Abstract

We present a new sensing demodulation approach by monitoring the amplitude changes of correlation peak through using optical wideband chaos. For the static strain sensing, the reflection intensity of optical wideband chaos can be modulated by the strain induced wavelength spacing between the wavelength division multiplexing (WDM) device and the sensing grating. Thus, the relative amplitude change (RAC) of correlation peak is mainly determined by the change of chaotic reflection intensity. For the dynamic strain sensing, the reflection intensity of optical wideband chaos can be modulated by the fast fluctuant evanescent wave on a section of no-core fiber (NCF). Thus, the response from correlation peak’s RAC is mainly according to the dynamic strain frequency. The experimental measurements show that a high strain sensing sensitivity of 7.04*10-3 RAC/με is achieved within the measurement range of 900 με during the static strain test. While in the dynamic test, the demodulation can detect the vibration frequency of 6 kHz located at 6 km long. This demodulation method can simultaneously achieve static/dynamic sensing and precisely locating the fiber break point with the high accuracy of several centimeters, making it very easy for network maintenance.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Optical chaos and hybrid WDM/TDM based large capacity quasi-distributed sensing network with real-time fiber fault monitoring

Yiyang Luo, Li Xia, Zhilin Xu, Can Yu, Qizhen Sun, Wei Li, Di Huang, and Deming Liu
Opt. Express 23(3) 2416-2423 (2015)

Real time dynamic strain monitoring of optical links using the backreflection of live PSK data

H. F. Martins, K. Shi, B. C. Thomsen, S. Martin-Lopez, M. Gonzalez-Herraez, and S. J. Savory
Opt. Express 24(19) 22303-22318 (2016)

High spatial resolution distributed fiber strain sensor based on phase-OFDR

Jiong Li, Jiulin Gan, Zhishen Zhang, Xiaobo Heng, Changsheng Yang, Qi Qian, Shanhui Xu, and Zhongmin Yang
Opt. Express 25(22) 27913-27922 (2017)

