Abstract

We experimentally and numerically study near-field and far-field visible light scattering from lithographically defined micron scale dielectric particles. We demonstrate field confinement and elongated intensity features known as photonic nanojets in the Fresnel zone. An experimental setup is introduced which allows simultaneous mapping of the angular properties of the scattering in the Fresnel zone and far-field regions. Precise control over the shape, size and position of the scatterers, allows direction control of the near-field intensity distribution. Intensity features with 1/3 the divergence of free space Gaussian beams of similar waist are experimentally observed. Additionally the direction and polarization of the incident light can be used to switch on and off intensity hot spots in the near-field. Together these parameters allow a previously un-obtainable level of control over the intensity distribution in the near-field, compared to spherically and cylindrically symmetric scattering particles.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Low divergence photonic nanojets from Si3N4 microdisks

D. McCloskey, Jing Jing Wang, and J.F. Donegan
Opt. Express 20(1) 128-140 (2012)

Photonic nanojet calculations in layered radially inhomogeneous micrometer-sized spherical particles

Yuri E. Geints, Alexander A. Zemlyanov, and Ekaterina K. Panina
J. Opt. Soc. Am. B 28(8) 1825-1830 (2011)

Microaxicon-generated photonic nanojets

Yu. E. Geints, A. A. Zemlyanov, and E. K. Panina
J. Opt. Soc. Am. B 32(8) 1570-1574 (2015)

References

  • View by:
  • |
  • |
  • |

  1. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley and Sons, 1983).
  2. A. Heifetz, S. C. Kong, A. V. Sahakian, A. Taflove, and V. Backman, “Photonic nanojets,” J. Comput. Theor. Nanosci. 6(9), 1979–1992 (2009).
    [Crossref] [PubMed]
  3. J. Kofler and N. Arnold, “Axially symmetric focusing as a cuspoid diffraction catastrophe: Scalar and vector cases and comparison with the theory of Mie,” Phys. Rev. B 73(23), 235401 (2006).
    [Crossref]
  4. A. Devilez, B. Stout, N. Bonod, and E. Popov, “Spectral analysis of three-dimensional photonic jets,” Opt. Express 16(18), 14200–14212 (2008).
    [Crossref] [PubMed]
  5. A. V. Itagi and W. A. Challener, “Optics of photonic nanojets,” J. Opt. Soc. Am. A 22(12), 2847–2858 (2005).
    [Crossref] [PubMed]
  6. A. Devilez, N. Bonod, J. Wenger, D. Gérard, B. Stout, H. Rigneault, and E. Popov, “Three-dimensional subwavelength confinement of light with dielectric microspheres,” Opt. Express 17(4), 2089–2094 (2009).
    [Crossref] [PubMed]
  7. M.-S. Kim, T. Scharf, S. Mühlig, C. Rockstuhl, and H. P. Herzig, “Engineering photonic nanojets,” Opt. Express 19(11), 10206–10220 (2011).
    [Crossref] [PubMed]
  8. P. Ferrand, J. Wenger, A. Devilez, M. Pianta, B. Stout, N. Bonod, E. Popov, and H. Rigneault, “Direct imaging of photonic nanojets,” Opt. Express 16(10), 6930–6940 (2008).
    [Crossref] [PubMed]
  9. A. Heifetz, K. Huang, A. V. Sahakian, X. Li, A. Taflove, and V. Backman, “Experimental confirmation of backscattering enhancement induced by a photonic jet,” Appl. Phys. Lett. 89(22), 221118 (2006).
    [Crossref]
  10. A. Heifetz, J. J. Simpson, S.-C. Kong, A. Taflove, and V. Backman, “Subdiffraction optical resolution of a gold nanosphere located within the nanojet of a Mie-resonant dielectric microsphere,” Opt. Express 15(25), 17334–17342 (2007).
    [Crossref] [PubMed]
  11. S. Yang, A. Taflove, and V. Backman, “Experimental confirmation at visible light wavelengths of the backscattering enhancement phenomenon of the photonic nanojet,” Opt. Express 19(8), 7084–7093 (2011).
    [Crossref] [PubMed]
  12. W. Wu, A. Katsnelson, O. G. Memis, and H. Mohseni, “A deep sub-wavelength process for the formation of highly uniform arrays of nanoholes and nanopillars,” Nanotechnology 18(48), 485302 (2007).
    [Crossref]
  13. E. McLeod and C. B. Arnold, “Subwavelength direct-write nanopatterning using optically trapped microspheres,” Nat. Nanotechnol. 3(7), 413–417 (2008).
    [Crossref] [PubMed]
  14. S. C. Kong, A. Sahakian, A. Taflove, and V. Backman, “Photonic nanojet-enabled optical data storage,” Opt. Express 16(18), 13713–13719 (2008).
    [Crossref] [PubMed]
  15. S.-C. Kong, A. V. Sahakian, A. Heifetz, A. Taflove, and V. Backman, “Robust detection of deeply subwavelength pits in simulated optical data-storage disks using photonic jets,” Appl. Phys. Lett. 92(21), 211102 (2008).
    [Crossref]
  16. D. Gérard, A. Devilez, H. Aouani, B. Stout, N. Bonod, J. Wenger, E. Popov, and H. Rigneault, “Efficient excitation and collection of single-molecule fluorescence close to a dielectric microsphere,” J. Opt. Soc. Am. B 26(7), 1473–1478 (2009).
    [Crossref]
  17. D. Gérard, J. Wenger, A. Devilez, D. Gachet, B. Stout, N. Bonod, E. Popov, and H. Rigneault, “Strong electromagnetic confinement near dielectric microspheres to enhance single-molecule fluorescence,” Opt. Express 16(19), 15297–15303 (2008).
    [Crossref] [PubMed]
  18. Z. Chen, A. Taflove, X. Li, and V. Backman, “Superenhanced backscattering of light by nanoparticles,” Opt. Lett. 31(2), 196–198 (2006).
    [Crossref] [PubMed]
  19. X. Li, Z. Chen, A. Taflove, and V. Backman, “Optical analysis of nanoparticles via enhanced backscattering facilitated by 3-D photonic nanojets,” Opt. Express 13(2), 526–533 (2005).
    [Crossref] [PubMed]
  20. L. V. Minin, O. V. Minin, and Y. E. Geints, “Localized EM and photonic jets from non-spherical and non-symmetrical dielectric mesoscale objects: Brief review,” Ann. Phys. 527(7-8), 491–497 (2015).
    [Crossref]
  21. C.-Y. Liu and L.-J. Chang, “Photonic nanojet modulation by elliptical microcylinders,” Optik (Stuttg.) 125(15), 4043–4046 (2014).
    [Crossref]
  22. S.-C. Kong, A. Taflove, and V. Backman, “Quasi one-dimensional light beam generated by a graded-index microsphere,” Opt. Express 17(5), 3722–3731 (2009).
    [Crossref] [PubMed]
  23. Y. E. Geints, A. A. Zemlyanov, and E. K. Panina, “Photonic nanojet calculations in layered radially inhomogeneous micrometer-sized spherical particles,” J. Opt. Soc. Am. B 28(8), 1825–1830 (2011).
    [Crossref]
  24. J. Martin, J. Proust, D. Gérard, J.-L. Bijeon, and J. Plain, “Intense Bessel-like beams arising from pyramid-shaped microtips,” Opt. Lett. 37(7), 1274–1276 (2012).
    [Crossref] [PubMed]
  25. M. D. Barnes, N. Lermer, W. B. Whitten, and J. M. Ramsey, “A CCD based approach to high-precision size and refractive index determination of levitated microdroplets using Fraunhofer diffraction,” Rev. Sci. Instrum. 68(6), 2287–2291 (1997).
    [Crossref]
  26. M. A. Lieb, J. M. Zavislan, and L. Novotny, “Single-molecule orientations determined by direct emission pattern imaging,” J. Opt. Soc. Am. B 21(6), 1210–1215 (2004).
    [Crossref]
  27. S. Palomba, M. Danckwerts, and L. Novotny, “Nonlinear plasmonics with gold nanoparticle antennae,” J. Opt. A, Pure Appl. Opt. 11(11), 114030 (2009).
    [Crossref]
  28. H. C. van de Hulst and R. T. Wang, “Glare points,” Appl. Opt. 30(33), 4755–4763 (1991).
    [Crossref] [PubMed]
  29. A. Ashkin and J. M. Dziedzic, “Observation of optical resonances of dielectric spheres by light scattering,” Appl. Opt. 20(10), 1803–1814 (1981).
    [Crossref] [PubMed]
  30. S. A. Schaub, D. R. Alexander, and J. P. Barton, “Glare spot image calculations for a spherical particle illuminated by a tightly focused beam,” J. Opt. Soc. Am. A 9(2), 316–330 (1992).
    [Crossref]
  31. D. McCloskey, J. J. Wang, and J. F. Donegan, “Low divergence photonic nanojets from Si3N4 microdisks,” Opt. Express 20(1), 128–140 (2012).
    [Crossref] [PubMed]
  32. C. Backes, R. J. Smith, N. McEvoy, N. C. Berner, D. McCloskey, H. C. Nerl, A. O’Neill, P. J. King, T. Higgins, D. Hanlon, N. Scheuschner, J. Maultzsch, L. Houben, G. S. Duesberg, J. F. Donegan, V. Nicolosi, and J. N. Coleman, “Edge and confinement effects allow in situ measurement of size and thickness of liquid-exfoliated nanosheets,” Nat. Commun. 5, 4576 (2014).
    [Crossref] [PubMed]
  33. P. Ghenuche, J. de Torres, P. Ferrand, and J. Wenger, “Multi-focus parallel detection of fluorescent molecules at picomolar concentration with photonic nanojets arrays,” Appl. Phys. Lett. 105(13), 131102 (2014).
    [Crossref]
  34. X. Cui, D. Erni, and C. Hafner, “Optical forces on metallic nanoparticles induced by a photonic nanojet,” Opt. Express 16(18), 13560–13568 (2008).
    [Crossref] [PubMed]
  35. D. McCloskey and J. F. Donegan, “Planar elliptical solid immersion lens based on a Cartesian oval,” Appl. Phys. Lett. 103(9), 091101 (2013).
    [Crossref]

