R. Watté, B. Aernouts, R. Van Beers, E. Herremans, Q. T. Ho, P. Verboven, B. Nicolaï, and W. Saeys, “Modeling the propagation of light in realistic tissue structures with MMC-fpf: a meshed Monte Carlo method with free phase function,” Opt. Express 23(13), 17467–17486 (2015).
[Crossref]
[PubMed]
B. Aernouts, R. Watté, R. Van Beers, F. Delport, M. Merchiers, J. De Block, J. Lammertyn, and W. Saeys, “Flexible tool for simulating the bulk optical properties of polydisperse spherical particles in an absorbing host: experimental validation,” Opt. Express 22(17), 20223–20238 (2014).
[Crossref]
[PubMed]
C. Erkinbaev, E. Herremans, N. Nguyen Do Trong, E. Jakubczyk, P. Verboven, B. Nicolaï, and W. Saeys, “Contactless and non-destructive differentiation of microstructures of sugar foams by hyperspectral scatter imaging,” Innov. Food Sci. Emerg. Technol. 24, 131–137 (2014).
[Crossref]
H. Cen, R. Lu, F. Mendoza, and R. M. Beaudry, “Relationship of the optical absorption and scattering properties with mechanical and structural properties of apple tissue,” Postharvest Biol. Technol. 85, 30–38 (2013).
[Crossref]
R. Watté, N. N. Do Trong, B. Aernouts, C. Erkinbaev, J. De Baerdemaeker, B. Nicolaï, and W. Saeys, “Metamodeling approach for efficient estimation of optical properties of turbid media from spatially resolved diffuse reflectance measurements,” Opt. Express 21(26), 32630–32642 (2013).
[Crossref]
[PubMed]
B. Aernouts, E. Zamora-Rojas, R. Van Beers, R. Watté, L. Wang, M. Tsuta, J. Lammertyn, and W. Saeys, “Supercontinuum laser based optical characterization of Intralipid® phantoms in the 500-2250 nm range,” Opt. Express 21(26), 32450–32467 (2013).
[Crossref]
[PubMed]
E. Zamora-Rojas, B. Aernouts, A. Garrido-Varo, D. Pérez-Marín, J. E. Guerrero-Ginel, and W. Saeys, “Double integrating sphere measurements for estimating optical properties of pig subcutaneous adipose tissue,” Innov. Food Sci. Emerg. Technol. 19, 218–226 (2013).
[Crossref]
I. Couckuyt, A. Forrester, D. Gorissen, F. De Turck, and T. Dhaene, “Blind Kriging: implementation and performance analysis,” Adv. Eng. Softw. 49, 1–13 (2012).
[Crossref]
M. Martinelli, A. Gardner, D. Cuccia, C. Hayakawa, J. Spanier, and V. Venugopalan, “Analysis of single Monte Carlo methods for prediction of reflectance from turbid media,” Opt. Express 19(20), 19627–19642 (2011).
[Crossref]
[PubMed]
H. Shen and G. Wang, “Reply to “Comment on ‘A study on tetrahedron-based inhomogeneous Monte-Carlo optical simulation’”,” Biomed. Opt. Express 2(5), 1265–1267 (2011).
[Crossref]
[PubMed]
N. Ren, J. Liang, X. Qu, J. Li, B. Lu, and J. Tian, “GPU-based Monte Carlo simulation for light propagation in complex heterogeneous tissues,” Opt. Express 18(7), 6811–6823 (2010).
[Crossref]
[PubMed]
L. Zhang, Z. Wang, and M. Zhou, “Determination of the optical coefficients of biological tissue by neural network,” J. Mod. Opt. 57(13), 1163–1170 (2010).
[Crossref]
I. Couckuyt, F. Declercq, T. Dhaene, H. Rogier, and L. Knockaert, “Surrogate-based infill optimization applied to electromagnetic problems,” Int. J. RF Microw. Comput. Eng. 20(5), 492–501 (2010).
[Crossref]
D. Gorissen, I. Couckuyt, P. Demeester, T. Dhaene, and K. Crombecq, “A surrogate modeling and adaptive sampling toolbox for computer based design,” J. Mach. Learn. Res. 11, 2051–2055 (2010).
J. Qin and R. Lu, “Measurement of the optical properties of fruits and vegetables using spatially resolved hyperspectral diffuse reflectance imaging technique,” Postharvest Biol. Technol. 49(3), 355–365 (2008).
[Crossref]
R. Michels, F. Foschum, and A. Kienle, “Optical properties of fat emulsions,” Opt. Express 16(8), 5907–5925 (2008).
[Crossref]
[PubMed]
M. Pilz, S. Honold, and A. Kienle, “Determination of the optical properties of turbid media by measurements of the spatially resolved reflectance considering the point-spread function of the camera system,” J. Biomed. Opt. 13(5), 054047 (2008).
[Crossref]
[PubMed]
J. Qin and R. Lu, “Measurement of the absorption and scattering properties of turbid liquid foods using hyperspectral imaging,” Appl. Spectrosc. 61(4), 388–396 (2007).
[Crossref]
[PubMed]
P. Taroni, D. Comelli, A. Farina, A. Pifferi, and A. Kienle, “Time-resolved diffuse optical spectroscopy of small tissue samples,” Opt. Express 15(6), 3301–3311 (2007).
[Crossref]
[PubMed]
Q. Liu and N. Ramanujam, “Scaling method for fast Monte Carlo simulation of diffuse reflectance spectra from multilayered turbid media,” J. Opt. Soc. Am. A 24(4), 1011–1025 (2007).
[Crossref]
[PubMed]
G. G. Wang and S. Shan, “Review of metamodeling techniques in support of engineering design optimization,” J. Mech. Des. 129(4), 370–380 (2007).
[Crossref]
R. Lu and Y. Peng, “Hyperspectral scattering for assessing peach fruit firmness,” Biosystems Eng. 93(2), 161–171 (2006).
[Crossref]
J. S. Dam, C. B. Pedersen, T. Dalgaard, P. E. Fabricius, P. Aruna, and S. Andersson-Engels, “Fiber-optic probe for noninvasive real-time determination of tissue optical properties at multiple wavelengths,” Appl. Opt. 40(7), 1155–1164 (2001).
[Crossref]
[PubMed]
T. W. Simpson, J. D. Poplinski, P. N. Koch, and J. K. Allen, “Metamodels for computer-based engineering design: Survey and recommendations,” Eng. Comput. 17(2), 129–150 (2001).
[Crossref]
L. V. Wang and S. L. Jacques, “Source of error in calculation of optical diffuse reflectance from turbid media using diffusion theory,” Comput. Methods Programs Biomed. 61(3), 163–170 (2000).
[Crossref]
[PubMed]
T. H. Pham, F. Bevilacqua, T. Spott, J. S. Dam, B. J. Tromberg, and S. Andersson-Engels, “Quantifying the absorption and reduced scattering coefficients of tissuelike turbid media over a broad spectral range with noncontact Fourier-transform hyperspectral imaging,” Appl. Opt. 39(34), 6487–6497 (2000).
[Crossref]
[PubMed]
J. S. Dam, T. Dalgaard, P. E. Fabricius, and S. Andersson-Engels, “Multiple polynomial regression method for determination of biomedical optical properties from integrating sphere measurements,” Appl. Opt. 39(7), 1202–1209 (2000).
[Crossref]
[PubMed]
G. de Vries, J. F. Beek, G. W. Lucassen, and M. J. C. van Gemert, “The effect of light losses in double integrating spheres on optical properties estimation,” IEEE J. Sel. Top. Quantum Electron. 5(4), 944–947 (1999).
[Crossref]
R. M. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, and H. J. C. M. Sterenborg, “The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy,” Phys. Med. Biol. 44(4), 967–981 (1999).
[Crossref]
[PubMed]
R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “Noninvasive absorption and scattering spectroscopy of bulk diffusive media: An application to the optical characterization of human breast,” Appl. Phys. Lett. 74(6), 874–876 (1999).