References

  • View by:
  • |
  • |
  • |

  1. R. A. Perez-Herrera, M. Fernandez-Vallejo, and M. Lopez-Amo, “Robust fiber-optic sensor networks,” Photon. Sens. 2(4), 366–380 (2012).
    [Crossref]
  2. G. R. Kirikera, O. Balogun, and S. Krishnaswamy, “Adaptive fiber Bragg grating sensor network for structural health monitoring: Applications to impact monitoring,” Struct. Health Monit. 10(1), 5–16 (2011).
    [Crossref]
  3. B. Lee, “Review of the present status of optical fiber sensors,” Opt. Fiber Technol. 9(2), 57–79 (2003).
    [Crossref]
  4. Y. L. Lu, T. Zhu, L. Chen, and X. Y. Bao, “Distributed vibration sensor based on coherent detection of phase-OTDR,” J. Lightwave Technol. 28(22), 3243–3249 (2010).
  5. Z. Zhang and X. Bao, “Distributed optical fiber vibration sensor based on spectrum analysis of Polarization-OTDR system,” Opt. Express 16(14), 10240–10247 (2008).
    [Crossref] [PubMed]
  6. C. Pan, H. Zhu, B. Yu, Z. Zhu, and X. H. Sun, “Distributed optical-fiber vibration sensing system based on differential detection of differential coherent-OTDR,” in Proceedings of IEEE Conference on Sensors (IEEE, 2012), pp. 1–3.
    [Crossref]
  7. A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438(7066), 343–346 (2005).
    [Crossref] [PubMed]
  8. C. R. Mirasso, S. Poinsot, L. Larger, M. Peil, and I. Fischer, “Optical chaos communications,” in OPTO-Ireland (International Society for Optics and Photonics, 2005), pp. 139–151.
  9. F. Y. Lin and J. M. Liu, “Chaotic radar using nonlinear laser dynamics,” IEEE J. Quantum Electron. 40(6), 815–820 (2004).
    [Crossref]
  10. A. B. Wang, N. Wang, Y. B. Yang, B. J. Wang, M. J. Zhang, and Y. C. Wang, “Precise fault location in WDM-PON by utilizing wavelength tunable chaotic laser,” J. Lightwave Technol. 30(21), 3420–3426 (2012).
    [Crossref]
  11. Y. C. Wang, B. J. Wang, and A. B. Wang, “Chaotic correlation optical time domain reflectometer utilizing laser diode,” IEEE Photonics Technol. Lett. 20(19), 1636–1638 (2008).
    [Crossref]
  12. M. Peil, I. Fischer, W. Elsäßer, S. Bakić, N. Damaschke, C. Tropea, S. Stry, and J. Sacher, “Rainbow refractometry with a tailored incoherent semiconductor laser source,” Appl. Phys. Lett. 89(9), 091106 (2006).
    [Crossref]
  13. I. Kanter, Y. Aviad, I. Reidler, E. Cohen, and M. Rosenbluh, “An optical ultrafast random bit generator,” Nat. Photonics 4(1), 58–61 (2010).
    [Crossref]
  14. C. Jáuregui, J. M. López-Higuera, A. Cobo, O. M. Conde, and J. Zubía, “Multiparameter sensor based on a chaotic fiber-ring resonator,” J. Opt. Soc. Am. B 23(10), 2024–2031 (2006).
    [Crossref]
  15. X. Y. Zhang and L. Z. Yang, “A fiber Bragg grating quasi-distributed sensing network with a wavelength-tunable chaotic fiber laser,” Syst. Sci. Control Eng. 2(1), 268–274 (2014).
    [Crossref]
  16. Z. Ma, M. J. Zhang, Y. Liu, X. Y. Bao, H. Liu, Y. N. Zhang, and Y. C. Wang, “Incoherent Brillouin optical time-domain reflectometry with random state correlated Brillouin spectrum,” IEEE Photonics J. 7(4), 6100407 (2015).
    [Crossref]
  17. L. Xia, D. Huang, J. Xu, and D. Liu, “Simultaneous and precise fault locating in WDM-PON by the generation of optical wideband chaos,” Opt. Lett. 38(19), 3762–3764 (2013).
    [Crossref] [PubMed]
  18. R. Fallon, L. Zhang, A. Gloag, and I. Bennion, “Identical broadband chirped grating interrogation technique for temperature and strain sensing,” Electron. Lett. 33(8), 705–707 (1997).
    [Crossref]
  19. Y. Ran, L. Xia, Y. Han, W. Li, J. Rohollahnejad, Y. Wen, and D. Liu, “Vibration fiber sensors based on SM-NC-SM fiber structure,” IEEE Photonics J. 7(2), 1–7 (2015).
    [Crossref]

2015 (2)

Z. Ma, M. J. Zhang, Y. Liu, X. Y. Bao, H. Liu, Y. N. Zhang, and Y. C. Wang, “Incoherent Brillouin optical time-domain reflectometry with random state correlated Brillouin spectrum,” IEEE Photonics J. 7(4), 6100407 (2015).
[Crossref]

Y. Ran, L. Xia, Y. Han, W. Li, J. Rohollahnejad, Y. Wen, and D. Liu, “Vibration fiber sensors based on SM-NC-SM fiber structure,” IEEE Photonics J. 7(2), 1–7 (2015).
[Crossref]

2014 (1)

X. Y. Zhang and L. Z. Yang, “A fiber Bragg grating quasi-distributed sensing network with a wavelength-tunable chaotic fiber laser,” Syst. Sci. Control Eng. 2(1), 268–274 (2014).
[Crossref]

2013 (1)

2012 (2)

2011 (1)

G. R. Kirikera, O. Balogun, and S. Krishnaswamy, “Adaptive fiber Bragg grating sensor network for structural health monitoring: Applications to impact monitoring,” Struct. Health Monit. 10(1), 5–16 (2011).
[Crossref]

2010 (2)

Y. L. Lu, T. Zhu, L. Chen, and X. Y. Bao, “Distributed vibration sensor based on coherent detection of phase-OTDR,” J. Lightwave Technol. 28(22), 3243–3249 (2010).