2015 (1)

L. V. Minin, O. V. Minin, and Y. E. Geints, “Localized EM and photonic jets from non-spherical and non-symmetrical dielectric mesoscale objects: Brief review,” Ann. Phys. 527(7-8), 491–497 (2015).
[Crossref]

2014 (3)

C.-Y. Liu and L.-J. Chang, “Photonic nanojet modulation by elliptical microcylinders,” Optik (Stuttg.) 125(15), 4043–4046 (2014).
[Crossref]

C. Backes, R. J. Smith, N. McEvoy, N. C. Berner, D. McCloskey, H. C. Nerl, A. O’Neill, P. J. King, T. Higgins, D. Hanlon, N. Scheuschner, J. Maultzsch, L. Houben, G. S. Duesberg, J. F. Donegan, V. Nicolosi, and J. N. Coleman, “Edge and confinement effects allow in situ measurement of size and thickness of liquid-exfoliated nanosheets,” Nat. Commun. 5, 4576 (2014).
[Crossref] [PubMed]

P. Ghenuche, J. de Torres, P. Ferrand, and J. Wenger, “Multi-focus parallel detection of fluorescent molecules at picomolar concentration with photonic nanojets arrays,” Appl. Phys. Lett. 105(13), 131102 (2014).
[Crossref]

2013 (1)

D. McCloskey and J. F. Donegan, “Planar elliptical solid immersion lens based on a Cartesian oval,” Appl. Phys. Lett. 103(9), 091101 (2013).
[Crossref]

2012 (2)

2011 (3)

2009 (5)

2008 (7)

2007 (2)

W. Wu, A. Katsnelson, O. G. Memis, and H. Mohseni, “A deep sub-wavelength process for the formation of highly uniform arrays of nanoholes and nanopillars,” Nanotechnology 18(48), 485302 (2007).
[Crossref]

A. Heifetz, J. J. Simpson, S.-C. Kong, A. Taflove, and V. Backman, “Subdiffraction optical resolution of a gold nanosphere located within the nanojet of a Mie-resonant dielectric microsphere,” Opt. Express 15(25), 17334–17342 (2007).
[Crossref] [PubMed]