[Crossref]
B. Guan, Y. Zhang, S. Huang, and B. Chance, “Determination of optical properties using improved frequency-resolved spectroscopy,” Proc. SPIE 3548, 17–26 (1998).
[Crossref]
G. Alexandrakis, T. J. Farrell, and M. S. Patterson, “Accuracy of the diffusion approximation in determining the optical properties of a two-layer turbid medium,” Appl. Opt. 37(31), 7401–7409 (1998).
[Crossref]
[PubMed]
A. Pifferi, P. Taroni, G. Valentini, and S. Andersson-Engels, “Real-time method for fitting time-resolved reflectance and transmittance measurements with a monte carlo model,” Appl. Opt. 37(13), 2774–2780 (1998).
[Crossref]
[PubMed]
D. Jones, M. Schonlau, and W. Welch, “Efficient global optimization of expensive black-box functions,” J. Glob. Optim. 13(4), 455–492 (1998).
[Crossref]
L. Wang, S. L. Jacques, and L. Zheng, “MCML--Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47(2), 131–146 (1995).
[Crossref]
[PubMed]
R. Graaff, M. H. Koelink, F. F. de Mul, W. G. Zijistra, A. C. Dassel, and J. G. Aarnoudse, “Condensed Monte Carlo simulations for the description of light transport,” Appl. Opt. 32(4), 426–434 (1993).
[Crossref]
[PubMed]
J. W. Pickering, S. A. Prahl, N. van Wieringen, J. F. Beek, H. J. C. M. Sterenborg, and M. J. C. van Gemert, “Double-integrating-sphere system for measuring the optical properties of tissue,” Appl. Opt. 32(4), 399–410 (1993).
[Crossref]
[PubMed]
S. A. Prahl, M. J. van Gemert, and A. J. Welch, “Determining the optical properties of turbid mediaby using the adding-doubling method,” Appl. Opt. 32(4), 559–568 (1993).
[Crossref]
[PubMed]
T. J. Farrell, M. S. Patterson, and B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19(4), 879–888 (1992).
[Crossref]
[PubMed]
B. C. Wilson and G. Adam, “A Monte Carlo model for the absorption and flux distributions of light in tissue,” Med. Phys. 10(6), 824–830 (1983).
[Crossref]
[PubMed]
R. M. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, and H. J. C. M. Sterenborg, “The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy,” Phys. Med. Biol. 44(4), 967–981 (1999).
[Crossref]
[PubMed]
B. C. Wilson and G. Adam, “A Monte Carlo model for the absorption and flux distributions of light in tissue,” Med. Phys. 10(6), 824–830 (1983).
[Crossref]
[PubMed]
R. Watté, B. Aernouts, R. Van Beers, E. Herremans, Q. T. Ho, P. Verboven, B. Nicolaï, and W. Saeys, “Modeling the propagation of light in realistic tissue structures with MMC-fpf: a meshed Monte Carlo method with free phase function,” Opt. Express 23(13), 17467–17486 (2015).
[Crossref]
[PubMed]
B. Aernouts, R. Watté, R. Van Beers, F. Delport, M. Merchiers, J. De Block, J. Lammertyn, and W. Saeys, “Flexible tool for simulating the bulk optical properties of polydisperse spherical particles in an absorbing host: experimental validation,” Opt. Express 22(17), 20223–20238 (2014).
[Crossref]
[PubMed]
R. Watté, N. N. Do Trong, B. Aernouts, C. Erkinbaev, J. De Baerdemaeker, B. Nicolaï, and W. Saeys, “Metamodeling approach for efficient estimation of optical properties of turbid media from spatially resolved diffuse reflectance measurements,” Opt. Express 21(26), 32630–32642 (2013).
[Crossref]
[PubMed]
B. Aernouts, E. Zamora-Rojas, R. Van Beers, R. Watté, L. Wang, M. Tsuta, J. Lammertyn, and W. Saeys, “Supercontinuum laser based optical characterization of Intralipid® phantoms in the 500-2250 nm range,” Opt. Express 21(26), 32450–32467 (2013).
[Crossref]
[PubMed]
E. Zamora-Rojas, B. Aernouts, A. Garrido-Varo, D. Pérez-Marín, J. E. Guerrero-Ginel, and W. Saeys, “Double integrating sphere measurements for estimating optical properties of pig subcutaneous adipose tissue,” Innov. Food Sci. Emerg. Technol. 19, 218–226 (2013).
[Crossref]
T. W. Simpson, J. D. Poplinski, P. N. Koch, and J. K. Allen, “Metamodels for computer-based engineering design: Survey and recommendations,” Eng. Comput. 17(2), 129–150 (2001).
[Crossref]
J. S. Dam, C. B. Pedersen, T. Dalgaard, P. E. Fabricius, P. Aruna, and S. Andersson-Engels, “Fiber-optic probe for noninvasive real-time determination of tissue optical properties at multiple wavelengths,” Appl. Opt. 40(7), 1155–1164 (2001).
[Crossref]
[PubMed]
J. S. Dam, T. Dalgaard, P. E. Fabricius, and S. Andersson-Engels, “Multiple polynomial regression method for determination of biomedical optical properties from integrating sphere measurements,” Appl. Opt. 39(7), 1202–1209 (2000).
[Crossref]
[PubMed]
T. H. Pham, F. Bevilacqua, T. Spott, J. S. Dam, B. J. Tromberg, and S. Andersson-Engels, “Quantifying the absorption and reduced scattering coefficients of tissuelike turbid media over a broad spectral range with noncontact Fourier-transform hyperspectral imaging,” Appl. Opt. 39(34), 6487–6497 (2000).
[Crossref]
[PubMed]
A. Pifferi, P. Taroni, G. Valentini, and S. Andersson-Engels, “Real-time method for fitting time-resolved reflectance and transmittance measurements with a monte carlo model,” Appl. Opt. 37(13), 2774–2780 (1998).
[Crossref]
[PubMed]
H. Cen, R. Lu, F. Mendoza, and R. M. Beaudry, “Relationship of the optical absorption and scattering properties with mechanical and structural properties of apple tissue,” Postharvest Biol. Technol. 85, 30–38 (2013).
[Crossref]
G. de Vries, J. F. Beek, G. W. Lucassen, and M. J. C. van Gemert, “The effect of light losses in double integrating spheres on optical properties estimation,” IEEE J. Sel. Top. Quantum Electron. 5(4), 944–947 (1999).
[Crossref]
J. W. Pickering, S. A. Prahl, N. van Wieringen, J. F. Beek, H. J. C. M. Sterenborg, and M. J. C. van Gemert, “Double-integrating-sphere system for measuring the optical properties of tissue,” Appl. Opt. 32(4), 399–410 (1993).
[Crossref]
[PubMed]
B. Guan, Y. Zhang, S. Huang, and B. Chance, “Determination of optical properties using improved frequency-resolved spectroscopy,” Proc. SPIE 3548, 17–26 (1998).
[Crossref]
I. Couckuyt, A. Forrester, D. Gorissen, F. De Turck, and T. Dhaene, “Blind Kriging: implementation and performance analysis,” Adv. Eng. Softw. 49, 1–13 (2012).
[Crossref]
D. Gorissen, I. Couckuyt, P. Demeester, T. Dhaene, and K. Crombecq, “A surrogate modeling and adaptive sampling toolbox for computer based design,” J. Mach. Learn. Res. 11, 2051–2055 (2010).
I. Couckuyt, F. Declercq, T. Dhaene, H. Rogier, and L. Knockaert, “Surrogate-based infill optimization applied to electromagnetic problems,” Int. J. RF Microw. Comput. Eng. 20(5), 492–501 (2010).
[Crossref]
I. Couckuyt, D. Gorissen, T. Dhaene, and F. De Turck, “Inverse surrogate modeling: output performance space sampling,” in Proceedings of the 13th AIAA/ISSMO Multidisciplinary Analysis Optimization Conference (2010).