I. Kanter, Y. Aviad, I. Reidler, E. Cohen, and M. Rosenbluh, “An optical ultrafast random bit generator,” Nat. Photonics 4(1), 58–61 (2010).
[Crossref]

2008 (2)

Z. Zhang and X. Bao, “Distributed optical fiber vibration sensor based on spectrum analysis of Polarization-OTDR system,” Opt. Express 16(14), 10240–10247 (2008).
[Crossref] [PubMed]

Y. C. Wang, B. J. Wang, and A. B. Wang, “Chaotic correlation optical time domain reflectometer utilizing laser diode,” IEEE Photonics Technol. Lett. 20(19), 1636–1638 (2008).
[Crossref]

2006 (2)

M. Peil, I. Fischer, W. Elsäßer, S. Bakić, N. Damaschke, C. Tropea, S. Stry, and J. Sacher, “Rainbow refractometry with a tailored incoherent semiconductor laser source,” Appl. Phys. Lett. 89(9), 091106 (2006).
[Crossref]

C. Jáuregui, J. M. López-Higuera, A. Cobo, O. M. Conde, and J. Zubía, “Multiparameter sensor based on a chaotic fiber-ring resonator,” J. Opt. Soc. Am. B 23(10), 2024–2031 (2006).
[Crossref]

2005 (1)

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438(7066), 343–346 (2005).
[Crossref] [PubMed]

2004 (1)

F. Y. Lin and J. M. Liu, “Chaotic radar using nonlinear laser dynamics,” IEEE J. Quantum Electron. 40(6), 815–820 (2004).
[Crossref]

2003 (1)

B. Lee, “Review of the present status of optical fiber sensors,” Opt. Fiber Technol. 9(2), 57–79 (2003).
[Crossref]

1997 (1)

R. Fallon, L. Zhang, A. Gloag, and I. Bennion, “Identical broadband chirped grating interrogation technique for temperature and strain sensing,” Electron. Lett. 33(8), 705–707 (1997).
[Crossref]

Annovazzi-Lodi, V.

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438(7066), 343–346 (2005).
[Crossref] [PubMed]

Argyris, A.

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438(7066), 343–346 (2005).
[Crossref] [PubMed]

Aviad, Y.

I. Kanter, Y. Aviad, I. Reidler, E. Cohen, and M. Rosenbluh, “An optical ultrafast random bit generator,” Nat. Photonics 4(1), 58–61 (2010).
[Crossref]

Bakic, S.

M. Peil, I. Fischer, W. Elsäßer, S. Bakić, N. Damaschke, C. Tropea, S. Stry, and J. Sacher, “Rainbow refractometry with a tailored incoherent semiconductor laser source,” Appl. Phys. Lett. 89(9), 091106 (2006).
[Crossref]

Balogun, O.

G. R. Kirikera, O. Balogun, and S. Krishnaswamy, “Adaptive fiber Bragg grating sensor network for structural health monitoring: Applications to impact monitoring,” Struct. Health Monit. 10(1), 5–16 (2011).
[Crossref]

Bao, X.

Bao, X. Y.

Z. Ma, M. J. Zhang, Y. Liu, X. Y. Bao, H. Liu, Y. N. Zhang, and Y. C. Wang, “Incoherent Brillouin optical time-domain reflectometry with random state correlated Brillouin spectrum,” IEEE Photonics J. 7(4), 6100407 (2015).
[Crossref]

Y. L. Lu, T. Zhu, L. Chen, and X. Y. Bao, “Distributed vibration sensor based on coherent detection of phase-OTDR,” J. Lightwave Technol. 28(22), 3243–3249 (2010).

Bennion, I.

R. Fallon, L. Zhang, A. Gloag, and I. Bennion, “Identical broadband chirped grating interrogation technique for temperature and strain sensing,” Electron. Lett. 33(8), 705–707 (1997).
[Crossref]

Chen, L.

Cobo, A.

Cohen, E.

I. Kanter, Y. Aviad, I. Reidler, E. Cohen, and M. Rosenbluh, “An optical ultrafast random bit generator,” Nat. Photonics 4(1), 58–61 (2010).
[Crossref]

Colet, P.

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438(7066), 343–346 (2005).
[Crossref] [PubMed]

Conde, O. M.

