Abstract

We report on a suspended core tellurite microstructured optical fiber (TMOF) based optical parametric oscillator (OPO). The intracavity gain is provided by the degenerate four-wave mixing (DFWM) occurred in a 1.5-m-long TMOF synchronously pumped by a mode-locked picosecond erbium-doped fiber laser. The oscillated signal can be generated from 1606 nm to 1743.5 nm, and the idler can be emited from 1526.8 nm to 1395 nm by adjusting the pump wavelength from 1565.4 nm to 1551 nm. A total intenal conversion efficiency of −17.2 dB has been achieved.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Broadband mid-infrared fiber optical parametric oscillator based on a three-hole suspended-core chalcogenide fiber

Hangyu Bai, Xiong Yang, Yizhen Wei, and Shiming Gao
Appl. Opt. 55(3) 515-521 (2016)

Optical parametric oscillator based on four-wave mixing in microstructure fiber

Jay E. Sharping, Marco Fiorentino, Prem Kumar, and Robert S. Windeler
Opt. Lett. 27(19) 1675-1677 (2002)

Broadband cascaded four-wave mixing and supercontinuum generation in a tellurite microstructured optical fiber pumped at 2 μm

Tonglei Cheng, Lei Zhang, Xiaojie Xue, Dinghuan Deng, Takenobu Suzuki, and Yasutake Ohishi
Opt. Express 23(4) 4125-4134 (2015)