[Crossref]
I. Couckuyt, K. Crombecq, D. Gorissen, and T. Dhaene, “Automated response surface model generation with sequential design,” in Proceedings of the First International Conference on Soft Computing Technology in Civil, Structural and Environmental Engineering (2009).
[Crossref]
D. Gorissen, I. Couckuyt, P. Demeester, T. Dhaene, and K. Crombecq, “A surrogate modeling and adaptive sampling toolbox for computer based design,” J. Mach. Learn. Res. 11, 2051–2055 (2010).
I. Couckuyt, K. Crombecq, D. Gorissen, and T. Dhaene, “Automated response surface model generation with sequential design,” in Proceedings of the First International Conference on Soft Computing Technology in Civil, Structural and Environmental Engineering (2009).
[Crossref]
R. M. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, and H. J. C. M. Sterenborg, “The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy,” Phys. Med. Biol. 44(4), 967–981 (1999).
[Crossref]
[PubMed]
A. Torricelli, L. Spinelli, A. Pifferi, P. Taroni, R. Cubeddu, and G. Danesini, “Use of a nonlinear perturbation approach for in vivo breast lesion characterization by multiwavelength time-resolved optical mammography,” Opt. Express 11(8), 853–867 (2003).
[Crossref]
[PubMed]
R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “Noninvasive absorption and scattering spectroscopy of bulk diffusive media: An application to the optical characterization of human breast,” Appl. Phys. Lett. 74(6), 874–876 (1999).
[Crossref]
J. S. Dam, C. B. Pedersen, T. Dalgaard, P. E. Fabricius, P. Aruna, and S. Andersson-Engels, “Fiber-optic probe for noninvasive real-time determination of tissue optical properties at multiple wavelengths,” Appl. Opt. 40(7), 1155–1164 (2001).
[Crossref]
[PubMed]
J. S. Dam, T. Dalgaard, P. E. Fabricius, and S. Andersson-Engels, “Multiple polynomial regression method for determination of biomedical optical properties from integrating sphere measurements,” Appl. Opt. 39(7), 1202–1209 (2000).
[Crossref]
[PubMed]
J. S. Dam, C. B. Pedersen, T. Dalgaard, P. E. Fabricius, P. Aruna, and S. Andersson-Engels, “Fiber-optic probe for noninvasive real-time determination of tissue optical properties at multiple wavelengths,” Appl. Opt. 40(7), 1155–1164 (2001).
[Crossref]
[PubMed]
T. H. Pham, F. Bevilacqua, T. Spott, J. S. Dam, B. J. Tromberg, and S. Andersson-Engels, “Quantifying the absorption and reduced scattering coefficients of tissuelike turbid media over a broad spectral range with noncontact Fourier-transform hyperspectral imaging,” Appl. Opt. 39(34), 6487–6497 (2000).
[Crossref]
[PubMed]
J. S. Dam, T. Dalgaard, P. E. Fabricius, and S. Andersson-Engels, “Multiple polynomial regression method for determination of biomedical optical properties from integrating sphere measurements,” Appl. Opt. 39(7), 1202–1209 (2000).
[Crossref]
[PubMed]
B. Aernouts, R. Watté, R. Van Beers, F. Delport, M. Merchiers, J. De Block, J. Lammertyn, and W. Saeys, “Flexible tool for simulating the bulk optical properties of polydisperse spherical particles in an absorbing host: experimental validation,” Opt. Express 22(17), 20223–20238 (2014).
[Crossref]
[PubMed]
I. Couckuyt, A. Forrester, D. Gorissen, F. De Turck, and T. Dhaene, “Blind Kriging: implementation and performance analysis,” Adv. Eng. Softw. 49, 1–13 (2012).
[Crossref]
I. Couckuyt, D. Gorissen, T. Dhaene, and F. De Turck, “Inverse surrogate modeling: output performance space sampling,” in Proceedings of the 13th AIAA/ISSMO Multidisciplinary Analysis Optimization Conference (2010).
[Crossref]
G. de Vries, J. F. Beek, G. W. Lucassen, and M. J. C. van Gemert, “The effect of light losses in double integrating spheres on optical properties estimation,” IEEE J. Sel. Top. Quantum Electron. 5(4), 944–947 (1999).
[Crossref]
I. Couckuyt, F. Declercq, T. Dhaene, H. Rogier, and L. Knockaert, “Surrogate-based infill optimization applied to electromagnetic problems,” Int. J. RF Microw. Comput. Eng. 20(5), 492–501 (2010).
[Crossref]
B. Aernouts, R. Watté, R. Van Beers, F. Delport, M. Merchiers, J. De Block, J. Lammertyn, and W. Saeys, “Flexible tool for simulating the bulk optical properties of polydisperse spherical particles in an absorbing host: experimental validation,” Opt. Express 22(17), 20223–20238 (2014).
[Crossref]
[PubMed]
D. Gorissen, I. Couckuyt, P. Demeester, T. Dhaene, and K. Crombecq, “A surrogate modeling and adaptive sampling toolbox for computer based design,” J. Mach. Learn. Res. 11, 2051–2055 (2010).
I. Couckuyt, A. Forrester, D. Gorissen, F. De Turck, and T. Dhaene, “Blind Kriging: implementation and performance analysis,” Adv. Eng. Softw. 49, 1–13 (2012).
[Crossref]
D. Gorissen, I. Couckuyt, P. Demeester, T. Dhaene, and K. Crombecq, “A surrogate modeling and adaptive sampling toolbox for computer based design,” J. Mach. Learn. Res. 11, 2051–2055 (2010).
I. Couckuyt, F. Declercq, T. Dhaene, H. Rogier, and L. Knockaert, “Surrogate-based infill optimization applied to electromagnetic problems,” Int. J. RF Microw. Comput. Eng. 20(5), 492–501 (2010).
[Crossref]
I. Couckuyt, D. Gorissen, T. Dhaene, and F. De Turck, “Inverse surrogate modeling: output performance space sampling,” in Proceedings of the 13th AIAA/ISSMO Multidisciplinary Analysis Optimization Conference (2010).
[Crossref]
I. Couckuyt, K. Crombecq, D. Gorissen, and T. Dhaene, “Automated response surface model generation with sequential design,” in Proceedings of the First International Conference on Soft Computing Technology in Civil, Structural and Environmental Engineering (2009).
[Crossref]
R. M. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, and H. J. C. M. Sterenborg, “The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy,” Phys. Med. Biol. 44(4), 967–981 (1999).
[Crossref]
[PubMed]
C. Erkinbaev, E. Herremans, N. Nguyen Do Trong, E. Jakubczyk, P. Verboven, B. Nicolaï, and W. Saeys, “Contactless and non-destructive differentiation of microstructures of sugar foams by hyperspectral scatter imaging,” Innov. Food Sci. Emerg. Technol. 24, 131–137 (2014).
[Crossref]
R. Watté, N. N. Do Trong, B. Aernouts, C. Erkinbaev, J. De Baerdemaeker, B. Nicolaï, and W. Saeys, “Metamodeling approach for efficient estimation of optical properties of turbid media from spatially resolved diffuse reflectance measurements,” Opt. Express 21(26), 32630–32642 (2013).
[Crossref]
[PubMed]
J. S. Dam, C. B. Pedersen, T. Dalgaard, P. E. Fabricius, P. Aruna, and S. Andersson-Engels, “Fiber-optic probe for noninvasive real-time determination of tissue optical properties at multiple wavelengths,” Appl. Opt. 40(7), 1155–1164 (2001).
[Crossref]
[PubMed]
J. S. Dam, T. Dalgaard, P. E. Fabricius, and S. Andersson-Engels, “Multiple polynomial regression method for determination of biomedical optical properties from integrating sphere measurements,” Appl. Opt. 39(7), 1202–1209 (2000).
[Crossref]
[PubMed]
G. Alexandrakis, T. J. Farrell, and M. S. Patterson, “Accuracy of the diffusion approximation in determining the optical properties of a two-layer turbid medium,” Appl. Opt. 37(31), 7401–7409 (1998).