2006 (3)

A. Heifetz, K. Huang, A. V. Sahakian, X. Li, A. Taflove, and V. Backman, “Experimental confirmation of backscattering enhancement induced by a photonic jet,” Appl. Phys. Lett. 89(22), 221118 (2006).
[Crossref]

J. Kofler and N. Arnold, “Axially symmetric focusing as a cuspoid diffraction catastrophe: Scalar and vector cases and comparison with the theory of Mie,” Phys. Rev. B 73(23), 235401 (2006).
[Crossref]

Z. Chen, A. Taflove, X. Li, and V. Backman, “Superenhanced backscattering of light by nanoparticles,” Opt. Lett. 31(2), 196–198 (2006).
[Crossref] [PubMed]

2005 (2)

2004 (1)

1997 (1)

M. D. Barnes, N. Lermer, W. B. Whitten, and J. M. Ramsey, “A CCD based approach to high-precision size and refractive index determination of levitated microdroplets using Fraunhofer diffraction,” Rev. Sci. Instrum. 68(6), 2287–2291 (1997).
[Crossref]

1992 (1)

1991 (1)

1981 (1)

Alexander, D. R.

Aouani, H.

Arnold, C. B.

E. McLeod and C. B. Arnold, “Subwavelength direct-write nanopatterning using optically trapped microspheres,” Nat. Nanotechnol. 3(7), 413–417 (2008).
[Crossref] [PubMed]

Arnold, N.

J. Kofler and N. Arnold, “Axially symmetric focusing as a cuspoid diffraction catastrophe: Scalar and vector cases and comparison with the theory of Mie,” Phys. Rev. B 73(23), 235401 (2006).
[Crossref]

Ashkin, A.

Backes, C.

C. Backes, R. J. Smith, N. McEvoy, N. C. Berner, D. McCloskey, H. C. Nerl, A. O’Neill, P. J. King, T. Higgins, D. Hanlon, N. Scheuschner, J. Maultzsch, L. Houben, G. S. Duesberg, J. F. Donegan, V. Nicolosi, and J. N. Coleman, “Edge and confinement effects allow in situ measurement of size and thickness of liquid-exfoliated nanosheets,” Nat. Commun. 5, 4576 (2014).
[Crossref] [PubMed]

Backman, V.

S. Yang, A. Taflove, and V. Backman, “Experimental confirmation at visible light wavelengths of the backscattering enhancement phenomenon of the photonic nanojet,” Opt. Express 19(8), 7084–7093 (2011).
[Crossref] [PubMed]

S.-C. Kong, A. Taflove, and V. Backman, “Quasi one-dimensional light beam generated by a graded-index microsphere,” Opt. Express 17(5), 3722–3731 (2009).
[Crossref] [PubMed]

A. Heifetz, S. C. Kong, A. V. Sahakian, A. Taflove, and V. Backman, “Photonic nanojets,” J. Comput. Theor. Nanosci. 6(9), 1979–1992 (2009).
[Crossref] [PubMed]

S.-C. Kong, A. V. Sahakian, A. Heifetz, A. Taflove, and V. Backman, “Robust detection of deeply subwavelength pits in simulated optical data-storage disks using photonic jets,” Appl. Phys. Lett. 92(21), 211102 (2008).
[Crossref]

S. C. Kong, A. Sahakian, A. Taflove, and V. Backman, “Photonic nanojet-enabled optical data storage,” Opt. Express 16(18), 13713–13719 (2008).
[Crossref] [PubMed]

A. Heifetz, J. J. Simpson, S.-C. Kong, A. Taflove, and V. Backman, “Subdiffraction optical resolution of a gold nanosphere located within the nanojet of a Mie-resonant dielectric microsphere,” Opt. Express 15(25), 17334–17342 (2007).
[Crossref] [PubMed]

Z. Chen, A. Taflove, X. Li, and V. Backman, “Superenhanced backscattering of light by nanoparticles,” Opt. Lett. 31(2), 196–198 (2006).
[Crossref] [PubMed]

A. Heifetz, K. Huang, A. V. Sahakian, X. Li, A. Taflove, and V. Backman, “Experimental confirmation of backscattering enhancement induced by a photonic jet,” Appl. Phys. Lett. 89(22), 221118 (2006).
[Crossref]

X. Li, Z. Chen, A. Taflove, and V. Backman, “Optical analysis of nanoparticles via enhanced backscattering facilitated by 3-D photonic nanojets,” Opt. Express 13(2), 526–533 (2005).
[Crossref] [PubMed]

Barnes, M. D.

M. D. Barnes, N. Lermer, W. B. Whitten, and J. M. Ramsey, “A CCD based approach to high-precision size and refractive index determination of levitated microdroplets using Fraunhofer diffraction,” Rev. Sci. Instrum. 68(6), 2287–2291 (1997).
[Crossref]

Barton, J. P.

Berner, N. C.

C. Backes, R. J. Smith, N. McEvoy, N. C. Berner, D. McCloskey, H. C. Nerl, A. O’Neill, P. J. King, T. Higgins, D. Hanlon, N. Scheuschner, J. Maultzsch, L. Houben, G. S. Duesberg, J. F. Donegan, V. Nicolosi, and J. N. Coleman, “Edge and confinement effects allow in situ measurement of size and thickness of liquid-exfoliated nanosheets,” Nat. Commun. 5, 4576 (2014).
[Crossref] [PubMed]

Bijeon, J.-L.

Bonod, N.

Challener, W. A.

Chang, L.-J.

C.-Y. Liu and L.-J. Chang, “Photonic nanojet modulation by elliptical microcylinders,” Optik (Stuttg.) 125(15), 4043–4046 (2014).
[Crossref]

Chen, Z.

Coleman, J. N.

C. Backes, R. J. Smith, N. McEvoy, N. C. Berner, D. McCloskey, H. C. Nerl, A. O’Neill, P. J. King, T. Higgins, D. Hanlon, N. Scheuschner, J. Maultzsch, L. Houben, G. S. Duesberg, J. F. Donegan, V. Nicolosi, and J. N. Coleman, “Edge and confinement effects allow in situ measurement of size and thickness of liquid-exfoliated nanosheets,” Nat. Commun. 5, 4576 (2014).
[Crossref] [PubMed]

Cui, X.