References

  • View by:
  • |
  • |
  • |

  1. R. H. Stolen and J. E. Bjorkholm, “Parametric amplification and frequency conversion in optical fibers,” IEEE J. Quantum Electron. 18(7), 1062–1072 (1982).
    [Crossref]
  2. N. Shibata, R. Braun, and R. Waarts, “Phase-mismatch dependence of efficiency of wave generation through four-wave mixing in a single-mode optical fiber,” IEEE J. Quantum Electron. 23(7), 1205–1210 (1987).
    [Crossref]
  3. M. E. Marhic, K. K. Y. Wong, and L. G. Kazovsky, “Wide-band tuning of the gain spectra of one-pump fiber optical parametric amplifiers,” IEEE J. Sel. Top. Quantum Electron. 10(5), 1133–1141 (2004).
    [Crossref]
  4. W. Wadsworth, N. Joly, J. Knight, T. Birks, F. Biancalana, and P. Russell, “Supercontinuum and four-wave mixing with Q-switched pulses in endlessly single-mode photonic crystal fibres,” Opt. Express 12(2), 299–309 (2004).
    [Crossref] [PubMed]
  5. A. Y. H. Chen, G. K. L. Wong, S. G. Murdoch, R. Leonhardt, J. D. Harvey, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “Widely tunable optical parametric generation in a photonic crystal fiber,” Opt. Lett. 30(7), 762–764 (2005).
    [Crossref] [PubMed]
  6. A. Kudlinski, A. Bendahmane, D. Labat, S. Virally, R. T. Murray, E. J. R. Kelleher, and A. Mussot, “Simultaneous scalar and cross-phase modulation instabilities in highly birefringent photonic crystal fiber,” Opt. Express 21(7), 8437–8443 (2013).
    [Crossref] [PubMed]
  7. Y. Deng, Q. Lin, F. Lu, G. P. Agrawal, and W. H. Knox, “Broadly tunable femtosecond parametric oscillator using a photonic crystal fiber,” Opt. Lett. 30(10), 1234–1236 (2005).
    [Crossref] [PubMed]
  8. Y. Zhou, K. K. Y. Cheung, S. Yang, P. C. Chui, and K. K. Y. Wong, “Widely tunable picosecond optical parametric oscillator using highly nonlinear fiber,” Opt. Lett. 34(7), 989–991 (2009).
    [Crossref] [PubMed]
  9. J. E. Sharping, “Microstructure fiber based optical parametric oscillators,” J. Lightwave Technol. 26(14), 2184–2191 (2008).
    [Crossref]
  10. T. N. Nguyen, K. Kieu, A. V. Maslov, M. Miyawaki, and N. Peyghambarian, “Normal dispersion femtosecond fiber optical parametric oscillator,” Opt. Lett. 38(18), 3616–3619 (2013).
    [Crossref] [PubMed]
  11. G. K. L. Wong, S. G. Murdoch, R. Leonhardt, J. D. Harvey, and V. Marie, “High-conversion-efficiency widely-tunable all-fiber optical parametric oscillator,” Opt. Express 15(6), 2947–2952 (2007).
    [Crossref] [PubMed]
  12. B. P.-P. Kuo, J. M. Fini, L. Grüner-Nielsen, and S. Radic, “Dispersion-stabilized highly-nonlinear fiber for wideband parametric mixer synthesis,” Opt. Express 20(17), 18611–18619 (2012).
    [Crossref] [PubMed]
  13. L. Jin, A. Martinez, and S. Yamashita, “Optimization of output power in a fiber optical parametric oscillator,” Opt. Express 21(19), 22617–22627 (2013).
    [Crossref] [PubMed]
  14. G. Van der Westhuizen and J. Nilsson, “Fiber optical parametric oscillator for large frequency-shift wavelength conversion,” IEEE J. Quantum Electron. 47(11), 1396–1403 (2011).
    [Crossref]
  15. R. T. Murray, E. J. R. Kelleher, S. V. Popov, A. Mussot, A. Kudlinski, and J. R. Taylor, “Synchronously pumped photonic crystal fiber-based optical parametric oscillator,” Opt. Lett. 37(15), 3156–3158 (2012).
    [Crossref] [PubMed]
  16. C. Gu, B. Ilan, and J. E. Sharping, “Demonstration of nondegenerate spectrum reversal in optical-frequency regime,” Opt. Lett. 38(4), 591–593 (2013).
    [Crossref] [PubMed]
  17. E. A. Zlobina, S. I. Kablukov, and S. A. Babin, “Tunable CW all-fiber optical parametric oscillator operating below 1 μm,” Opt. Express 21(6), 6777–6782 (2013).
    [Crossref] [PubMed]
  18. C. Gu, C. Goulart, and J. E. Sharping, “Cross-phase-modulation-induced spectral effects in high-efficiency picosecond fiber optical parametric oscillators,” Opt. Lett. 36(8), 1488–1490 (2011).
    [Crossref] [PubMed]
  19. L. Zhang, S. Yang, P. Li, X. Wang, D. Gou, W. Chen, W. Luo, H. Chen, M. Chen, and S. Xie, “An all-fiber continuously time-dispersion-tuned picosecond optical parametric oscillator at 1 μm region,” Opt. Express 21(21), 25167–25173 (2013).
    [Crossref] [PubMed]
  20. C. Gu, H. Wei, S. Chen, W. Tong, and J. E. Sharping, “Fiber optical parametric oscillator for sub-50 fs pulse generation: optimization of fiber length,” Opt. Lett. 35(20), 3516–3518 (2010).
    [Crossref] [PubMed]
  21. E. S. Lamb, S. Lefrancois, M. Ji, W. J. Wadsworth, X. S. Xie, and F. W. Wise, “Fiber optical parametric oscillator for coherent anti-Stokes Raman scattering microscopy,” Opt. Lett. 38(20), 4154–4157 (2013).
    [Crossref] [PubMed]
  22. R. Ahmad and M. Rochette, “Chalcogenide optical parametric oscillator,” Opt. Express 20(9), 10095–10099 (2012).
    [Crossref] [PubMed]
  23. K.-Y. Wang, M. A. Foster, and A. C. Foster, “Wavelength-agile near-IR optical parametric oscillator using a deposited silicon waveguide,” Opt. Express 23(12), 15431–15439 (2015).
    [Crossref] [PubMed]

2015 (1)

2013 (7)

L. Zhang, S. Yang, P. Li, X. Wang, D. Gou, W. Chen, W. Luo, H. Chen, M. Chen, and S. Xie, “An all-fiber continuously time-dispersion-tuned picosecond optical parametric oscillator at 1 μm region,” Opt. Express 21(21), 25167–25173 (2013).
[Crossref] [PubMed]

