Abstract

We present an Yb-fiber oscillator with an all-polarization-maintaining cavity with a higher-order-mode fiber for dispersion compensation. The polarization maintaining higher order mode fiber introduces not only negative second order dispersion but also negative third order dispersion in the cavity, in contrast to dispersion compensation schemes used in previous demonstrations of all-polarization maintaining Yb-fiber oscillators. The performance of the saturable absorber mirror modelocked oscillator, that employs a free space scheme for coupling onto the saturable absorber mirror and output coupling, was investigated for different settings of the intracavity dispersion. When the cavity is operated with close to zero net dispersion, highly stable 0.5-nJ pulses externally compressed to sub-100-fs are generated. These are to our knowledge the shortest pulses generated from an all-polarization-maintaining Yb-fiber oscillator. The spectral phase of the output pulses is well behaved and can be compensated such that wing-free Fourier transform limited pulses can be obtained. Further reduction of the net intracavity third order dispersion will allow generating broader output spectra and consequently shorter pulses, without sacrificing pulse fidelity.

© 2015 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Nielsen, B. Ortaç, T. Schreiber, J. Limpert, R. Hohmuth, W. Richter, and A. Tünnermann, “Self-starting self-similar all-polarization maintaining Yb-doped fiber laser,” Opt. Express 13(23), 9346–9351 (2005).
    [Crossref] [PubMed]
  2. X. Liu, J. Lægsgaard, and D. Turchinovich, “Monolithic Highly Stable Yb-Doped Femtosecond Fiber Lasers for Applications in Practical Biophotonics,” IEEE J. Sel. Top. Quantum Electron. 18(4), 1439–1450 (2012).
    [Crossref]
  3. T. Kurita, H. Yoshida, H. Furuse, T. Kawashima, and N. Miyanaga, “Dispersion compensation in an Yb-doped fiber oscillator for generating transform-limited, wing-free pulses,” Opt. Express 19(25), 25199–25205 (2011).
    [Crossref] [PubMed]
  4. J. R. Buckley, S. W. Clark, and F. W. Wise, “Generation of ten-cycle pulses from an ytterbium fiber laser with cubic phase compensation,” Opt. Lett. 31(9), 1340–1342 (2006).
    [Crossref] [PubMed]
  5. L. Zhu, A. J. Verhoef, K. G. Jespersen, V. L. Kalashnikov, L. Grüner-Nielsen, D. Lorenc, A. Baltuška, and A. Fernández, “Generation of high fidelity 62-fs, 7-nJ pulses at 1035 nm from a net normal-dispersion Yb-fiber laser with anomalous dispersion higher-order-mode fiber,” Opt. Express 21(14), 16255–16262 (2013).
    [Crossref] [PubMed]
  6. X. Liu, J. Laegsgaard, and D. Turchinovich, “Self-stabilization of a mode-locked femtosecond fiber laser using a photonic bandgap fiber,” Opt. Lett. 35(7), 913–915 (2010).
    [Crossref] [PubMed]
  7. X. Liu, J. Laegsgaard, and D. Turchinovich, “Highly-stable monolithic femtosecond Yb-fiber laser system based on photonic crystal fibers,” Opt. Express 18(15), 15475–15483 (2010).
    [Crossref] [PubMed]
  8. Ch. Ouyang, L. Chai, M. Hu, Y. Song, and Ch. Wang, “Pulse shortening and quality improvement based on spectral filtering in a stretched-pulse mode-locked fiber laser with large third-order dispersion,” Optik (Stuttg.) 122(21), 1877–1880 (2011).
    [Crossref]
  9. A. Chong, W. H. Renninger, and F. W. Wise, “Environmentally stable all-normal-dispersion femtosecond fiber laser,” Opt. Lett. 33(10), 1071–1073 (2008).
    [Crossref] [PubMed]
  10. J. B. Lecourt, C. Duterte, F. Narbonneau, D. Kinet, Y. Hernandez, and D. Giannone, “All-normal dispersion, all-fibered PM laser mode-locked by SESAM,” Opt. Express 20(11), 11918–11923 (2012).
    [Crossref] [PubMed]
  11. C. Aguergaray, R. Hawker, A. F. J. Runge, M. Erkintalo, and N. G. R. Broderick, “120 fs, 4.2 nJ pulses from an all-normal-dispersion, polarization-maintaining, fiber laser,” Appl. Phys. Lett. 103(12), 121111 (2013).
    [Crossref]
  12. S. H. M. Larsen, M. E. V. Pedersen, L. Grüner-Nielsen, M. F. Yan, E. M. Monberg, P. W. Wisk, and K. Rottwitt, “Polarization-maintaining higher-order mode fiber module with anomalous dispersion at 1 μm,” Opt. Lett. 37(20), 4170–4172 (2012).
    [Crossref] [PubMed]
  13. L. Nugent-Glandorf, T. A. Johnson, Y. Kobayashi, and S. A. Diddams, “Impact of dispersion on amplitude and frequency noise in a Yb-fiber laser comb,” Opt. Lett. 36(9), 1578–1580 (2011).
    [Crossref] [PubMed]
  14. A. Fernández, Chirped Pulse Oscillators: Generating microjoule femtosecond pulses at megahertz repetition rate, (Dissertation, Ludwig Maximilians Universität, Munich, Germany, 2007) Chap. 2 and 3.