Danckwerts, M.

S. Palomba, M. Danckwerts, and L. Novotny, “Nonlinear plasmonics with gold nanoparticle antennae,” J. Opt. A, Pure Appl. Opt. 11(11), 114030 (2009).
[Crossref]

de Torres, J.

P. Ghenuche, J. de Torres, P. Ferrand, and J. Wenger, “Multi-focus parallel detection of fluorescent molecules at picomolar concentration with photonic nanojets arrays,” Appl. Phys. Lett. 105(13), 131102 (2014).
[Crossref]

Devilez, A.

Donegan, J. F.

C. Backes, R. J. Smith, N. McEvoy, N. C. Berner, D. McCloskey, H. C. Nerl, A. O’Neill, P. J. King, T. Higgins, D. Hanlon, N. Scheuschner, J. Maultzsch, L. Houben, G. S. Duesberg, J. F. Donegan, V. Nicolosi, and J. N. Coleman, “Edge and confinement effects allow in situ measurement of size and thickness of liquid-exfoliated nanosheets,” Nat. Commun. 5, 4576 (2014).
[Crossref] [PubMed]

D. McCloskey and J. F. Donegan, “Planar elliptical solid immersion lens based on a Cartesian oval,” Appl. Phys. Lett. 103(9), 091101 (2013).
[Crossref]

D. McCloskey, J. J. Wang, and J. F. Donegan, “Low divergence photonic nanojets from Si3N4 microdisks,” Opt. Express 20(1), 128–140 (2012).
[Crossref] [PubMed]

Duesberg, G. S.

C. Backes, R. J. Smith, N. McEvoy, N. C. Berner, D. McCloskey, H. C. Nerl, A. O’Neill, P. J. King, T. Higgins, D. Hanlon, N. Scheuschner, J. Maultzsch, L. Houben, G. S. Duesberg, J. F. Donegan, V. Nicolosi, and J. N. Coleman, “Edge and confinement effects allow in situ measurement of size and thickness of liquid-exfoliated nanosheets,” Nat. Commun. 5, 4576 (2014).
[Crossref] [PubMed]

Dziedzic, J. M.

Erni, D.

Ferrand, P.

P. Ghenuche, J. de Torres, P. Ferrand, and J. Wenger, “Multi-focus parallel detection of fluorescent molecules at picomolar concentration with photonic nanojets arrays,” Appl. Phys. Lett. 105(13), 131102 (2014).
[Crossref]

P. Ferrand, J. Wenger, A. Devilez, M. Pianta, B. Stout, N. Bonod, E. Popov, and H. Rigneault, “Direct imaging of photonic nanojets,” Opt. Express 16(10), 6930–6940 (2008).
[Crossref] [PubMed]

Gachet, D.

Geints, Y. E.

L. V. Minin, O. V. Minin, and Y. E. Geints, “Localized EM and photonic jets from non-spherical and non-symmetrical dielectric mesoscale objects: Brief review,” Ann. Phys. 527(7-8), 491–497 (2015).
[Crossref]

Y. E. Geints, A. A. Zemlyanov, and E. K. Panina, “Photonic nanojet calculations in layered radially inhomogeneous micrometer-sized spherical particles,” J. Opt. Soc. Am. B 28(8), 1825–1830 (2011).
[Crossref]

Gérard, D.

Ghenuche, P.

P. Ghenuche, J. de Torres, P. Ferrand, and J. Wenger, “Multi-focus parallel detection of fluorescent molecules at picomolar concentration with photonic nanojets arrays,” Appl. Phys. Lett. 105(13), 131102 (2014).
[Crossref]

Hafner, C.

Hanlon, D.

C. Backes, R. J. Smith, N. McEvoy, N. C. Berner, D. McCloskey, H. C. Nerl, A. O’Neill, P. J. King, T. Higgins, D. Hanlon, N. Scheuschner, J. Maultzsch, L. Houben, G. S. Duesberg, J. F. Donegan, V. Nicolosi, and J. N. Coleman, “Edge and confinement effects allow in situ measurement of size and thickness of liquid-exfoliated nanosheets,” Nat. Commun. 5, 4576 (2014).
[Crossref] [PubMed]

Heifetz, A.

A. Heifetz, S. C. Kong, A. V. Sahakian, A. Taflove, and V. Backman, “Photonic nanojets,” J. Comput. Theor. Nanosci. 6(9), 1979–1992 (2009).
[Crossref] [PubMed]

S.-C. Kong, A. V. Sahakian, A. Heifetz, A. Taflove, and V. Backman, “Robust detection of deeply subwavelength pits in simulated optical data-storage disks using photonic jets,” Appl. Phys. Lett. 92(21), 211102 (2008).
[Crossref]

A. Heifetz, J. J. Simpson, S.-C. Kong, A. Taflove, and V. Backman, “Subdiffraction optical resolution of a gold nanosphere located within the nanojet of a Mie-resonant dielectric microsphere,” Opt. Express 15(25), 17334–17342 (2007).
[Crossref] [PubMed]

A. Heifetz, K. Huang, A. V. Sahakian, X. Li, A. Taflove, and V. Backman, “Experimental confirmation of backscattering enhancement induced by a photonic jet,” Appl. Phys. Lett. 89(22), 221118 (2006).
[Crossref]

Herzig, H. P.

Higgins, T.

C. Backes, R. J. Smith, N. McEvoy, N. C. Berner, D. McCloskey, H. C. Nerl, A. O’Neill, P. J. King, T. Higgins, D. Hanlon, N. Scheuschner, J. Maultzsch, L. Houben, G. S. Duesberg, J. F. Donegan, V. Nicolosi, and J. N. Coleman, “Edge and confinement effects allow in situ measurement of size and thickness of liquid-exfoliated nanosheets,” Nat. Commun. 5, 4576 (2014).
[Crossref] [PubMed]

Houben, L.