Damaschke, N.

M. Peil, I. Fischer, W. Elsäßer, S. Bakić, N. Damaschke, C. Tropea, S. Stry, and J. Sacher, “Rainbow refractometry with a tailored incoherent semiconductor laser source,” Appl. Phys. Lett. 89(9), 091106 (2006).
[Crossref]

Elsäßer, W.

M. Peil, I. Fischer, W. Elsäßer, S. Bakić, N. Damaschke, C. Tropea, S. Stry, and J. Sacher, “Rainbow refractometry with a tailored incoherent semiconductor laser source,” Appl. Phys. Lett. 89(9), 091106 (2006).
[Crossref]

Fallon, R.

R. Fallon, L. Zhang, A. Gloag, and I. Bennion, “Identical broadband chirped grating interrogation technique for temperature and strain sensing,” Electron. Lett. 33(8), 705–707 (1997).
[Crossref]

Fernandez-Vallejo, M.

R. A. Perez-Herrera, M. Fernandez-Vallejo, and M. Lopez-Amo, “Robust fiber-optic sensor networks,” Photon. Sens. 2(4), 366–380 (2012).
[Crossref]

Fischer, I.

M. Peil, I. Fischer, W. Elsäßer, S. Bakić, N. Damaschke, C. Tropea, S. Stry, and J. Sacher, “Rainbow refractometry with a tailored incoherent semiconductor laser source,” Appl. Phys. Lett. 89(9), 091106 (2006).
[Crossref]

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438(7066), 343–346 (2005).
[Crossref] [PubMed]

García-Ojalvo, J.

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438(7066), 343–346 (2005).
[Crossref] [PubMed]

Gloag, A.

R. Fallon, L. Zhang, A. Gloag, and I. Bennion, “Identical broadband chirped grating interrogation technique for temperature and strain sensing,” Electron. Lett. 33(8), 705–707 (1997).
[Crossref]

Han, Y.

Y. Ran, L. Xia, Y. Han, W. Li, J. Rohollahnejad, Y. Wen, and D. Liu, “Vibration fiber sensors based on SM-NC-SM fiber structure,” IEEE Photonics J. 7(2), 1–7 (2015).
[Crossref]

Huang, D.

Jáuregui, C.

Kanter, I.

I. Kanter, Y. Aviad, I. Reidler, E. Cohen, and M. Rosenbluh, “An optical ultrafast random bit generator,” Nat. Photonics 4(1), 58–61 (2010).
[Crossref]

Kirikera, G. R.

G. R. Kirikera, O. Balogun, and S. Krishnaswamy, “Adaptive fiber Bragg grating sensor network for structural health monitoring: Applications to impact monitoring,” Struct. Health Monit. 10(1), 5–16 (2011).
[Crossref]

Krishnaswamy, S.

G. R. Kirikera, O. Balogun, and S. Krishnaswamy, “Adaptive fiber Bragg grating sensor network for structural health monitoring: Applications to impact monitoring,” Struct. Health Monit. 10(1), 5–16 (2011).
[Crossref]

Larger, L.

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438(7066), 343–346 (2005).
[Crossref] [PubMed]

Lee, B.

B. Lee, “Review of the present status of optical fiber sensors,” Opt. Fiber Technol. 9(2), 57–79 (2003).
[Crossref]

Li, W.

Y. Ran, L. Xia, Y. Han, W. Li, J. Rohollahnejad, Y. Wen, and D. Liu, “Vibration fiber sensors based on SM-NC-SM fiber structure,” IEEE Photonics J. 7(2), 1–7 (2015).
[Crossref]

Lin, F. Y.

F. Y. Lin and J. M. Liu, “Chaotic radar using nonlinear laser dynamics,” IEEE J. Quantum Electron. 40(6), 815–820 (2004).
[Crossref]

Liu, D.

Y. Ran, L. Xia, Y. Han, W. Li, J. Rohollahnejad, Y. Wen, and D. Liu, “Vibration fiber sensors based on SM-NC-SM fiber structure,” IEEE Photonics J. 7(2), 1–7 (2015).
[Crossref]

L. Xia, D. Huang, J. Xu, and D. Liu, “Simultaneous and precise fault locating in WDM-PON by the generation of optical wideband chaos,” Opt. Lett. 38(19), 3762–3764 (2013).
[Crossref] [PubMed]

Liu, H.