E. S. Lamb, S. Lefrancois, M. Ji, W. J. Wadsworth, X. S. Xie, and F. W. Wise, “Fiber optical parametric oscillator for coherent anti-Stokes Raman scattering microscopy,” Opt. Lett. 38(20), 4154–4157 (2013).
[Crossref] [PubMed]

A. Kudlinski, A. Bendahmane, D. Labat, S. Virally, R. T. Murray, E. J. R. Kelleher, and A. Mussot, “Simultaneous scalar and cross-phase modulation instabilities in highly birefringent photonic crystal fiber,” Opt. Express 21(7), 8437–8443 (2013).
[Crossref] [PubMed]

T. N. Nguyen, K. Kieu, A. V. Maslov, M. Miyawaki, and N. Peyghambarian, “Normal dispersion femtosecond fiber optical parametric oscillator,” Opt. Lett. 38(18), 3616–3619 (2013).
[Crossref] [PubMed]

L. Jin, A. Martinez, and S. Yamashita, “Optimization of output power in a fiber optical parametric oscillator,” Opt. Express 21(19), 22617–22627 (2013).
[Crossref] [PubMed]

C. Gu, B. Ilan, and J. E. Sharping, “Demonstration of nondegenerate spectrum reversal in optical-frequency regime,” Opt. Lett. 38(4), 591–593 (2013).
[Crossref] [PubMed]

E. A. Zlobina, S. I. Kablukov, and S. A. Babin, “Tunable CW all-fiber optical parametric oscillator operating below 1 μm,” Opt. Express 21(6), 6777–6782 (2013).
[Crossref] [PubMed]

2012 (3)

2011 (2)

C. Gu, C. Goulart, and J. E. Sharping, “Cross-phase-modulation-induced spectral effects in high-efficiency picosecond fiber optical parametric oscillators,” Opt. Lett. 36(8), 1488–1490 (2011).
[Crossref] [PubMed]

G. Van der Westhuizen and J. Nilsson, “Fiber optical parametric oscillator for large frequency-shift wavelength conversion,” IEEE J. Quantum Electron. 47(11), 1396–1403 (2011).
[Crossref]

2010 (1)

2009 (1)

2008 (1)

2007 (1)

2005 (2)

2004 (2)

M. E. Marhic, K. K. Y. Wong, and L. G. Kazovsky, “Wide-band tuning of the gain spectra of one-pump fiber optical parametric amplifiers,” IEEE J. Sel. Top. Quantum Electron. 10(5), 1133–1141 (2004).
[Crossref]

W. Wadsworth, N. Joly, J. Knight, T. Birks, F. Biancalana, and P. Russell, “Supercontinuum and four-wave mixing with Q-switched pulses in endlessly single-mode photonic crystal fibres,” Opt. Express 12(2), 299–309 (2004).
[Crossref] [PubMed]

1987 (1)

N. Shibata, R. Braun, and R. Waarts, “Phase-mismatch dependence of efficiency of wave generation through four-wave mixing in a single-mode optical fiber,” IEEE J. Quantum Electron. 23(7), 1205–1210 (1987).
[Crossref]

1982 (1)

R. H. Stolen and J. E. Bjorkholm, “Parametric amplification and frequency conversion in optical fibers,” IEEE J. Quantum Electron. 18(7), 1062–1072 (1982).
[Crossref]

Agrawal, G. P.

Ahmad, R.

Babin, S. A.

Bendahmane, A.

Biancalana, F.

Birks, T.

Bjorkholm, J. E.

R. H. Stolen and J. E. Bjorkholm, “Parametric amplification and frequency conversion in optical fibers,” IEEE J. Quantum Electron. 18(7), 1062–1072 (1982).
[Crossref]

Braun, R.

N. Shibata, R. Braun, and R. Waarts, “Phase-mismatch dependence of efficiency of wave generation through four-wave mixing in a single-mode optical fiber,” IEEE J. Quantum Electron. 23(7), 1205–1210 (1987).
[Crossref]

Chen, A. Y. H.