C. Backes, R. J. Smith, N. McEvoy, N. C. Berner, D. McCloskey, H. C. Nerl, A. O’Neill, P. J. King, T. Higgins, D. Hanlon, N. Scheuschner, J. Maultzsch, L. Houben, G. S. Duesberg, J. F. Donegan, V. Nicolosi, and J. N. Coleman, “Edge and confinement effects allow in situ measurement of size and thickness of liquid-exfoliated nanosheets,” Nat. Commun. 5, 4576 (2014).
[Crossref] [PubMed]

Huang, K.

A. Heifetz, K. Huang, A. V. Sahakian, X. Li, A. Taflove, and V. Backman, “Experimental confirmation of backscattering enhancement induced by a photonic jet,” Appl. Phys. Lett. 89(22), 221118 (2006).
[Crossref]

Itagi, A. V.

Katsnelson, A.

W. Wu, A. Katsnelson, O. G. Memis, and H. Mohseni, “A deep sub-wavelength process for the formation of highly uniform arrays of nanoholes and nanopillars,” Nanotechnology 18(48), 485302 (2007).
[Crossref]

Kim, M.-S.

King, P. J.

C. Backes, R. J. Smith, N. McEvoy, N. C. Berner, D. McCloskey, H. C. Nerl, A. O’Neill, P. J. King, T. Higgins, D. Hanlon, N. Scheuschner, J. Maultzsch, L. Houben, G. S. Duesberg, J. F. Donegan, V. Nicolosi, and J. N. Coleman, “Edge and confinement effects allow in situ measurement of size and thickness of liquid-exfoliated nanosheets,” Nat. Commun. 5, 4576 (2014).
[Crossref] [PubMed]

Kofler, J.

J. Kofler and N. Arnold, “Axially symmetric focusing as a cuspoid diffraction catastrophe: Scalar and vector cases and comparison with the theory of Mie,” Phys. Rev. B 73(23), 235401 (2006).
[Crossref]

Kong, S. C.

A. Heifetz, S. C. Kong, A. V. Sahakian, A. Taflove, and V. Backman, “Photonic nanojets,” J. Comput. Theor. Nanosci. 6(9), 1979–1992 (2009).
[Crossref] [PubMed]

S. C. Kong, A. Sahakian, A. Taflove, and V. Backman, “Photonic nanojet-enabled optical data storage,” Opt. Express 16(18), 13713–13719 (2008).
[Crossref] [PubMed]

Kong, S.-C.

Lermer, N.

M. D. Barnes, N. Lermer, W. B. Whitten, and J. M. Ramsey, “A CCD based approach to high-precision size and refractive index determination of levitated microdroplets using Fraunhofer diffraction,” Rev. Sci. Instrum. 68(6), 2287–2291 (1997).
[Crossref]

Li, X.

Lieb, M. A.

Liu, C.-Y.

C.-Y. Liu and L.-J. Chang, “Photonic nanojet modulation by elliptical microcylinders,” Optik (Stuttg.) 125(15), 4043–4046 (2014).
[Crossref]

Martin, J.

Maultzsch, J.

C. Backes, R. J. Smith, N. McEvoy, N. C. Berner, D. McCloskey, H. C. Nerl, A. O’Neill, P. J. King, T. Higgins, D. Hanlon, N. Scheuschner, J. Maultzsch, L. Houben, G. S. Duesberg, J. F. Donegan, V. Nicolosi, and J. N. Coleman, “Edge and confinement effects allow in situ measurement of size and thickness of liquid-exfoliated nanosheets,” Nat. Commun. 5, 4576 (2014).
[Crossref] [PubMed]

McCloskey, D.

C. Backes, R. J. Smith, N. McEvoy, N. C. Berner, D. McCloskey, H. C. Nerl, A. O’Neill, P. J. King, T. Higgins, D. Hanlon, N. Scheuschner, J. Maultzsch, L. Houben, G. S. Duesberg, J. F. Donegan, V. Nicolosi, and J. N. Coleman, “Edge and confinement effects allow in situ measurement of size and thickness of liquid-exfoliated nanosheets,” Nat. Commun. 5, 4576 (2014).
[Crossref] [PubMed]

D. McCloskey and J. F. Donegan, “Planar elliptical solid immersion lens based on a Cartesian oval,” Appl. Phys. Lett. 103(9), 091101 (2013).
[Crossref]

D. McCloskey, J. J. Wang, and J. F. Donegan, “Low divergence photonic nanojets from Si3N4 microdisks,” Opt. Express 20(1), 128–140 (2012).
[Crossref] [PubMed]

McEvoy, N.

C. Backes, R. J. Smith, N. McEvoy, N. C. Berner, D. McCloskey, H. C. Nerl, A. O’Neill, P. J. King, T. Higgins, D. Hanlon, N. Scheuschner, J. Maultzsch, L. Houben, G. S. Duesberg, J. F. Donegan, V. Nicolosi, and J. N. Coleman, “Edge and confinement effects allow in situ measurement of size and thickness of liquid-exfoliated nanosheets,” Nat. Commun. 5, 4576 (2014).
[Crossref] [PubMed]

McLeod, E.

E. McLeod and C. B. Arnold, “Subwavelength direct-write nanopatterning using optically trapped microspheres,” Nat. Nanotechnol. 3(7), 413–417 (2008).
[Crossref] [PubMed]

Memis, O. G.

W. Wu, A. Katsnelson, O. G. Memis, and H. Mohseni, “A deep sub-wavelength process for the formation of highly uniform arrays of nanoholes and nanopillars,” Nanotechnology 18(48), 485302 (2007).
[Crossref]

Minin, L. V.

L. V. Minin, O. V. Minin, and Y. E. Geints, “Localized EM and photonic jets from non-spherical and non-symmetrical dielectric mesoscale objects: Brief review,” Ann. Phys. 527(7-8), 491–497 (2015).
[Crossref]

Minin, O. V.

L. V. Minin, O. V. Minin, and Y. E. Geints, “Localized EM and photonic jets from non-spherical and non-symmetrical dielectric mesoscale objects: Brief review,” Ann. Phys. 527(7-8), 491–497 (2015).
[Crossref]

Mohseni, H.

W. Wu, A. Katsnelson, O. G. Memis, and H. Mohseni, “A deep sub-wavelength process for the formation of highly uniform arrays of nanoholes and nanopillars,” Nanotechnology 18(48), 485302 (2007).
[Crossref]

Mühlig, S.

Nerl, H. C.

