distributions of different cases with the pump power of 1500 W.
Fig. 7
Fig. 7 Population distributions of Case 1 and Case 5 with pump power of 100 and 1500 W.
Fig. 8
Fig. 8 Population distributions of n4 with pump power of (a) 100 W, (b) 500 W, (c) 1000 W, and (d) 1500 W, respectively.
Fig. 9
Fig. 9 Population distributions of n5.
Fig. 10
Fig. 10 Laser power versus pump power in different cases.

Tables (2)

Tables Icon

Table 1 Summary of critical parameters in our model.

Tables Icon

Table 2 Different cases investigated in the model

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

r j =R( j1 )R/N,
r j+1 =RjR/N,
d n 1 j dt = Γ P j + Γ L j + n 2 j τ D 1 + n 3 j τ D 2 + n 4 j τ 4 + k EP2 ( n 2 j ) 2 + k EP3 ( n 3 j ) 2 + k PI n 4 j ( n 2 j + n 3 j ), d n 2 j dt = Γ L j + γ 32 ( T j ){ [ n 3 j n 2 j ][ 2exp( ΔE k B T j )1 ] n 2 j } n 2 j τ D 1 2 k EP2 ( n 2 j ) 2 k PI n 2 j n 4 j , d n 3 j dt = Γ P j γ 32 ( T j ){ [ n 3 j n 2 j ][ 2exp( ΔE k B T j )1 ] n 2 j } n 3 j τ D 2 2 k EP3 ( n 3 j ) 2 k PI n 3 j n 4 j , d n 4 j dt = k EP2 ( n 2 j ) 2 + k EP3 ( n 3 j ) 2 n 4 j τ 4 k PI n 4 j ( n 2 j + n 3 j ) Γ photoionization j + k recombination ( n 5 j ) 3 , d n 5 j dt = k PI n 4 j ( n 2 j + n 3 j )+ Γ photoionization j k recombination ( n 5 j ) 3 , Γ photoionization j = n 4 j σ photoionization ( I l j h v l + I p j h v p ),
d dr ( r dT dr )+ Q j r K( T j ) =0,
Q j = V L i Ω j = V L i γ 32 ( T j )[ n 3 j 2 n 2 j exp( ΔE k B T j ) ]ΔE,
T( r )= C j 1 lnr Ω j r 2 4K( T j ) + C j 0 ,
C j 1 = Ω j r j 2 2K( T j ) Φ j r j K( T j ) A j ,
C j 0 = T j C j 1 ln r j + Ω j r j 2 4K( T j ) .
Φ 1 = P thermal ,
Φ 2 = Φ 1 Q 1 = P thermal Q 1 .
Φ j = P thermal i=1 j1 Q i ,
P thermal = i=1 j Q i .
n 0 j ( T j )={ n 0 1 ( T w ),j=1 n 0 1 ( T w )( T w T j ),j>1 ,
n 0 1 ( T w )= 133.322 N A R T w ( 10 8.22127 4006.048 T w 0.00060194 T w 0.19623 log 10 T w ),

Metrics