Z. Ma, M. J. Zhang, Y. Liu, X. Y. Bao, H. Liu, Y. N. Zhang, and Y. C. Wang, “Incoherent Brillouin optical time-domain reflectometry with random state correlated Brillouin spectrum,” IEEE Photonics J. 7(4), 6100407 (2015).
[Crossref]

Liu, J. M.

F. Y. Lin and J. M. Liu, “Chaotic radar using nonlinear laser dynamics,” IEEE J. Quantum Electron. 40(6), 815–820 (2004).
[Crossref]

Liu, Y.

Z. Ma, M. J. Zhang, Y. Liu, X. Y. Bao, H. Liu, Y. N. Zhang, and Y. C. Wang, “Incoherent Brillouin optical time-domain reflectometry with random state correlated Brillouin spectrum,” IEEE Photonics J. 7(4), 6100407 (2015).
[Crossref]

Lopez-Amo, M.

R. A. Perez-Herrera, M. Fernandez-Vallejo, and M. Lopez-Amo, “Robust fiber-optic sensor networks,” Photon. Sens. 2(4), 366–380 (2012).
[Crossref]

López-Higuera, J. M.

Lu, Y. L.

Ma, Z.

Z. Ma, M. J. Zhang, Y. Liu, X. Y. Bao, H. Liu, Y. N. Zhang, and Y. C. Wang, “Incoherent Brillouin optical time-domain reflectometry with random state correlated Brillouin spectrum,” IEEE Photonics J. 7(4), 6100407 (2015).
[Crossref]

Mirasso, C. R.

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438(7066), 343–346 (2005).
[Crossref] [PubMed]

Pan, C.

C. Pan, H. Zhu, B. Yu, Z. Zhu, and X. H. Sun, “Distributed optical-fiber vibration sensing system based on differential detection of differential coherent-OTDR,” in Proceedings of IEEE Conference on Sensors (IEEE, 2012), pp. 1–3.
[Crossref]

Peil, M.

M. Peil, I. Fischer, W. Elsäßer, S. Bakić, N. Damaschke, C. Tropea, S. Stry, and J. Sacher, “Rainbow refractometry with a tailored incoherent semiconductor laser source,” Appl. Phys. Lett. 89(9), 091106 (2006).
[Crossref]

Perez-Herrera, R. A.

R. A. Perez-Herrera, M. Fernandez-Vallejo, and M. Lopez-Amo, “Robust fiber-optic sensor networks,” Photon. Sens. 2(4), 366–380 (2012).
[Crossref]

Pesquera, L.

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438(7066), 343–346 (2005).
[Crossref] [PubMed]

Ran, Y.

Y. Ran, L. Xia, Y. Han, W. Li, J. Rohollahnejad, Y. Wen, and D. Liu, “Vibration fiber sensors based on SM-NC-SM fiber structure,” IEEE Photonics J. 7(2), 1–7 (2015).
[Crossref]

Reidler, I.

I. Kanter, Y. Aviad, I. Reidler, E. Cohen, and M. Rosenbluh, “An optical ultrafast random bit generator,” Nat. Photonics 4(1), 58–61 (2010).
[Crossref]

Rohollahnejad, J.

Y. Ran, L. Xia, Y. Han, W. Li, J. Rohollahnejad, Y. Wen, and D. Liu, “Vibration fiber sensors based on SM-NC-SM fiber structure,” IEEE Photonics J. 7(2), 1–7 (2015).
[Crossref]

Rosenbluh, M.

I. Kanter, Y. Aviad, I. Reidler, E. Cohen, and M. Rosenbluh, “An optical ultrafast random bit generator,” Nat. Photonics 4(1), 58–61 (2010).
[Crossref]

Sacher, J.