2013 (2)

2012 (3)

2011 (3)

2010 (2)

2008 (1)

2006 (1)

2005 (1)

Aguergaray, C.

C. Aguergaray, R. Hawker, A. F. J. Runge, M. Erkintalo, and N. G. R. Broderick, “120 fs, 4.2 nJ pulses from an all-normal-dispersion, polarization-maintaining, fiber laser,” Appl. Phys. Lett. 103(12), 121111 (2013).
[Crossref]

Baltuška, A.

Broderick, N. G. R.

C. Aguergaray, R. Hawker, A. F. J. Runge, M. Erkintalo, and N. G. R. Broderick, “120 fs, 4.2 nJ pulses from an all-normal-dispersion, polarization-maintaining, fiber laser,” Appl. Phys. Lett. 103(12), 121111 (2013).
[Crossref]

Buckley, J. R.

Chai, L.

Ch. Ouyang, L. Chai, M. Hu, Y. Song, and Ch. Wang, “Pulse shortening and quality improvement based on spectral filtering in a stretched-pulse mode-locked fiber laser with large third-order dispersion,” Optik (Stuttg.) 122(21), 1877–1880 (2011).
[Crossref]

Chong, A.

Clark, S. W.

Diddams, S. A.

Duterte, C.

Erkintalo, M.

C. Aguergaray, R. Hawker, A. F. J. Runge, M. Erkintalo, and N. G. R. Broderick, “120 fs, 4.2 nJ pulses from an all-normal-dispersion, polarization-maintaining, fiber laser,” Appl. Phys. Lett. 103(12), 121111 (2013).
[Crossref]

Fernández, A.

Furuse, H.

Giannone, D.

Grüner-Nielsen, L.

Hawker, R.

C. Aguergaray, R. Hawker, A. F. J. Runge, M. Erkintalo, and N. G. R. Broderick, “120 fs, 4.2 nJ pulses from an all-normal-dispersion, polarization-maintaining, fiber laser,” Appl. Phys. Lett. 103(12), 121111 (2013).
[Crossref]

Hernandez, Y.

Hohmuth, R.

Hu, M.

Ch. Ouyang, L. Chai, M. Hu, Y. Song, and Ch. Wang, “Pulse shortening and quality improvement based on spectral filtering in a stretched-pulse mode-locked fiber laser with large third-order dispersion,” Optik (Stuttg.) 122(21), 1877–1880 (2011).
[Crossref]

Jespersen, K. G.

Johnson, T. A.

Kalashnikov, V. L.

Kawashima, T.

Kinet, D.

Kobayashi, Y.

Kurita, T.

Lægsgaard, J.

X. Liu, J. Lægsgaard, and D. Turchinovich, “Monolithic Highly Stable Yb-Doped Femtosecond Fiber Lasers for Applications in Practical Biophotonics,” IEEE J. Sel. Top. Quantum Electron. 18(4), 1439–1450 (2012).
[Crossref]

Laegsgaard, J.

Larsen, S. H. M.

Lecourt, J. B.

Limpert, J.

Liu, X.

Lorenc, D.

Miyanaga, N.

Monberg, E. M.

Narbonneau, F.

Nielsen, C.

Nugent-Glandorf, L.

Ortaç, B.

Ouyang, Ch.

Ch. Ouyang, L. Chai, M. Hu, Y. Song, and Ch. Wang, “Pulse shortening and quality improvement based on spectral filtering in a stretched-pulse mode-locked fiber laser with large third-order dispersion,” Optik (Stuttg.) 122(21), 1877–1880 (2011).
[Crossref]

Pedersen, M. E. V.

Renninger, W. H.

Richter, W.

Rottwitt, K.

Runge, A. F. J.

C. Aguergaray, R. Hawker, A. F. J. Runge, M. Erkintalo, and N. G. R. Broderick, “120 fs, 4.2 nJ pulses from an all-normal-dispersion, polarization-maintaining, fiber laser,” Appl. Phys. Lett. 103(12), 121111 (2013).
[Crossref]

Schreiber, T.

Song, Y.

Ch. Ouyang, L. Chai, M. Hu, Y. Song, and Ch. Wang, “Pulse shortening and quality improvement based on spectral filtering in a stretched-pulse mode-locked fiber laser with large third-order dispersion,” Optik (Stuttg.) 122(21), 1877–1880 (2011).
[Crossref]

Tünnermann, A.

Turchinovich, D.

Verhoef, A. J.

Wang, Ch.

Ch. Ouyang, L. Chai, M. Hu, Y. Song, and Ch. Wang, “Pulse shortening and quality improvement based on spectral filtering in a stretched-pulse mode-locked fiber laser with large third-order dispersion,” Optik (Stuttg.) 122(21), 1877–1880 (2011).
[Crossref]

Wise, F. W.