[Crossref]
[PubMed]
T. J. Farrell, M. S. Patterson, and B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19(4), 879–888 (1992).
[Crossref]
[PubMed]
I. Couckuyt, A. Forrester, D. Gorissen, F. De Turck, and T. Dhaene, “Blind Kriging: implementation and performance analysis,” Adv. Eng. Softw. 49, 1–13 (2012).
[Crossref]
E. Zamora-Rojas, B. Aernouts, A. Garrido-Varo, D. Pérez-Marín, J. E. Guerrero-Ginel, and W. Saeys, “Double integrating sphere measurements for estimating optical properties of pig subcutaneous adipose tissue,” Innov. Food Sci. Emerg. Technol. 19, 218–226 (2013).
[Crossref]
I. Couckuyt, A. Forrester, D. Gorissen, F. De Turck, and T. Dhaene, “Blind Kriging: implementation and performance analysis,” Adv. Eng. Softw. 49, 1–13 (2012).
[Crossref]
D. Gorissen, I. Couckuyt, P. Demeester, T. Dhaene, and K. Crombecq, “A surrogate modeling and adaptive sampling toolbox for computer based design,” J. Mach. Learn. Res. 11, 2051–2055 (2010).
I. Couckuyt, K. Crombecq, D. Gorissen, and T. Dhaene, “Automated response surface model generation with sequential design,” in Proceedings of the First International Conference on Soft Computing Technology in Civil, Structural and Environmental Engineering (2009).
[Crossref]
I. Couckuyt, D. Gorissen, T. Dhaene, and F. De Turck, “Inverse surrogate modeling: output performance space sampling,” in Proceedings of the 13th AIAA/ISSMO Multidisciplinary Analysis Optimization Conference (2010).
[Crossref]
B. Guan, Y. Zhang, S. Huang, and B. Chance, “Determination of optical properties using improved frequency-resolved spectroscopy,” Proc. SPIE 3548, 17–26 (1998).
[Crossref]
E. Zamora-Rojas, B. Aernouts, A. Garrido-Varo, D. Pérez-Marín, J. E. Guerrero-Ginel, and W. Saeys, “Double integrating sphere measurements for estimating optical properties of pig subcutaneous adipose tissue,” Innov. Food Sci. Emerg. Technol. 19, 218–226 (2013).
[Crossref]
R. Watté, B. Aernouts, R. Van Beers, E. Herremans, Q. T. Ho, P. Verboven, B. Nicolaï, and W. Saeys, “Modeling the propagation of light in realistic tissue structures with MMC-fpf: a meshed Monte Carlo method with free phase function,” Opt. Express 23(13), 17467–17486 (2015).
[Crossref]
[PubMed]
C. Erkinbaev, E. Herremans, N. Nguyen Do Trong, E. Jakubczyk, P. Verboven, B. Nicolaï, and W. Saeys, “Contactless and non-destructive differentiation of microstructures of sugar foams by hyperspectral scatter imaging,” Innov. Food Sci. Emerg. Technol. 24, 131–137 (2014).
[Crossref]
R. Watté, B. Aernouts, R. Van Beers, E. Herremans, Q. T. Ho, P. Verboven, B. Nicolaï, and W. Saeys, “Modeling the propagation of light in realistic tissue structures with MMC-fpf: a meshed Monte Carlo method with free phase function,” Opt. Express 23(13), 17467–17486 (2015).
[Crossref]
[PubMed]
M. Pilz, S. Honold, and A. Kienle, “Determination of the optical properties of turbid media by measurements of the spatially resolved reflectance considering the point-spread function of the camera system,” J. Biomed. Opt. 13(5), 054047 (2008).
[Crossref]
[PubMed]
B. Guan, Y. Zhang, S. Huang, and B. Chance, “Determination of optical properties using improved frequency-resolved spectroscopy,” Proc. SPIE 3548, 17–26 (1998).
[Crossref]
L. V. Wang and S. L. Jacques, “Source of error in calculation of optical diffuse reflectance from turbid media using diffusion theory,” Comput. Methods Programs Biomed. 61(3), 163–170 (2000).
[Crossref]
[PubMed]
L. Wang, S. L. Jacques, and L. Zheng, “MCML--Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47(2), 131–146 (1995).
[Crossref]
[PubMed]
C. Erkinbaev, E. Herremans, N. Nguyen Do Trong, E. Jakubczyk, P. Verboven, B. Nicolaï, and W. Saeys, “Contactless and non-destructive differentiation of microstructures of sugar foams by hyperspectral scatter imaging,” Innov. Food Sci. Emerg. Technol. 24, 131–137 (2014).
[Crossref]
D. Jones, M. Schonlau, and W. Welch, “Efficient global optimization of expensive black-box functions,” J. Glob. Optim. 13(4), 455–492 (1998).
[Crossref]
M. Pilz, S. Honold, and A. Kienle, “Determination of the optical properties of turbid media by measurements of the spatially resolved reflectance considering the point-spread function of the camera system,” J. Biomed. Opt. 13(5), 054047 (2008).
[Crossref]
[PubMed]
R. Michels, F. Foschum, and A. Kienle, “Optical properties of fat emulsions,” Opt. Express 16(8), 5907–5925 (2008).
[Crossref]
[PubMed]
P. Taroni, D. Comelli, A. Farina, A. Pifferi, and A. Kienle, “Time-resolved diffuse optical spectroscopy of small tissue samples,” Opt. Express 15(6), 3301–3311 (2007).
[Crossref]
[PubMed]
A. Kienle, L. Lilge, M. S. Patterson, R. Hibst, R. Steiner, and B. C. Wilson, “Spatially resolved absolute diffuse reflectance measurements for noninvasive determination of the optical scattering and absorption coefficients of biological tissue,” Appl. Opt. 35(13), 2304–2314 (1996).
[Crossref]
[PubMed]
I. Couckuyt, F. Declercq, T. Dhaene, H. Rogier, and L. Knockaert, “Surrogate-based infill optimization applied to electromagnetic problems,” Int. J. RF Microw. Comput. Eng. 20(5), 492–501 (2010).
[Crossref]
T. W. Simpson, J. D. Poplinski, P. N. Koch, and J. K. Allen, “Metamodels for computer-based engineering design: Survey and recommendations,” Eng. Comput. 17(2), 129–150 (2001).
[Crossref]
B. Aernouts, R. Watté, R. Van Beers, F. Delport, M. Merchiers, J. De Block, J. Lammertyn, and W. Saeys, “Flexible tool for simulating the bulk optical properties of polydisperse spherical particles in an absorbing host: experimental validation,” Opt. Express 22(17), 20223–20238 (2014).
[Crossref]
[PubMed]
B. Aernouts, E. Zamora-Rojas, R. Van Beers, R. Watté, L. Wang, M. Tsuta, J. Lammertyn, and W. Saeys, “Supercontinuum laser based optical characterization of Intralipid® phantoms in the 500-2250 nm range,” Opt. Express 21(26), 32450–32467 (2013).
[Crossref]
[PubMed]
R. M. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, and H. J. C. M. Sterenborg, “The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy,” Phys. Med. Biol. 44(4), 967–981 (1999).
[Crossref]
[PubMed]
H. Cen, R. Lu, F. Mendoza, and R. M. Beaudry, “Relationship of the optical absorption and scattering properties with mechanical and structural properties of apple tissue,” Postharvest Biol. Technol. 85, 30–38 (2013).
[Crossref]
H. Cen and R. Lu, “Quantification of the optical properties of two-layer turbid materials using a hyperspectral imaging-based spatially-resolved technique,” Appl. Opt. 48(29), 5612–5623 (2009).
[Crossref]
[PubMed]
J. Qin and R. Lu, “Measurement of the optical properties of fruits and vegetables using spatially resolved hyperspectral diffuse reflectance imaging technique,” Postharvest Biol. Technol. 49(3), 355–365 (2008).
[Crossref]
J. Qin and R. Lu, “Measurement of the absorption and scattering properties of turbid liquid foods using hyperspectral imaging,” Appl. Spectrosc. 61(4), 388–396 (2007).