M. Peil, I. Fischer, W. Elsäßer, S. Bakić, N. Damaschke, C. Tropea, S. Stry, and J. Sacher, “Rainbow refractometry with a tailored incoherent semiconductor laser source,” Appl. Phys. Lett. 89(9), 091106 (2006).
[Crossref]

Shore, K. A.

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438(7066), 343–346 (2005).
[Crossref] [PubMed]

Stry, S.

M. Peil, I. Fischer, W. Elsäßer, S. Bakić, N. Damaschke, C. Tropea, S. Stry, and J. Sacher, “Rainbow refractometry with a tailored incoherent semiconductor laser source,” Appl. Phys. Lett. 89(9), 091106 (2006).
[Crossref]

Sun, X. H.

C. Pan, H. Zhu, B. Yu, Z. Zhu, and X. H. Sun, “Distributed optical-fiber vibration sensing system based on differential detection of differential coherent-OTDR,” in Proceedings of IEEE Conference on Sensors (IEEE, 2012), pp. 1–3.
[Crossref]

Syvridis, D.

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438(7066), 343–346 (2005).
[Crossref] [PubMed]

Tropea, C.

M. Peil, I. Fischer, W. Elsäßer, S. Bakić, N. Damaschke, C. Tropea, S. Stry, and J. Sacher, “Rainbow refractometry with a tailored incoherent semiconductor laser source,” Appl. Phys. Lett. 89(9), 091106 (2006).
[Crossref]

Wang, A. B.

A. B. Wang, N. Wang, Y. B. Yang, B. J. Wang, M. J. Zhang, and Y. C. Wang, “Precise fault location in WDM-PON by utilizing wavelength tunable chaotic laser,” J. Lightwave Technol. 30(21), 3420–3426 (2012).
[Crossref]

Y. C. Wang, B. J. Wang, and A. B. Wang, “Chaotic correlation optical time domain reflectometer utilizing laser diode,” IEEE Photonics Technol. Lett. 20(19), 1636–1638 (2008).
[Crossref]

Wang, B. J.

A. B. Wang, N. Wang, Y. B. Yang, B. J. Wang, M. J. Zhang, and Y. C. Wang, “Precise fault location in WDM-PON by utilizing wavelength tunable chaotic laser,” J. Lightwave Technol. 30(21), 3420–3426 (2012).
[Crossref]

Y. C. Wang, B. J. Wang, and A. B. Wang, “Chaotic correlation optical time domain reflectometer utilizing laser diode,” IEEE Photonics Technol. Lett. 20(19), 1636–1638 (2008).
[Crossref]

Wang, N.

Wang, Y. C.

Z. Ma, M. J. Zhang, Y. Liu, X. Y. Bao, H. Liu, Y. N. Zhang, and Y. C. Wang, “Incoherent Brillouin optical time-domain reflectometry with random state correlated Brillouin spectrum,” IEEE Photonics J. 7(4), 6100407 (2015).
[Crossref]

A. B. Wang, N. Wang, Y. B. Yang, B. J. Wang, M. J. Zhang, and Y. C. Wang, “Precise fault location in WDM-PON by utilizing wavelength tunable chaotic laser,” J. Lightwave Technol. 30(21), 3420–3426 (2012).
[Crossref]

Y. C. Wang, B. J. Wang, and A. B. Wang, “Chaotic correlation optical time domain reflectometer utilizing laser diode,” IEEE Photonics Technol. Lett. 20(19), 1636–1638 (2008).
[Crossref]

Wen, Y.

Y. Ran, L. Xia, Y. Han, W. Li, J. Rohollahnejad, Y. Wen, and D. Liu, “Vibration fiber sensors based on SM-NC-SM fiber structure,” IEEE Photonics J. 7(2), 1–7 (2015).
[Crossref]

Xia, L.

Y. Ran, L. Xia, Y. Han, W. Li, J. Rohollahnejad, Y. Wen, and D. Liu, “Vibration fiber sensors based on SM-NC-SM fiber structure,” IEEE Photonics J. 7(2), 1–7 (2015).
[Crossref]

L. Xia, D. Huang, J. Xu, and D. Liu, “Simultaneous and precise fault locating in WDM-PON by the generation of optical wideband chaos,” Opt. Lett. 38(19), 3762–3764 (2013).
[Crossref] [PubMed]

Xu, J.