Chen, H.

Chen, M.

Chen, S.

Chen, W.

Cheung, K. K. Y.

Chui, P. C.

Deng, Y.

Fini, J. M.

Foster, A. C.

Foster, M. A.

Gou, D.

Goulart, C.

Grüner-Nielsen, L.

Gu, C.

Harvey, J. D.

Ilan, B.

Ji, M.

Jin, L.

Joly, N.

Kablukov, S. I.

Kazovsky, L. G.

M. E. Marhic, K. K. Y. Wong, and L. G. Kazovsky, “Wide-band tuning of the gain spectra of one-pump fiber optical parametric amplifiers,” IEEE J. Sel. Top. Quantum Electron. 10(5), 1133–1141 (2004).
[Crossref]

Kelleher, E. J. R.

Kieu, K.

Knight, J.

Knight, J. C.

Knox, W. H.

Kudlinski, A.

Kuo, B. P.-P.

Labat, D.

Lamb, E. S.

Lefrancois, S.

Leonhardt, R.

Li, P.

Lin, Q.

Lu, F.

Luo, W.

Marhic, M. E.

M. E. Marhic, K. K. Y. Wong, and L. G. Kazovsky, “Wide-band tuning of the gain spectra of one-pump fiber optical parametric amplifiers,” IEEE J. Sel. Top. Quantum Electron. 10(5), 1133–1141 (2004).
[Crossref]

Marie, V.

Martinez, A.

Maslov, A. V.

Miyawaki, M.

Murdoch, S. G.

Murray, R. T.

Mussot, A.

Nguyen, T. N.

Nilsson, J.

G. Van der Westhuizen and J. Nilsson, “Fiber optical parametric oscillator for large frequency-shift wavelength conversion,” IEEE J. Quantum Electron. 47(11), 1396–1403 (2011).
[Crossref]

Peyghambarian, N.

Popov, S. V.

Radic, S.

Rochette, M.

Russell, P.

Russell, P. St. J.

Sharping, J. E.

Shibata, N.

N. Shibata, R. Braun, and R. Waarts, “Phase-mismatch dependence of efficiency of wave generation through four-wave mixing in a single-mode optical fiber,” IEEE J. Quantum Electron. 23(7), 1205–1210 (1987).
[Crossref]

Stolen, R. H.

R. H. Stolen and J. E. Bjorkholm, “Parametric amplification and frequency conversion in optical fibers,” IEEE J. Quantum Electron. 18(7), 1062–1072 (1982).
[Crossref]

Taylor, J. R.

Tong, W.

Van der Westhuizen, G.

G. Van der Westhuizen and J. Nilsson, “Fiber optical parametric oscillator for large frequency-shift wavelength conversion,” IEEE J. Quantum Electron. 47(11), 1396–1403 (2011).
[Crossref]

Virally, S.

Waarts, R.

N. Shibata, R. Braun, and R. Waarts, “Phase-mismatch dependence of efficiency of wave generation through four-wave mixing in a single-mode optical fiber,” IEEE J. Quantum Electron. 23(7), 1205–1210 (1987).
[Crossref]

Wadsworth, W.

Wadsworth, W. J.

Wang, K.-Y.

Wang, X.

Wei, H.

Wise, F. W.

Wong, G. K. L.

Wong, K. K. Y.

Y. Zhou, K. K. Y. Cheung, S. Yang, P. C. Chui, and K. K. Y. Wong, “Widely tunable picosecond optical parametric oscillator using highly nonlinear fiber,” Opt. Lett. 34(7), 989–991 (2009).
[Crossref] [PubMed]

M. E. Marhic, K. K. Y. Wong, and L. G. Kazovsky, “Wide-band tuning of the gain spectra of one-pump fiber optical parametric amplifiers,” IEEE J. Sel. Top. Quantum Electron. 10(5), 1133–1141 (2004).
[Crossref]

Xie, S.

Xie, X. S.

Yamashita, S.

Yang, S.

Zhang, L.

Zhou, Y.