Wisk, P. W.

Yan, M. F.

Yoshida, H.

Zhu, L.

Appl. Phys. Lett. (1)

C. Aguergaray, R. Hawker, A. F. J. Runge, M. Erkintalo, and N. G. R. Broderick, “120 fs, 4.2 nJ pulses from an all-normal-dispersion, polarization-maintaining, fiber laser,” Appl. Phys. Lett. 103(12), 121111 (2013).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

X. Liu, J. Lægsgaard, and D. Turchinovich, “Monolithic Highly Stable Yb-Doped Femtosecond Fiber Lasers for Applications in Practical Biophotonics,” IEEE J. Sel. Top. Quantum Electron. 18(4), 1439–1450 (2012).
[Crossref]

Opt. Express (5)

Opt. Lett. (5)

Optik (Stuttg.) (1)

Ch. Ouyang, L. Chai, M. Hu, Y. Song, and Ch. Wang, “Pulse shortening and quality improvement based on spectral filtering in a stretched-pulse mode-locked fiber laser with large third-order dispersion,” Optik (Stuttg.) 122(21), 1877–1880 (2011).
[Crossref]

Other (1)

A. Fernández, Chirped Pulse Oscillators: Generating microjoule femtosecond pulses at megahertz repetition rate, (Dissertation, Ludwig Maximilians Universität, Munich, Germany, 2007) Chap. 2 and 3.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic of the PM Yb-fiber oscillator. SAM: Saturable absorber mirror (BATOP SAM-1040-40-500fs, spotsize ~5 µm); PM-HOMF: PM higher-order-mode fiber; LPG: Long period grating – LPG1 converts the LP01 mode to the LP02 mode, LPG2 converts the LP02 mode back to the LP01 mode; LD Pump: 600 mW 976 nm laser diode.

Fig. 2
Fig. 2

(a) Dispersion of 1 m PM-SMF (Nufern PM980, red trace), 1m PM-HOM fiber with light propagating in the LP02-mode (black) and 0.56 m of PM-HOM fiber with light propagating in the LP01 mode (blue). (b) Net intracavity dispersion of different oscillator realizations. Black line – 9.8 MHz cavity; blue line – 10.17 MHz cavity; green line – 10.46 MHz cavity; open squares – measured intracavity dispersion of the 10.46 MHz cavity; red line – 11.97 MHz cavity. (c) Logarithmic plot of the spectrum obtained with the net intracavity dispersion close to zero (black) and insertion loss of the PM-HOM fiber module (red).

Fig. 3
Fig. 3

Output pulses in normal intracavity dispersion regime (9.8 MHz cavity). (a) Spectrum (black – measured, blue – reconstructed) and spectral phase (red) (b) Compressed temporal pulse (FWHM 190 fs) profile, black – full spectrum, red – long wavelength side blocked in compressor.

Fig. 4
Fig. 4

Output pulses in regime with intracavity dispersion crossing zero within the output spectrum. (10.17 MHz cavity) (a) Spectrum (gray – measured, black – reconstructed) and spectral phase (red) when compressed with a simple grating compressor. (b) Corresponding temporal pulse profile (black, FWHM 101 fs) and phase (red). The dotted blue trace corresponds to the inverse Fourier transform of the retrieved spectrum (FWHM 95 fs). (c) Spectrum (black) and spectral phase (red) when compressed using a combination of SMF, (non-PM) HOM fiber and diffraction gratings, with the lengths set to minimize the TOD on the output pulses. (d) Corresponding temporal pulse profile (black, FWHM 95 fs) and phase (red). The dotted blue trace corresponds to the inverse Fourier transform of the SH-FROG retrieved spectrum (FWHM 94 fs).

Fig. 5
Fig. 5

Output pulses in anomalous dispersion regime. (10.46 MHz cavity) (a) Spectrum (black – measured, blue – reconstructed) and spectral phase (red). (b) Corresponding temporal pulse profile (blue, FWHM 190 fs) and phase (red).

Fig. 6
Fig. 6

Output pulses in regime with zero dispersion crossing zero within the output spectrum, with reduced TOD compared to Fig. 4. (11.97 MHz cavity) (a) Spectrum (black – measured, blue – reconstructed) and spectral phase (red). (b) Corresponding temporal pulse profile (black, FHWM 97 fs) and phase (red). The blue trace corresponds to the inverse Fourier transform of the reconstructed spectrum (FWHM 90 fs).

Fig. 7
Fig. 7

RF spectrum of the output pulse train. (a) Wide span with 1 kHz resolution bandwidth. The absence of sidebands indicates the pulse-to-pulse energy stability. (b) 1 kHz span around the measured oscillator repetition rate, with 1 Hz resolution bandwidth.

Tables (1)

Tables Icon

Table 1 Details of the presented cavity realizations. All realizations include a length of 0.56 m PM HOM fiber with light propagating in the LP01 mode. The net intracavity dispersion value is taken at 1030 nm. Pulse energy was measured before compression. Pulse compression was realized with a grating pair, except * using a grating pair, SMF and (non-PM) HOM fiber.

Metrics