Yang, L. Z.

X. Y. Zhang and L. Z. Yang, “A fiber Bragg grating quasi-distributed sensing network with a wavelength-tunable chaotic fiber laser,” Syst. Sci. Control Eng. 2(1), 268–274 (2014).
[Crossref]

Yang, Y. B.

Yu, B.

C. Pan, H. Zhu, B. Yu, Z. Zhu, and X. H. Sun, “Distributed optical-fiber vibration sensing system based on differential detection of differential coherent-OTDR,” in Proceedings of IEEE Conference on Sensors (IEEE, 2012), pp. 1–3.
[Crossref]

Zhang, L.

R. Fallon, L. Zhang, A. Gloag, and I. Bennion, “Identical broadband chirped grating interrogation technique for temperature and strain sensing,” Electron. Lett. 33(8), 705–707 (1997).
[Crossref]

Zhang, M. J.

Z. Ma, M. J. Zhang, Y. Liu, X. Y. Bao, H. Liu, Y. N. Zhang, and Y. C. Wang, “Incoherent Brillouin optical time-domain reflectometry with random state correlated Brillouin spectrum,” IEEE Photonics J. 7(4), 6100407 (2015).
[Crossref]

A. B. Wang, N. Wang, Y. B. Yang, B. J. Wang, M. J. Zhang, and Y. C. Wang, “Precise fault location in WDM-PON by utilizing wavelength tunable chaotic laser,” J. Lightwave Technol. 30(21), 3420–3426 (2012).
[Crossref]

Zhang, X. Y.

X. Y. Zhang and L. Z. Yang, “A fiber Bragg grating quasi-distributed sensing network with a wavelength-tunable chaotic fiber laser,” Syst. Sci. Control Eng. 2(1), 268–274 (2014).
[Crossref]

Zhang, Y. N.

Z. Ma, M. J. Zhang, Y. Liu, X. Y. Bao, H. Liu, Y. N. Zhang, and Y. C. Wang, “Incoherent Brillouin optical time-domain reflectometry with random state correlated Brillouin spectrum,” IEEE Photonics J. 7(4), 6100407 (2015).
[Crossref]

Zhang, Z.

Zhu, H.

C. Pan, H. Zhu, B. Yu, Z. Zhu, and X. H. Sun, “Distributed optical-fiber vibration sensing system based on differential detection of differential coherent-OTDR,” in Proceedings of IEEE Conference on Sensors (IEEE, 2012), pp. 1–3.
[Crossref]

Zhu, T.

Zhu, Z.

C. Pan, H. Zhu, B. Yu, Z. Zhu, and X. H. Sun, “Distributed optical-fiber vibration sensing system based on differential detection of differential coherent-OTDR,” in Proceedings of IEEE Conference on Sensors (IEEE, 2012), pp. 1–3.
[Crossref]

Zubía, J.

Appl. Phys. Lett. (1)

M. Peil, I. Fischer, W. Elsäßer, S. Bakić, N. Damaschke, C. Tropea, S. Stry, and J. Sacher, “Rainbow refractometry with a tailored incoherent semiconductor laser source,” Appl. Phys. Lett. 89(9), 091106 (2006).
[Crossref]

Electron. Lett. (1)

R. Fallon, L. Zhang, A. Gloag, and I. Bennion, “Identical broadband chirped grating interrogation technique for temperature and strain sensing,” Electron. Lett. 33(8), 705–707 (1997).
[Crossref]

IEEE J. Quantum Electron. (1)

F. Y. Lin and J. M. Liu, “Chaotic radar using nonlinear laser dynamics,” IEEE J. Quantum Electron. 40(6), 815–820 (2004).
[Crossref]

IEEE Photonics J. (2)

Z. Ma, M. J. Zhang, Y. Liu, X. Y. Bao, H. Liu, Y. N. Zhang, and Y. C. Wang, “Incoherent Brillouin optical time-domain reflectometry with random state correlated Brillouin spectrum,” IEEE Photonics J. 7(4), 6100407 (2015).
[Crossref]