Zlobina, E. A.

IEEE J. Quantum Electron. (3)

R. H. Stolen and J. E. Bjorkholm, “Parametric amplification and frequency conversion in optical fibers,” IEEE J. Quantum Electron. 18(7), 1062–1072 (1982).
[Crossref]

N. Shibata, R. Braun, and R. Waarts, “Phase-mismatch dependence of efficiency of wave generation through four-wave mixing in a single-mode optical fiber,” IEEE J. Quantum Electron. 23(7), 1205–1210 (1987).
[Crossref]

G. Van der Westhuizen and J. Nilsson, “Fiber optical parametric oscillator for large frequency-shift wavelength conversion,” IEEE J. Quantum Electron. 47(11), 1396–1403 (2011).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

M. E. Marhic, K. K. Y. Wong, and L. G. Kazovsky, “Wide-band tuning of the gain spectra of one-pump fiber optical parametric amplifiers,” IEEE J. Sel. Top. Quantum Electron. 10(5), 1133–1141 (2004).
[Crossref]

J. Lightwave Technol. (1)

Opt. Express (9)

A. Kudlinski, A. Bendahmane, D. Labat, S. Virally, R. T. Murray, E. J. R. Kelleher, and A. Mussot, “Simultaneous scalar and cross-phase modulation instabilities in highly birefringent photonic crystal fiber,” Opt. Express 21(7), 8437–8443 (2013).
[Crossref] [PubMed]

W. Wadsworth, N. Joly, J. Knight, T. Birks, F. Biancalana, and P. Russell, “Supercontinuum and four-wave mixing with Q-switched pulses in endlessly single-mode photonic crystal fibres,” Opt. Express 12(2), 299–309 (2004).
[Crossref] [PubMed]

G. K. L. Wong, S. G. Murdoch, R. Leonhardt, J. D. Harvey, and V. Marie, “High-conversion-efficiency widely-tunable all-fiber optical parametric oscillator,” Opt. Express 15(6), 2947–2952 (2007).
[Crossref] [PubMed]

B. P.-P. Kuo, J. M. Fini, L. Grüner-Nielsen, and S. Radic, “Dispersion-stabilized highly-nonlinear fiber for wideband parametric mixer synthesis,” Opt. Express 20(17), 18611–18619 (2012).
[Crossref] [PubMed]

L. Jin, A. Martinez, and S. Yamashita, “Optimization of output power in a fiber optical parametric oscillator,” Opt. Express 21(19), 22617–22627 (2013).
[Crossref] [PubMed]

E. A. Zlobina, S. I. Kablukov, and S. A. Babin, “Tunable CW all-fiber optical parametric oscillator operating below 1 μm,” Opt. Express 21(6), 6777–6782 (2013).
[Crossref] [PubMed]

L. Zhang, S. Yang, P. Li, X. Wang, D. Gou, W. Chen, W. Luo, H. Chen, M. Chen, and S. Xie, “An all-fiber continuously time-dispersion-tuned picosecond optical parametric oscillator at 1 μm region,” Opt. Express 21(21), 25167–25173 (2013).
[Crossref] [PubMed]

R. Ahmad and M. Rochette, “Chalcogenide optical parametric oscillator,” Opt. Express 20(9), 10095–10099 (2012).
[Crossref] [PubMed]

K.-Y. Wang, M. A. Foster, and A. C. Foster, “Wavelength-agile near-IR optical parametric oscillator using a deposited silicon waveguide,” Opt. Express 23(12), 15431–15439 (2015).
[Crossref] [PubMed]

Opt. Lett. (9)

C. Gu, H. Wei, S. Chen, W. Tong, and J. E. Sharping, “Fiber optical parametric oscillator for sub-50 fs pulse generation: optimization of fiber length,” Opt. Lett. 35(20), 3516–3518 (2010).
[Crossref] [PubMed]

E. S. Lamb, S. Lefrancois, M. Ji, W. J. Wadsworth, X. S. Xie, and F. W. Wise, “Fiber optical parametric oscillator for coherent anti-Stokes Raman scattering microscopy,” Opt. Lett. 38(20), 4154–4157 (2013).
[Crossref] [PubMed]