C. Backes, R. J. Smith, N. McEvoy, N. C. Berner, D. McCloskey, H. C. Nerl, A. O’Neill, P. J. King, T. Higgins, D. Hanlon, N. Scheuschner, J. Maultzsch, L. Houben, G. S. Duesberg, J. F. Donegan, V. Nicolosi, and J. N. Coleman, “Edge and confinement effects allow in situ measurement of size and thickness of liquid-exfoliated nanosheets,” Nat. Commun. 5, 4576 (2014).
[Crossref] [PubMed]

Nicolosi, V.

C. Backes, R. J. Smith, N. McEvoy, N. C. Berner, D. McCloskey, H. C. Nerl, A. O’Neill, P. J. King, T. Higgins, D. Hanlon, N. Scheuschner, J. Maultzsch, L. Houben, G. S. Duesberg, J. F. Donegan, V. Nicolosi, and J. N. Coleman, “Edge and confinement effects allow in situ measurement of size and thickness of liquid-exfoliated nanosheets,” Nat. Commun. 5, 4576 (2014).
[Crossref] [PubMed]

Novotny, L.

S. Palomba, M. Danckwerts, and L. Novotny, “Nonlinear plasmonics with gold nanoparticle antennae,” J. Opt. A, Pure Appl. Opt. 11(11), 114030 (2009).
[Crossref]

M. A. Lieb, J. M. Zavislan, and L. Novotny, “Single-molecule orientations determined by direct emission pattern imaging,” J. Opt. Soc. Am. B 21(6), 1210–1215 (2004).
[Crossref]

O’Neill, A.

C. Backes, R. J. Smith, N. McEvoy, N. C. Berner, D. McCloskey, H. C. Nerl, A. O’Neill, P. J. King, T. Higgins, D. Hanlon, N. Scheuschner, J. Maultzsch, L. Houben, G. S. Duesberg, J. F. Donegan, V. Nicolosi, and J. N. Coleman, “Edge and confinement effects allow in situ measurement of size and thickness of liquid-exfoliated nanosheets,” Nat. Commun. 5, 4576 (2014).
[Crossref] [PubMed]

Palomba, S.

S. Palomba, M. Danckwerts, and L. Novotny, “Nonlinear plasmonics with gold nanoparticle antennae,” J. Opt. A, Pure Appl. Opt. 11(11), 114030 (2009).
[Crossref]

Panina, E. K.

Pianta, M.

Plain, J.

Popov, E.

Proust, J.

Ramsey, J. M.

M. D. Barnes, N. Lermer, W. B. Whitten, and J. M. Ramsey, “A CCD based approach to high-precision size and refractive index determination of levitated microdroplets using Fraunhofer diffraction,” Rev. Sci. Instrum. 68(6), 2287–2291 (1997).
[Crossref]

Rigneault, H.

Rockstuhl, C.

Sahakian, A.

Sahakian, A. V.

A. Heifetz, S. C. Kong, A. V. Sahakian, A. Taflove, and V. Backman, “Photonic nanojets,” J. Comput. Theor. Nanosci. 6(9), 1979–1992 (2009).
[Crossref] [PubMed]

S.-C. Kong, A. V. Sahakian, A. Heifetz, A. Taflove, and V. Backman, “Robust detection of deeply subwavelength pits in simulated optical data-storage disks using photonic jets,” Appl. Phys. Lett. 92(21), 211102 (2008).
[Crossref]

A. Heifetz, K. Huang, A. V. Sahakian, X. Li, A. Taflove, and V. Backman, “Experimental confirmation of backscattering enhancement induced by a photonic jet,” Appl. Phys. Lett. 89(22), 221118 (2006).
[Crossref]

Scharf, T.

Schaub, S. A.

Scheuschner, N.

C. Backes, R. J. Smith, N. McEvoy, N. C. Berner, D. McCloskey, H. C. Nerl, A. O’Neill, P. J. King, T. Higgins, D. Hanlon, N. Scheuschner, J. Maultzsch, L. Houben, G. S. Duesberg, J. F. Donegan, V. Nicolosi, and J. N. Coleman, “Edge and confinement effects allow in situ measurement of size and thickness of liquid-exfoliated nanosheets,” Nat. Commun. 5, 4576 (2014).
[Crossref] [PubMed]

Simpson, J. J.

Smith, R. J.

C. Backes, R. J. Smith, N. McEvoy, N. C. Berner, D. McCloskey, H. C. Nerl, A. O’Neill, P. J. King, T. Higgins, D. Hanlon, N. Scheuschner, J. Maultzsch, L. Houben, G. S. Duesberg, J. F. Donegan, V. Nicolosi, and J. N. Coleman, “Edge and confinement effects allow in situ measurement of size and thickness of liquid-exfoliated nanosheets,” Nat. Commun. 5, 4576 (2014).
[Crossref] [PubMed]

Stout, B.

Taflove, A.

S. Yang, A. Taflove, and V. Backman, “Experimental confirmation at visible light wavelengths of the backscattering enhancement phenomenon of the photonic nanojet,” Opt. Express 19(8), 7084–7093 (2011).
[Crossref] [PubMed]

S.-C. Kong, A. Taflove, and V. Backman, “Quasi one-dimensional light beam generated by a graded-index microsphere,” Opt. Express 17(5), 3722–3731 (2009).
[Crossref] [PubMed]

A. Heifetz, S. C. Kong, A. V. Sahakian, A. Taflove, and V. Backman, “Photonic nanojets,” J. Comput. Theor. Nanosci. 6(9), 1979–1992 (2009).
[Crossref] [PubMed]

S.-C. Kong, A. V. Sahakian, A. Heifetz, A. Taflove, and V. Backman, “Robust detection of deeply subwavelength pits in simulated optical data-storage disks using photonic jets,” Appl. Phys. Lett. 92(21), 211102 (2008).
[Crossref]

S. C. Kong, A. Sahakian, A. Taflove, and V. Backman, “Photonic nanojet-enabled optical data storage,” Opt. Express 16(18), 13713–13719 (2008).
[Crossref] [PubMed]

A. Heifetz, J. J. Simpson, S.-C. Kong, A. Taflove, and V. Backman, “Subdiffraction optical resolution of a gold nanosphere located within the nanojet of a Mie-resonant dielectric microsphere,” Opt. Express 15(25), 17334–17342 (2007).
[Crossref] [PubMed]

Z. Chen, A. Taflove, X. Li, and V. Backman, “Superenhanced backscattering of light by nanoparticles,” Opt. Lett. 31(2), 196–198 (2006).
[Crossref] [PubMed]

A. Heifetz, K. Huang, A. V. Sahakian, X. Li, A. Taflove, and V. Backman, “Experimental confirmation of backscattering enhancement induced by a photonic jet,” Appl. Phys. Lett. 89(22), 221118 (2006).
[Crossref]

X. Li, Z. Chen, A. Taflove, and V. Backman, “Optical analysis of nanoparticles via enhanced backscattering facilitated by 3-D photonic nanojets,” Opt. Express 13(2), 526–533 (2005).
[Crossref] [PubMed]

van de Hulst, H. C.