Y. Ran, L. Xia, Y. Han, W. Li, J. Rohollahnejad, Y. Wen, and D. Liu, “Vibration fiber sensors based on SM-NC-SM fiber structure,” IEEE Photonics J. 7(2), 1–7 (2015).
[Crossref]

IEEE Photonics Technol. Lett. (1)

Y. C. Wang, B. J. Wang, and A. B. Wang, “Chaotic correlation optical time domain reflectometer utilizing laser diode,” IEEE Photonics Technol. Lett. 20(19), 1636–1638 (2008).
[Crossref]

J. Lightwave Technol. (2)

J. Opt. Soc. Am. B (1)

Nat. Photonics (1)

I. Kanter, Y. Aviad, I. Reidler, E. Cohen, and M. Rosenbluh, “An optical ultrafast random bit generator,” Nat. Photonics 4(1), 58–61 (2010).
[Crossref]

Nature (1)

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438(7066), 343–346 (2005).
[Crossref] [PubMed]

Opt. Express (1)

Opt. Fiber Technol. (1)

B. Lee, “Review of the present status of optical fiber sensors,” Opt. Fiber Technol. 9(2), 57–79 (2003).
[Crossref]

Opt. Lett. (1)

Photon. Sens. (1)

R. A. Perez-Herrera, M. Fernandez-Vallejo, and M. Lopez-Amo, “Robust fiber-optic sensor networks,” Photon. Sens. 2(4), 366–380 (2012).
[Crossref]

Struct. Health Monit. (1)

G. R. Kirikera, O. Balogun, and S. Krishnaswamy, “Adaptive fiber Bragg grating sensor network for structural health monitoring: Applications to impact monitoring,” Struct. Health Monit. 10(1), 5–16 (2011).
[Crossref]

Syst. Sci. Control Eng. (1)

X. Y. Zhang and L. Z. Yang, “A fiber Bragg grating quasi-distributed sensing network with a wavelength-tunable chaotic fiber laser,” Syst. Sci. Control Eng. 2(1), 268–274 (2014).
[Crossref]

Other (2)

C. Pan, H. Zhu, B. Yu, Z. Zhu, and X. H. Sun, “Distributed optical-fiber vibration sensing system based on differential detection of differential coherent-OTDR,” in Proceedings of IEEE Conference on Sensors (IEEE, 2012), pp. 1–3.
[Crossref]

C. R. Mirasso, S. Poinsot, L. Larger, M. Peil, and I. Fischer, “Optical chaos communications,” in OPTO-Ireland (International Society for Optics and Photonics, 2005), pp. 139–151.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 Schematic diagram of the proposed optical broadband chaos
Fig. 2
Fig. 2 The characteristics of the broadband chaotic source: (a) the optical spectrum, (b) the autocorrelation curve (inset: the time series).
Fig. 3
Fig. 3 Schematic diagram of the static strain sensing setup.
Fig. 4
Fig. 4 The changes of reflection spectra of FBG1 with the applied strains of (a)0 με, (b) 500 με, (c) 800 με.
Fig. 5
Fig. 5 The power of reflection versus the strain.
Fig. 6
Fig. 6 The correlation spectra of (a) free of strain and (b) strain applied.
Fig. 7
Fig. 7 (a) The correlation spectra under different strain; (b) The amplitude of correlation peak versus the strain.
Fig. 8
Fig. 8 Schematic diagram of the dynamic strain sensing setup.
Fig. 9
Fig. 9 The modulated intensity waveform of the light going through the SM-NC-SM fiber structure vibrating at 24 kHz.
Fig. 10
Fig. 10 (a) The sampling multiple correlation peak profile, (b) envelope of multiple correlation peaks and DC components.
Fig. 11
Fig. 11 (a) and (b), the spectra of correlation and the demodulated frequency of 6 kHz located on 6 km, respectively, (c) and (d) the spectra of correlation and the demodulated frequency of 15 kHz located on 6 km, respectively, (e) and (f) the spectra of correlation and the demodulated frequency of 24 kHz located on 80 m, respectively.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

SR2f
SR= N T ts
1 SR 2L c/n
f SR 2 c/n 4L

Metrics