[Crossref]
[PubMed]
R. Lu and Y. Peng, “Hyperspectral scattering for assessing peach fruit firmness,” Biosystems Eng. 93(2), 161–171 (2006).
[Crossref]
G. de Vries, J. F. Beek, G. W. Lucassen, and M. J. C. van Gemert, “The effect of light losses in double integrating spheres on optical properties estimation,” IEEE J. Sel. Top. Quantum Electron. 5(4), 944–947 (1999).
[Crossref]
H. Cen, R. Lu, F. Mendoza, and R. M. Beaudry, “Relationship of the optical absorption and scattering properties with mechanical and structural properties of apple tissue,” Postharvest Biol. Technol. 85, 30–38 (2013).
[Crossref]
B. Aernouts, R. Watté, R. Van Beers, F. Delport, M. Merchiers, J. De Block, J. Lammertyn, and W. Saeys, “Flexible tool for simulating the bulk optical properties of polydisperse spherical particles in an absorbing host: experimental validation,” Opt. Express 22(17), 20223–20238 (2014).
[Crossref]
[PubMed]
C. Erkinbaev, E. Herremans, N. Nguyen Do Trong, E. Jakubczyk, P. Verboven, B. Nicolaï, and W. Saeys, “Contactless and non-destructive differentiation of microstructures of sugar foams by hyperspectral scatter imaging,” Innov. Food Sci. Emerg. Technol. 24, 131–137 (2014).
[Crossref]
R. Watté, B. Aernouts, R. Van Beers, E. Herremans, Q. T. Ho, P. Verboven, B. Nicolaï, and W. Saeys, “Modeling the propagation of light in realistic tissue structures with MMC-fpf: a meshed Monte Carlo method with free phase function,” Opt. Express 23(13), 17467–17486 (2015).
[Crossref]
[PubMed]
C. Erkinbaev, E. Herremans, N. Nguyen Do Trong, E. Jakubczyk, P. Verboven, B. Nicolaï, and W. Saeys, “Contactless and non-destructive differentiation of microstructures of sugar foams by hyperspectral scatter imaging,” Innov. Food Sci. Emerg. Technol. 24, 131–137 (2014).
[Crossref]
R. Watté, N. N. Do Trong, B. Aernouts, C. Erkinbaev, J. De Baerdemaeker, B. Nicolaï, and W. Saeys, “Metamodeling approach for efficient estimation of optical properties of turbid media from spatially resolved diffuse reflectance measurements,” Opt. Express 21(26), 32630–32642 (2013).
[Crossref]
[PubMed]
G. Alexandrakis, T. J. Farrell, and M. S. Patterson, “Accuracy of the diffusion approximation in determining the optical properties of a two-layer turbid medium,” Appl. Opt. 37(31), 7401–7409 (1998).
[Crossref]
[PubMed]
A. Kienle, L. Lilge, M. S. Patterson, R. Hibst, R. Steiner, and B. C. Wilson, “Spatially resolved absolute diffuse reflectance measurements for noninvasive determination of the optical scattering and absorption coefficients of biological tissue,” Appl. Opt. 35(13), 2304–2314 (1996).
[Crossref]
[PubMed]
T. J. Farrell, M. S. Patterson, and B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19(4), 879–888 (1992).
[Crossref]
[PubMed]
M. S. Patterson, J. D. Moulton, B. C. Wilson, K. W. Berndt, and J. R. Lakowicz, “Frequency-domain reflectance for the determination of the scattering and absorption properties of tissue,” Appl. Opt. 30(31), 4474–4476 (1991).
[Crossref]
[PubMed]
R. Lu and Y. Peng, “Hyperspectral scattering for assessing peach fruit firmness,” Biosystems Eng. 93(2), 161–171 (2006).
[Crossref]
E. Zamora-Rojas, B. Aernouts, A. Garrido-Varo, D. Pérez-Marín, J. E. Guerrero-Ginel, and W. Saeys, “Double integrating sphere measurements for estimating optical properties of pig subcutaneous adipose tissue,” Innov. Food Sci. Emerg. Technol. 19, 218–226 (2013).
[Crossref]
P. Taroni, D. Comelli, A. Farina, A. Pifferi, and A. Kienle, “Time-resolved diffuse optical spectroscopy of small tissue samples,” Opt. Express 15(6), 3301–3311 (2007).
[Crossref]
[PubMed]
A. Torricelli, L. Spinelli, A. Pifferi, P. Taroni, R. Cubeddu, and G. Danesini, “Use of a nonlinear perturbation approach for in vivo breast lesion characterization by multiwavelength time-resolved optical mammography,” Opt. Express 11(8), 853–867 (2003).
[Crossref]
[PubMed]
R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “Noninvasive absorption and scattering spectroscopy of bulk diffusive media: An application to the optical characterization of human breast,” Appl. Phys. Lett. 74(6), 874–876 (1999).
[Crossref]
A. Pifferi, P. Taroni, G. Valentini, and S. Andersson-Engels, “Real-time method for fitting time-resolved reflectance and transmittance measurements with a monte carlo model,” Appl. Opt. 37(13), 2774–2780 (1998).
[Crossref]
[PubMed]
M. Pilz, S. Honold, and A. Kienle, “Determination of the optical properties of turbid media by measurements of the spatially resolved reflectance considering the point-spread function of the camera system,” J. Biomed. Opt. 13(5), 054047 (2008).
[Crossref]
[PubMed]
T. W. Simpson, J. D. Poplinski, P. N. Koch, and J. K. Allen, “Metamodels for computer-based engineering design: Survey and recommendations,” Eng. Comput. 17(2), 129–150 (2001).
[Crossref]
J. W. Pickering, S. A. Prahl, N. van Wieringen, J. F. Beek, H. J. C. M. Sterenborg, and M. J. C. van Gemert, “Double-integrating-sphere system for measuring the optical properties of tissue,” Appl. Opt. 32(4), 399–410 (1993).
[Crossref]
[PubMed]
S. A. Prahl, M. J. van Gemert, and A. J. Welch, “Determining the optical properties of turbid mediaby using the adding-doubling method,” Appl. Opt. 32(4), 559–568 (1993).
[Crossref]
[PubMed]
I. Couckuyt, F. Declercq, T. Dhaene, H. Rogier, and L. Knockaert, “Surrogate-based infill optimization applied to electromagnetic problems,” Int. J. RF Microw. Comput. Eng. 20(5), 492–501 (2010).
[Crossref]
R. Watté, B. Aernouts, R. Van Beers, E. Herremans, Q. T. Ho, P. Verboven, B. Nicolaï, and W. Saeys, “Modeling the propagation of light in realistic tissue structures with MMC-fpf: a meshed Monte Carlo method with free phase function,” Opt. Express 23(13), 17467–17486 (2015).
[Crossref]
[PubMed]
B. Aernouts, R. Watté, R. Van Beers, F. Delport, M. Merchiers, J. De Block, J. Lammertyn, and W. Saeys, “Flexible tool for simulating the bulk optical properties of polydisperse spherical particles in an absorbing host: experimental validation,” Opt. Express 22(17), 20223–20238 (2014).
[Crossref]
[PubMed]
C. Erkinbaev, E. Herremans, N. Nguyen Do Trong, E. Jakubczyk, P. Verboven, B. Nicolaï, and W. Saeys, “Contactless and non-destructive differentiation of microstructures of sugar foams by hyperspectral scatter imaging,” Innov. Food Sci. Emerg. Technol. 24, 131–137 (2014).
[Crossref]
E. Zamora-Rojas, B. Aernouts, A. Garrido-Varo, D. Pérez-Marín, J. E. Guerrero-Ginel, and W. Saeys, “Double integrating sphere measurements for estimating optical properties of pig subcutaneous adipose tissue,” Innov. Food Sci. Emerg. Technol. 19, 218–226 (2013).