Wang, J. J.

Wang, R. T.

Wenger, J.

Whitten, W. B.

M. D. Barnes, N. Lermer, W. B. Whitten, and J. M. Ramsey, “A CCD based approach to high-precision size and refractive index determination of levitated microdroplets using Fraunhofer diffraction,” Rev. Sci. Instrum. 68(6), 2287–2291 (1997).
[Crossref]

Wu, W.

W. Wu, A. Katsnelson, O. G. Memis, and H. Mohseni, “A deep sub-wavelength process for the formation of highly uniform arrays of nanoholes and nanopillars,” Nanotechnology 18(48), 485302 (2007).
[Crossref]

Yang, S.

Zavislan, J. M.

Zemlyanov, A. A.

Ann. Phys. (1)

L. V. Minin, O. V. Minin, and Y. E. Geints, “Localized EM and photonic jets from non-spherical and non-symmetrical dielectric mesoscale objects: Brief review,” Ann. Phys. 527(7-8), 491–497 (2015).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (4)

P. Ghenuche, J. de Torres, P. Ferrand, and J. Wenger, “Multi-focus parallel detection of fluorescent molecules at picomolar concentration with photonic nanojets arrays,” Appl. Phys. Lett. 105(13), 131102 (2014).
[Crossref]

D. McCloskey and J. F. Donegan, “Planar elliptical solid immersion lens based on a Cartesian oval,” Appl. Phys. Lett. 103(9), 091101 (2013).
[Crossref]

A. Heifetz, K. Huang, A. V. Sahakian, X. Li, A. Taflove, and V. Backman, “Experimental confirmation of backscattering enhancement induced by a photonic jet,” Appl. Phys. Lett. 89(22), 221118 (2006).
[Crossref]

S.-C. Kong, A. V. Sahakian, A. Heifetz, A. Taflove, and V. Backman, “Robust detection of deeply subwavelength pits in simulated optical data-storage disks using photonic jets,” Appl. Phys. Lett. 92(21), 211102 (2008).
[Crossref]

J. Comput. Theor. Nanosci. (1)

A. Heifetz, S. C. Kong, A. V. Sahakian, A. Taflove, and V. Backman, “Photonic nanojets,” J. Comput. Theor. Nanosci. 6(9), 1979–1992 (2009).
[Crossref] [PubMed]

J. Opt. A, Pure Appl. Opt. (1)

S. Palomba, M. Danckwerts, and L. Novotny, “Nonlinear plasmonics with gold nanoparticle antennae,” J. Opt. A, Pure Appl. Opt. 11(11), 114030 (2009).
[Crossref]

J. Opt. Soc. Am. A (2)

J. Opt. Soc. Am. B (3)

Nanotechnology (1)

W. Wu, A. Katsnelson, O. G. Memis, and H. Mohseni, “A deep sub-wavelength process for the formation of highly uniform arrays of nanoholes and nanopillars,” Nanotechnology 18(48), 485302 (2007).
[Crossref]

Nat. Commun. (1)

C. Backes, R. J. Smith, N. McEvoy, N. C. Berner, D. McCloskey, H. C. Nerl, A. O’Neill, P. J. King, T. Higgins, D. Hanlon, N. Scheuschner, J. Maultzsch, L. Houben, G. S. Duesberg, J. F. Donegan, V. Nicolosi, and J. N. Coleman, “Edge and confinement effects allow in situ measurement of size and thickness of liquid-exfoliated nanosheets,” Nat. Commun. 5, 4576 (2014).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

E. McLeod and C. B. Arnold, “Subwavelength direct-write nanopatterning using optically trapped microspheres,” Nat. Nanotechnol. 3(7), 413–417 (2008).
[Crossref] [PubMed]

Opt. Express (12)

S. C. Kong, A. Sahakian, A. Taflove, and V. Backman, “Photonic nanojet-enabled optical data storage,” Opt. Express 16(18), 13713–13719 (2008).
[Crossref] [PubMed]

A. Heifetz, J. J. Simpson, S.-C. Kong, A. Taflove, and V. Backman, “Subdiffraction optical resolution of a gold nanosphere located within the nanojet of a Mie-resonant dielectric microsphere,” Opt. Express 15(25), 17334–17342 (2007).
[Crossref] [PubMed]

S. Yang, A. Taflove, and V. Backman, “Experimental confirmation at visible light wavelengths of the backscattering enhancement phenomenon of the photonic nanojet,” Opt. Express 19(8), 7084–7093 (2011).
[Crossref] [PubMed]

D. Gérard, J. Wenger, A. Devilez, D. Gachet, B. Stout, N. Bonod, E. Popov, and H. Rigneault, “Strong electromagnetic confinement near dielectric microspheres to enhance single-molecule fluorescence,” Opt. Express 16(19), 15297–15303 (2008).
[Crossref] [PubMed]

A. Devilez, N. Bonod, J. Wenger, D. Gérard, B. Stout, H. Rigneault, and E. Popov, “Three-dimensional subwavelength confinement of light with dielectric microspheres,” Opt. Express 17(4), 2089–2094 (2009).
[Crossref] [PubMed]

M.-S. Kim, T. Scharf, S. Mühlig, C. Rockstuhl, and H. P. Herzig, “Engineering photonic nanojets,” Opt. Express 19(11), 10206–10220 (2011).
[Crossref] [PubMed]