C. Gu, C. Goulart, and J. E. Sharping, “Cross-phase-modulation-induced spectral effects in high-efficiency picosecond fiber optical parametric oscillators,” Opt. Lett. 36(8), 1488–1490 (2011).
[Crossref] [PubMed]

R. T. Murray, E. J. R. Kelleher, S. V. Popov, A. Mussot, A. Kudlinski, and J. R. Taylor, “Synchronously pumped photonic crystal fiber-based optical parametric oscillator,” Opt. Lett. 37(15), 3156–3158 (2012).
[Crossref] [PubMed]

C. Gu, B. Ilan, and J. E. Sharping, “Demonstration of nondegenerate spectrum reversal in optical-frequency regime,” Opt. Lett. 38(4), 591–593 (2013).
[Crossref] [PubMed]

A. Y. H. Chen, G. K. L. Wong, S. G. Murdoch, R. Leonhardt, J. D. Harvey, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “Widely tunable optical parametric generation in a photonic crystal fiber,” Opt. Lett. 30(7), 762–764 (2005).
[Crossref] [PubMed]

Y. Deng, Q. Lin, F. Lu, G. P. Agrawal, and W. H. Knox, “Broadly tunable femtosecond parametric oscillator using a photonic crystal fiber,” Opt. Lett. 30(10), 1234–1236 (2005).
[Crossref] [PubMed]

Y. Zhou, K. K. Y. Cheung, S. Yang, P. C. Chui, and K. K. Y. Wong, “Widely tunable picosecond optical parametric oscillator using highly nonlinear fiber,” Opt. Lett. 34(7), 989–991 (2009).
[Crossref] [PubMed]

T. N. Nguyen, K. Kieu, A. V. Maslov, M. Miyawaki, and N. Peyghambarian, “Normal dispersion femtosecond fiber optical parametric oscillator,” Opt. Lett. 38(18), 3616–3619 (2013).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Experimental schematic of the suspended core TMOF-based OPO. MLFL, mode locked fiber laser; PC, polarization controller; EDFA, erbium-doped fiber amplifier; TBPF, tunable band-pass filter; FC, fiber collimator; AL, aspheric lens; TMOF, tellurite microstructured optical fiber; ODL, optical delay line; OSA, optical spectrum analyzer. (b) The calculated group velocity dispersion for the fundamental mode of the TMOF. The inset shows the SEM image of the cross section of the TMOF.
Fig. 2
Fig. 2 The parametric gain versus the fiber length for the TMOF, HNLF, and DSF, with the pump power fixed at 20 W. The nonlinear coefficients and the fiber losses are set to be (TMOF: γ = 512 W−1km−1, α = 4 dB/m; HNLF: γ = 9.7 W−1km−1, α = 0.85 dB/km; DSF: γ = 2.4 W−1km−1, α = 0.2 dB/km).
Fig. 3
Fig. 3 (a)-(j) The optical spectra of the DFWM sidebands generated in the suspended core TMOF for different pump wavelengths. (k) The average parametric gain provided by the TMOF in the oscillation cavity for the pump at 1565.4 nm with an average pump power of 12 dBm launched into the suspended core. (l) The evolution of the DFWM sidebands versus the pump wavelength.
Fig. 4
Fig. 4 The output spectra of the TMOF-based OPO for different pump wavelengths with the average pump power launched into the suspended core fixed at 12 dBm.
Fig. 5
Fig. 5 (a) The output spectra of the suspended core TMOF-based OPO pumped at 1051.5 nm with different average pump power. The insets show the zoomed-in spectra of the oscillated signal and idler. (b) The measured signal and idler power versus the average pump power for the suspended core TMOF-based OPO pumped at 1551.5 nm.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

κ=Δβ+2γP=0
Δβ= β s + β i 2 β p
G=1+ ( γP g sinh( g L eff ) ) 2
g 2 = ( γP ) 2 ( κ 2 ) 2

Metrics