[Crossref]
R. Watté, N. N. Do Trong, B. Aernouts, C. Erkinbaev, J. De Baerdemaeker, B. Nicolaï, and W. Saeys, “Metamodeling approach for efficient estimation of optical properties of turbid media from spatially resolved diffuse reflectance measurements,” Opt. Express 21(26), 32630–32642 (2013).
[Crossref]
[PubMed]
B. Aernouts, E. Zamora-Rojas, R. Van Beers, R. Watté, L. Wang, M. Tsuta, J. Lammertyn, and W. Saeys, “Supercontinuum laser based optical characterization of Intralipid® phantoms in the 500-2250 nm range,” Opt. Express 21(26), 32450–32467 (2013).
[Crossref]
[PubMed]
D. Jones, M. Schonlau, and W. Welch, “Efficient global optimization of expensive black-box functions,” J. Glob. Optim. 13(4), 455–492 (1998).
[Crossref]
G. G. Wang and S. Shan, “Review of metamodeling techniques in support of engineering design optimization,” J. Mech. Des. 129(4), 370–380 (2007).
[Crossref]
T. W. Simpson, J. D. Poplinski, P. N. Koch, and J. K. Allen, “Metamodels for computer-based engineering design: Survey and recommendations,” Eng. Comput. 17(2), 129–150 (2001).
[Crossref]
R. M. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, and H. J. C. M. Sterenborg, “The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy,” Phys. Med. Biol. 44(4), 967–981 (1999).
[Crossref]
[PubMed]
J. W. Pickering, S. A. Prahl, N. van Wieringen, J. F. Beek, H. J. C. M. Sterenborg, and M. J. C. van Gemert, “Double-integrating-sphere system for measuring the optical properties of tissue,” Appl. Opt. 32(4), 399–410 (1993).
[Crossref]
[PubMed]
P. Taroni, D. Comelli, A. Farina, A. Pifferi, and A. Kienle, “Time-resolved diffuse optical spectroscopy of small tissue samples,” Opt. Express 15(6), 3301–3311 (2007).
[Crossref]
[PubMed]
A. Torricelli, L. Spinelli, A. Pifferi, P. Taroni, R. Cubeddu, and G. Danesini, “Use of a nonlinear perturbation approach for in vivo breast lesion characterization by multiwavelength time-resolved optical mammography,” Opt. Express 11(8), 853–867 (2003).
[Crossref]
[PubMed]
R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “Noninvasive absorption and scattering spectroscopy of bulk diffusive media: An application to the optical characterization of human breast,” Appl. Phys. Lett. 74(6), 874–876 (1999).
[Crossref]
A. Pifferi, P. Taroni, G. Valentini, and S. Andersson-Engels, “Real-time method for fitting time-resolved reflectance and transmittance measurements with a monte carlo model,” Appl. Opt. 37(13), 2774–2780 (1998).
[Crossref]
[PubMed]
A. Torricelli, L. Spinelli, A. Pifferi, P. Taroni, R. Cubeddu, and G. Danesini, “Use of a nonlinear perturbation approach for in vivo breast lesion characterization by multiwavelength time-resolved optical mammography,” Opt. Express 11(8), 853–867 (2003).
[Crossref]
[PubMed]
R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “Noninvasive absorption and scattering spectroscopy of bulk diffusive media: An application to the optical characterization of human breast,” Appl. Phys. Lett. 74(6), 874–876 (1999).
[Crossref]
B. Aernouts, E. Zamora-Rojas, R. Van Beers, R. Watté, L. Wang, M. Tsuta, J. Lammertyn, and W. Saeys, “Supercontinuum laser based optical characterization of Intralipid® phantoms in the 500-2250 nm range,” Opt. Express 21(26), 32450–32467 (2013).
[Crossref]
[PubMed]
R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “Noninvasive absorption and scattering spectroscopy of bulk diffusive media: An application to the optical characterization of human breast,” Appl. Phys. Lett. 74(6), 874–876 (1999).
[Crossref]
A. Pifferi, P. Taroni, G. Valentini, and S. Andersson-Engels, “Real-time method for fitting time-resolved reflectance and transmittance measurements with a monte carlo model,” Appl. Opt. 37(13), 2774–2780 (1998).
[Crossref]
[PubMed]
R. Watté, B. Aernouts, R. Van Beers, E. Herremans, Q. T. Ho, P. Verboven, B. Nicolaï, and W. Saeys, “Modeling the propagation of light in realistic tissue structures with MMC-fpf: a meshed Monte Carlo method with free phase function,” Opt. Express 23(13), 17467–17486 (2015).
[Crossref]
[PubMed]
B. Aernouts, R. Watté, R. Van Beers, F. Delport, M. Merchiers, J. De Block, J. Lammertyn, and W. Saeys, “Flexible tool for simulating the bulk optical properties of polydisperse spherical particles in an absorbing host: experimental validation,” Opt. Express 22(17), 20223–20238 (2014).
[Crossref]
[PubMed]
B. Aernouts, E. Zamora-Rojas, R. Van Beers, R. Watté, L. Wang, M. Tsuta, J. Lammertyn, and W. Saeys, “Supercontinuum laser based optical characterization of Intralipid® phantoms in the 500-2250 nm range,” Opt. Express 21(26), 32450–32467 (2013).
[Crossref]
[PubMed]
G. de Vries, J. F. Beek, G. W. Lucassen, and M. J. C. van Gemert, “The effect of light losses in double integrating spheres on optical properties estimation,” IEEE J. Sel. Top. Quantum Electron. 5(4), 944–947 (1999).
[Crossref]
J. W. Pickering, S. A. Prahl, N. van Wieringen, J. F. Beek, H. J. C. M. Sterenborg, and M. J. C. van Gemert, “Double-integrating-sphere system for measuring the optical properties of tissue,” Appl. Opt. 32(4), 399–410 (1993).
[Crossref]
[PubMed]
R. Watté, B. Aernouts, R. Van Beers, E. Herremans, Q. T. Ho, P. Verboven, B. Nicolaï, and W. Saeys, “Modeling the propagation of light in realistic tissue structures with MMC-fpf: a meshed Monte Carlo method with free phase function,” Opt. Express 23(13), 17467–17486 (2015).
[Crossref]
[PubMed]
C. Erkinbaev, E. Herremans, N. Nguyen Do Trong, E. Jakubczyk, P. Verboven, B. Nicolaï, and W. Saeys, “Contactless and non-destructive differentiation of microstructures of sugar foams by hyperspectral scatter imaging,” Innov. Food Sci. Emerg. Technol. 24, 131–137 (2014).
[Crossref]
G. G. Wang and S. Shan, “Review of metamodeling techniques in support of engineering design optimization,” J. Mech. Des. 129(4), 370–380 (2007).
[Crossref]
B. Aernouts, E. Zamora-Rojas, R. Van Beers, R. Watté, L. Wang, M. Tsuta, J. Lammertyn, and W. Saeys, “Supercontinuum laser based optical characterization of Intralipid® phantoms in the 500-2250 nm range,” Opt. Express 21(26), 32450–32467 (2013).
[Crossref]
[PubMed]
L. Wang, S. L. Jacques, and L. Zheng, “MCML--Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47(2), 131–146 (1995).
[Crossref]
[PubMed]
L. V. Wang and S. L. Jacques, “Source of error in calculation of optical diffuse reflectance from turbid media using diffusion theory,” Comput. Methods Programs Biomed. 61(3), 163–170 (2000).
[Crossref]
[PubMed]
L. Zhang, Z. Wang, and M. Zhou, “Determination of the optical coefficients of biological tissue by neural network,” J. Mod. Opt. 57(13), 1163–1170 (2010).
[Crossref]
R. Watté, B. Aernouts, R. Van Beers, E. Herremans, Q. T. Ho, P. Verboven, B. Nicolaï, and W. Saeys, “Modeling the propagation of light in realistic tissue structures with MMC-fpf: a meshed Monte Carlo method with free phase function,” Opt. Express 23(13), 17467–17486 (2015).