P. Ferrand, J. Wenger, A. Devilez, M. Pianta, B. Stout, N. Bonod, E. Popov, and H. Rigneault, “Direct imaging of photonic nanojets,” Opt. Express 16(10), 6930–6940 (2008).
[Crossref] [PubMed]

A. Devilez, B. Stout, N. Bonod, and E. Popov, “Spectral analysis of three-dimensional photonic jets,” Opt. Express 16(18), 14200–14212 (2008).
[Crossref] [PubMed]

X. Cui, D. Erni, and C. Hafner, “Optical forces on metallic nanoparticles induced by a photonic nanojet,” Opt. Express 16(18), 13560–13568 (2008).
[Crossref] [PubMed]

D. McCloskey, J. J. Wang, and J. F. Donegan, “Low divergence photonic nanojets from Si3N4 microdisks,” Opt. Express 20(1), 128–140 (2012).
[Crossref] [PubMed]

X. Li, Z. Chen, A. Taflove, and V. Backman, “Optical analysis of nanoparticles via enhanced backscattering facilitated by 3-D photonic nanojets,” Opt. Express 13(2), 526–533 (2005).
[Crossref] [PubMed]

S.-C. Kong, A. Taflove, and V. Backman, “Quasi one-dimensional light beam generated by a graded-index microsphere,” Opt. Express 17(5), 3722–3731 (2009).
[Crossref] [PubMed]

Opt. Lett. (2)

Optik (Stuttg.) (1)

C.-Y. Liu and L.-J. Chang, “Photonic nanojet modulation by elliptical microcylinders,” Optik (Stuttg.) 125(15), 4043–4046 (2014).
[Crossref]

Phys. Rev. B (1)

J. Kofler and N. Arnold, “Axially symmetric focusing as a cuspoid diffraction catastrophe: Scalar and vector cases and comparison with the theory of Mie,” Phys. Rev. B 73(23), 235401 (2006).
[Crossref]

Rev. Sci. Instrum. (1)

M. D. Barnes, N. Lermer, W. B. Whitten, and J. M. Ramsey, “A CCD based approach to high-precision size and refractive index determination of levitated microdroplets using Fraunhofer diffraction,” Rev. Sci. Instrum. 68(6), 2287–2291 (1997).
[Crossref]

Other (1)

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley and Sons, 1983).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Optical micrographs of square, circular and triangular cross section particles. Scale bar 5 μm. Schematic of material layer structure, 400 nm Si3N4 (n = 2.1), 2 μm SiO2 on Si base wafer. Angled SEM of 6 μm diameter microdisk. Scale bar 3 μm. Inset shows sidewall angle close to 90°. Scale bar 2 μm. (b) Two dimensional slice of intensity distribution through a 2 μm diameter disk calculated using 3D FEM. Black lines indicate geometrical boundaries and co-ordinate system used throughout is inset. S-polarized light incident along the x-axis. (c) Experimental setup: Linearly polarized light is introduced at an angle of θi = 80° to normal. The scattered light is collected with a NA = 0.7 long working distance objective and imaged onto CCD1 at 100x magnification using a 200 mm focal length tube lens. A non-polarizing beam splitter allows simultaneous imaging of the back focal plane on CCD2. (d) Schematic of light scattering processes. The majority of light incident with wavevector ki will be reflected specularly along the direction kr. Only light which is scattered by the particle will enter the collection angle of the objective lens. This light either scatters directly from the particle into the collection cone of the objective (process 1), or is scattered by the particle in the plane and scatters a second time from the rough SiO2 surface to create a much weaker signal (process 2).
Fig. 2
Fig. 2 (a)Fresnel zone and (b) back focal plane images of a 4 μm diameter particle with circular cross section on linear and log scales. On linear scale only light from process 1 is observed, log scale allows us to see both processes simultaneously. The high intensity features on the edge and inside of the scatterers are due to light scattered directly into the collection angle of the objective. The intensity profile outside of the scatterer is due to secondary scattering from the substrate and gives a map of the Fresnel zone intensity distribution. (c) Intensity map of disk of diameter 6 μm. The insets in bottom left show scatterer orientation relative to the incident light (d) Square of side 6 μm illuminated on face. (e) Same square rotated 45° illuminated on vertex. (f) Equilateral triangle of side 6 μm illuminated on face. (g) Same triangle rotated 30° illuminated on vertex. Scale bar 3 μm. Insets in (c) to (g) are back focal plane images representing the far field angular scattering with from −45° to 45°.
Fig. 3
Fig. 3 (a) Experimentally measured angular dependence of Fresenl zone intensity 1 μm from the surface of a 6 μm diameter scatterer with circular cross section. (b) Number of lobes as a function of characteristic scatterer size. The solid line is the expected dependence of an infinite cylinder calculated from Mie theory. Dark blue series is for a disk, the orange series is for square cross section orientated as in Fig. 2(d), green for square orientated as in Fig. 2(e), pink for triangle orientated as in Fig. 2(f) and light blue for triangle orientated as in Fig. 2(g).
Fig. 4
Fig. 4 (a) Experimental image showing in plane near-field intensity for a 6μm side square. (b) 2D FEM shows good agreement outside scatter, but does not account for intensity fall-off due to out of plane divergence. Scale bar 5μm. (c) Transverse cross section at the waist of the main lobe showing 1/e2 waist of 691nm (d) Axial falloff of the main lobe from the point of highest intensity. (e) Close up of main lobe in (a). The dashed line shows the 1/e2 envelope of the intensity with a divergence full angle of θ = 9.9°. The solid line represents the divergence of a focused free space Gaussian beam with the same waist which has a divergence half angle of θg = 28.1°.
Fig. 5
Fig. 5 The experimental images show light scattering from a disk, square and triangle of diameter / side 4 μm. Images are displayed on a log scale. The incident light is s polarized (along the y axis), shown in black. In the first row all the scattered light is collected and imaged onto CCD1. In the second row the scattered light is passed through a polarizer with axis along the x-axis, shown in red. The asymmetric pattern is a result of the mirror symmetry in the scattering shape causing interference at the image plane. The third row then shows the image plane with the analyzer axis along the y-axis. Scale bar 2 μm.

Metrics