[Crossref]
[PubMed]
B. Aernouts, R. Watté, R. Van Beers, F. Delport, M. Merchiers, J. De Block, J. Lammertyn, and W. Saeys, “Flexible tool for simulating the bulk optical properties of polydisperse spherical particles in an absorbing host: experimental validation,” Opt. Express 22(17), 20223–20238 (2014).
[Crossref]
[PubMed]
R. Watté, N. N. Do Trong, B. Aernouts, C. Erkinbaev, J. De Baerdemaeker, B. Nicolaï, and W. Saeys, “Metamodeling approach for efficient estimation of optical properties of turbid media from spatially resolved diffuse reflectance measurements,” Opt. Express 21(26), 32630–32642 (2013).
[Crossref]
[PubMed]
B. Aernouts, E. Zamora-Rojas, R. Van Beers, R. Watté, L. Wang, M. Tsuta, J. Lammertyn, and W. Saeys, “Supercontinuum laser based optical characterization of Intralipid® phantoms in the 500-2250 nm range,” Opt. Express 21(26), 32450–32467 (2013).
[Crossref]
[PubMed]
D. Jones, M. Schonlau, and W. Welch, “Efficient global optimization of expensive black-box functions,” J. Glob. Optim. 13(4), 455–492 (1998).
[Crossref]
T. J. Farrell, M. S. Patterson, and B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19(4), 879–888 (1992).
[Crossref]
[PubMed]
A. Kienle, L. Lilge, M. S. Patterson, R. Hibst, R. Steiner, and B. C. Wilson, “Spatially resolved absolute diffuse reflectance measurements for noninvasive determination of the optical scattering and absorption coefficients of biological tissue,” Appl. Opt. 35(13), 2304–2314 (1996).
[Crossref]
[PubMed]
M. S. Patterson, J. D. Moulton, B. C. Wilson, K. W. Berndt, and J. R. Lakowicz, “Frequency-domain reflectance for the determination of the scattering and absorption properties of tissue,” Appl. Opt. 30(31), 4474–4476 (1991).
[Crossref]
[PubMed]
B. C. Wilson and G. Adam, “A Monte Carlo model for the absorption and flux distributions of light in tissue,” Med. Phys. 10(6), 824–830 (1983).
[Crossref]
[PubMed]
E. Zamora-Rojas, B. Aernouts, A. Garrido-Varo, D. Pérez-Marín, J. E. Guerrero-Ginel, and W. Saeys, “Double integrating sphere measurements for estimating optical properties of pig subcutaneous adipose tissue,” Innov. Food Sci. Emerg. Technol. 19, 218–226 (2013).
[Crossref]
B. Aernouts, E. Zamora-Rojas, R. Van Beers, R. Watté, L. Wang, M. Tsuta, J. Lammertyn, and W. Saeys, “Supercontinuum laser based optical characterization of Intralipid® phantoms in the 500-2250 nm range,” Opt. Express 21(26), 32450–32467 (2013).
[Crossref]
[PubMed]
L. Zhang, Z. Wang, and M. Zhou, “Determination of the optical coefficients of biological tissue by neural network,” J. Mod. Opt. 57(13), 1163–1170 (2010).
[Crossref]
B. Guan, Y. Zhang, S. Huang, and B. Chance, “Determination of optical properties using improved frequency-resolved spectroscopy,” Proc. SPIE 3548, 17–26 (1998).
[Crossref]
L. Wang, S. L. Jacques, and L. Zheng, “MCML--Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47(2), 131–146 (1995).
[Crossref]
[PubMed]
L. Zhang, Z. Wang, and M. Zhou, “Determination of the optical coefficients of biological tissue by neural network,” J. Mod. Opt. 57(13), 1163–1170 (2010).
[Crossref]
I. Couckuyt, A. Forrester, D. Gorissen, F. De Turck, and T. Dhaene, “Blind Kriging: implementation and performance analysis,” Adv. Eng. Softw. 49, 1–13 (2012).
[Crossref]
J. W. Pickering, S. A. Prahl, N. van Wieringen, J. F. Beek, H. J. C. M. Sterenborg, and M. J. C. van Gemert, “Double-integrating-sphere system for measuring the optical properties of tissue,” Appl. Opt. 32(4), 399–410 (1993).
[Crossref]
[PubMed]
S. A. Prahl, M. J. van Gemert, and A. J. Welch, “Determining the optical properties of turbid mediaby using the adding-doubling method,” Appl. Opt. 32(4), 559–568 (1993).
[Crossref]
[PubMed]
J. S. Dam, C. B. Pedersen, T. Dalgaard, P. E. Fabricius, P. Aruna, and S. Andersson-Engels, “Fiber-optic probe for noninvasive real-time determination of tissue optical properties at multiple wavelengths,” Appl. Opt. 40(7), 1155–1164 (2001).
[Crossref]
[PubMed]
M. S. Patterson, J. D. Moulton, B. C. Wilson, K. W. Berndt, and J. R. Lakowicz, “Frequency-domain reflectance for the determination of the scattering and absorption properties of tissue,” Appl. Opt. 30(31), 4474–4476 (1991).
[Crossref]
[PubMed]
H. Cen and R. Lu, “Quantification of the optical properties of two-layer turbid materials using a hyperspectral imaging-based spatially-resolved technique,” Appl. Opt. 48(29), 5612–5623 (2009).
[Crossref]
[PubMed]
T. H. Pham, F. Bevilacqua, T. Spott, J. S. Dam, B. J. Tromberg, and S. Andersson-Engels, “Quantifying the absorption and reduced scattering coefficients of tissuelike turbid media over a broad spectral range with noncontact Fourier-transform hyperspectral imaging,” Appl. Opt. 39(34), 6487–6497 (2000).
[Crossref]
[PubMed]
A. Ishimaru, “Diffusion of light in turbid material,” Appl. Opt. 28(12), 2210–2215 (1989).
[Crossref]
[PubMed]
G. Alexandrakis, T. J. Farrell, and M. S. Patterson, “Accuracy of the diffusion approximation in determining the optical properties of a two-layer turbid medium,” Appl. Opt. 37(31), 7401–7409 (1998).
[Crossref]
[PubMed]
A. Kienle, L. Lilge, M. S. Patterson, R. Hibst, R. Steiner, and B. C. Wilson, “Spatially resolved absolute diffuse reflectance measurements for noninvasive determination of the optical scattering and absorption coefficients of biological tissue,” Appl. Opt. 35(13), 2304–2314 (1996).
[Crossref]
[PubMed]
R. Graaff, M. H. Koelink, F. F. de Mul, W. G. Zijistra, A. C. Dassel, and J. G. Aarnoudse, “Condensed Monte Carlo simulations for the description of light transport,” Appl. Opt. 32(4), 426–434 (1993).
[Crossref]
[PubMed]
A. Pifferi, P. Taroni, G. Valentini, and S. Andersson-Engels, “Real-time method for fitting time-resolved reflectance and transmittance measurements with a monte carlo model,” Appl. Opt. 37(13), 2774–2780 (1998).
[Crossref]
[PubMed]
J. S. Dam, T. Dalgaard, P. E. Fabricius, and S. Andersson-Engels, “Multiple polynomial regression method for determination of biomedical optical properties from integrating sphere measurements,” Appl. Opt. 39(7), 1202–1209 (2000).
[Crossref]
[PubMed]
R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “Noninvasive absorption and scattering spectroscopy of bulk diffusive media: An application to the optical characterization of human breast,” Appl. Phys. Lett. 74(6), 874–876 (1999).
[Crossref]
R. Lu and Y. Peng, “Hyperspectral scattering for assessing peach fruit firmness,” Biosystems Eng. 93(2), 161–171 (2006).
[Crossref]
L. V. Wang and S. L. Jacques, “Source of error in calculation of optical diffuse reflectance from turbid media using diffusion theory,” Comput. Methods Programs Biomed. 61(3), 163–170 (2000).
[Crossref]
[PubMed]
L. Wang, S. L. Jacques, and L. Zheng, “MCML--Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47(2), 131–146 (1995).
[Crossref]
[PubMed]
T. W. Simpson, J. D. Poplinski, P. N. Koch, and J. K. Allen, “Metamodels for computer-based engineering design: Survey and recommendations,” Eng. Comput. 17(2), 129–150 (2001).
[Crossref]
G. de Vries, J. F. Beek, G. W. Lucassen, and M. J. C. van Gemert, “The effect of light losses in double integrating spheres on optical properties estimation,” IEEE J. Sel. Top. Quantum Electron. 5(4), 944–947 (1999).
[Crossref]
E. Zamora-Rojas, B. Aernouts, A. Garrido-Varo, D. Pérez-Marín, J. E. Guerrero-Ginel, and W. Saeys, “Double integrating sphere measurements for estimating optical properties of pig subcutaneous adipose tissue,” Innov. Food Sci. Emerg. Technol. 19, 218–226 (2013).
[Crossref]
C. Erkinbaev, E. Herremans, N. Nguyen Do Trong, E. Jakubczyk, P. Verboven, B. Nicolaï, and W. Saeys, “Contactless and non-destructive differentiation of microstructures of sugar foams by hyperspectral scatter imaging,” Innov. Food Sci. Emerg. Technol. 24, 131–137 (2014).
[Crossref]
I. Couckuyt, F. Declercq, T. Dhaene, H. Rogier, and L. Knockaert, “Surrogate-based infill optimization applied to electromagnetic problems,” Int. J. RF Microw. Comput. Eng. 20(5), 492–501 (2010).
[Crossref]
M. Pilz, S. Honold, and A. Kienle, “Determination of the optical properties of turbid media by measurements of the spatially resolved reflectance considering the point-spread function of the camera system,” J. Biomed. Opt. 13(5), 054047 (2008).
[Crossref]
[PubMed]
D. Jones, M. Schonlau, and W. Welch, “Efficient global optimization of expensive black-box functions,” J. Glob. Optim. 13(4), 455–492 (1998).
[Crossref]
D. Gorissen, I. Couckuyt, P. Demeester, T. Dhaene, and K. Crombecq, “A surrogate modeling and adaptive sampling toolbox for computer based design,” J. Mach. Learn. Res. 11, 2051–2055 (2010).
G. G. Wang and S. Shan, “Review of metamodeling techniques in support of engineering design optimization,” J. Mech. Des. 129(4), 370–380 (2007).
[Crossref]
L. Zhang, Z. Wang, and M. Zhou, “Determination of the optical coefficients of biological tissue by neural network,” J. Mod. Opt. 57(13), 1163–1170 (2010).
[Crossref]
B. C. Wilson and G. Adam, “A Monte Carlo model for the absorption and flux distributions of light in tissue,” Med. Phys. 10(6), 824–830 (1983).
[Crossref]
[PubMed]
T. J. Farrell, M. S. Patterson, and B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19(4), 879–888 (1992).
[Crossref]
[PubMed]
R. Watté, N. N. Do Trong, B. Aernouts, C. Erkinbaev, J. De Baerdemaeker, B. Nicolaï, and W. Saeys, “Metamodeling approach for efficient estimation of optical properties of turbid media from spatially resolved diffuse reflectance measurements,” Opt. Express 21(26), 32630–32642 (2013).
[Crossref]
[PubMed]
A. Torricelli, L. Spinelli, A. Pifferi, P. Taroni, R. Cubeddu, and G. Danesini, “Use of a nonlinear perturbation approach for in vivo breast lesion characterization by multiwavelength time-resolved optical mammography,” Opt. Express 11(8), 853–867 (2003).
[Crossref]
[PubMed]
P. Taroni, D. Comelli, A. Farina, A. Pifferi, and A. Kienle, “Time-resolved diffuse optical spectroscopy of small tissue samples,” Opt. Express 15(6), 3301–3311 (2007).
[Crossref]
[PubMed]
Q. Fang and D. A. Boas, “Monte Carlo simulation of photon migration in 3D turbid media accelerated by graphics processing units,” Opt. Express 17(22), 20178–20190 (2009).
[Crossref]
[PubMed]
N. Ren, J. Liang, X. Qu, J. Li, B. Lu, and J. Tian, “GPU-based Monte Carlo simulation for light propagation in complex heterogeneous tissues,” Opt. Express 18(7), 6811–6823 (2010).
[Crossref]
[PubMed]
M. Martinelli, A. Gardner, D. Cuccia, C. Hayakawa, J. Spanier, and V. Venugopalan, “Analysis of single Monte Carlo methods for prediction of reflectance from turbid media,” Opt. Express 19(20), 19627–19642 (2011).
[Crossref]
[PubMed]
B. Aernouts, R. Watté, R. Van Beers, F. Delport, M. Merchiers, J. De Block, J. Lammertyn, and W. Saeys, “Flexible tool for simulating the bulk optical properties of polydisperse spherical particles in an absorbing host: experimental validation,” Opt. Express 22(17), 20223–20238 (2014).
[Crossref]
[PubMed]
R. Watté, B. Aernouts, R. Van Beers, E. Herremans, Q. T. Ho, P. Verboven, B. Nicolaï, and W. Saeys, “Modeling the propagation of light in realistic tissue structures with MMC-fpf: a meshed Monte Carlo method with free phase function,” Opt. Express 23(13), 17467–17486 (2015).
[Crossref]
[PubMed]
B. Aernouts, E. Zamora-Rojas, R. Van Beers, R. Watté, L. Wang, M. Tsuta, J. Lammertyn, and W. Saeys, “Supercontinuum laser based optical characterization of Intralipid® phantoms in the 500-2250 nm range,” Opt. Express 21(26), 32450–32467 (2013).
[Crossref]
[PubMed]
R. Michels, F. Foschum, and A. Kienle, “Optical properties of fat emulsions,” Opt. Express 16(8), 5907–5925 (2008).
[Crossref]
[PubMed]
R. M. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, and H. J. C. M. Sterenborg, “The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy,” Phys. Med. Biol. 44(4), 967–981 (1999).
[Crossref]
[PubMed]
H. Cen, R. Lu, F. Mendoza, and R. M. Beaudry, “Relationship of the optical absorption and scattering properties with mechanical and structural properties of apple tissue,” Postharvest Biol. Technol. 85, 30–38 (2013).
[Crossref]
J. Qin and R. Lu, “Measurement of the optical properties of fruits and vegetables using spatially resolved hyperspectral diffuse reflectance imaging technique,” Postharvest Biol. Technol. 49(3), 355–365 (2008).
[Crossref]
B. Guan, Y. Zhang, S. Huang, and B. Chance, “Determination of optical properties using improved frequency-resolved spectroscopy,” Proc. SPIE 3548, 17–26 (1998).
[Crossref]
V. V. Tuchin, Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis, 2nd ed. (SPIE Press, 2007).
A. Torricelli, L. Spinelli, M. Vanoli, M. Leitner, A. Nemeth, N. D. T. Nguyen, B. M. Nicolaï, and W. Saeys, “Optical Coherence Tomography (OCT), Space-resolved Reflectance Spectroscopy (SRS) and Time-resolved Reflectance Spectroscopy (TRS): Principles and Applications to Food Microstructures,” in Food Microstructures: Microscopy, Measurement and Modelling, V. Morris and K. Groves, eds., 1st ed. (WoodHead Publishing, 2013), p. 480.
I. Couckuyt, D. Gorissen, T. Dhaene, and F. De Turck, “Inverse surrogate modeling: output performance space sampling,” in Proceedings of the 13th AIAA/ISSMO Multidisciplinary Analysis Optimization Conference (2010).
[Crossref]
S. A. Prahl, “Everything I think you should know about inverse adding-doubling,” http://omlc.ogi.edu/software/iad/iad-3-9-10.zip .
I. Couckuyt, K. Crombecq, D. Gorissen, and T. Dhaene, “Automated response surface model generation with sequential design,” in Proceedings of the First International Conference on Soft Computing Technology in Civil, Structural and Environmental Engineering (2009).
[Crossref]