Abstract

Dark solitons, which have better stability in the presence of noise, have potential applications in optical communication and ultrafast optics. In this paper, the dark soliton formation in erbium-doped fiber lasers based Sb2Te3 saturable absorber (SA) is first experimentally demonstrated. The Sb2Te3 SA is fabricated by using the pulsed laser deposition method. The generated dark solitons are centered at the wavelength of 1530 nm and repetition rate of 94 MHz. Analytic solutions for dark solitons are also obtained theoretically.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Dark solitons in WS2 erbium-doped fiber lasers

Wenjun Liu, Lihui Pang, Hainian Han, Zhongwei Shen, Ming Lei, Hao Teng, and Zhiyi Wei
Photon. Res. 4(3) 111-114 (2016)

Mode-locking in Er-doped fiber laser based on mechanically exfoliated Sb2Te3 saturable absorber

Jaroslaw Sotor, Grzegorz Sobon, Wojciech Macherzynski, Piotr Paletko, Kacper Grodecki, and Krzysztof M. Abramski
Opt. Mater. Express 4(1) 1-6 (2014)

Large energy pulses generation in a mode-locked Er-doped fiber laser based on CVD-grown Bi2Te3 saturable absorber

Qin Wei, Kangdi Niu, Xile Han, Huanian Zhang, Chao Zhang, Cheng Yang, and Baoyuan Man
Opt. Mater. Express 9(8) 3535-3545 (2019)

References

  • View by:
  • |
  • |
  • |

  1. R. K. Dodd, J. C. Eilbeck, J. D. Gibbon, and H. C. Morris, Solitons and Nonlinear Wave Equations (Academic Press, 1982).
  2. N. P. Proukakis, N. G. Parker, D. J. Frantzeskakis, and C. S. Adams, “Analogies between dark solitons in atomic Bose-Einstein condensates and optical systems,” J. Opt. B Quantum Semiclassical Opt. 6(5), S380–S391 (2004).
    [Crossref]
  3. D. J. Frantzeskakis, “Dark solitons in atomic Bose-Einstein condensates: from theory to experiments,” J. Phys. A Math. Theor. 43(21), 213001 (2010).
    [Crossref]
  4. Y. S. Kivshar and B. Luther-Davies, “Dark optical solitons: Physics and applications,” Phys. Rep. 298(2-3), 81–197 (1998).
    [Crossref]
  5. P. Emplit, J. P. Hamaide, R. Reynaud, C. Froehly, and A. Barthelemy, “Picosecond steps and dark pulses through nonlinear single mode fibers,” Opt. Commun. 62(6), 374–379 (1987).
    [Crossref]
  6. Y. F. Song, J. Guo, L. M. Zhao, D. Y. Shen, and D. Y. Tang, “280 GHz dark soliton fiber laser,” Opt. Lett. 39(12), 3484–3487 (2014).
    [Crossref] [PubMed]
  7. W. Zhao and E. Bourkoff, “Generation, propagation, and amplification of dark solitons,” J. Opt. Soc. Am. B 9(7), 1134–1144 (1992).
    [Crossref]
  8. G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed., Academic press, San Diego (2002).
  9. W. Zhao and E. Bourkoff, “Propagation properties of dark solitons,” Opt. Lett. 14(13), 703–705 (1989).
    [Crossref] [PubMed]
  10. Y. S. Kivishar and G. Agrawal, Optical Solitons: From Fiber to Photonic Crystals, Academic, New York, NY, USA, 2003.
  11. B. A. Malomed, A. Mostofi, and P. L. Chu, “Transformation of a dark soliton into a bright pulse,” J. Opt. Soc. Am. B 17(4), 507–513 (2000).
    [Crossref]
  12. H. Zhang, D. Y. Tang, L. M. Zhao, and R. J. Knize, “Vector dark domain wall solitons in a fiber ring laser,” Opt. Express 18(5), 4428–4433 (2010).
    [Crossref] [PubMed]
  13. Y. S. Kivshar, M. Haelterman, P. Emplit, and J. P. Hamaide, “Gordon-Haus effect on dark solitons,” Opt. Lett. 19(1), 19–21 (1994).
    [Crossref] [PubMed]
  14. H. Zhang, D. Y. Tang, L. M. Zhao, and X. Wu, “Dark pulse emission of a fiber laser,” Phys. Rev. A 80(4), 045803 (2009).
    [Crossref]
  15. M. Feng, K. L. Silverman, R. P. Mirin, and S. T. Cundiff, “Dark pulse quantum dot diode laser,” Opt. Express 18(13), 13385–13395 (2010).
    [Crossref] [PubMed]
  16. D. Y. Tang, L. Li, Y. F. Song, L. M. Zhao, H. Zhang, and D. Y. Shen, “Evidence of dark solitons in all-normal-dispersion-fiber lasers,” Phys. Rev. A 88(1), 013849 (2013).
    [Crossref]
  17. D. Tang, J. Guo, Y. Song, H. Zhang, L. Zhao, and D. Shen, “Dark soliton fiber lasers,” Opt. Express 22(16), 19831–19837 (2014).
    [Crossref] [PubMed]
  18. Y. Q. Ge, J. L. Luo, L. Li, X. X. Jin, D. Y. Tang, D. Y. Shen, S. M. Zhang, and L. M. Zhao, “Initial conditions for dark soliton generation in normal-dispersion fiber lasers,” Appl. Opt. 54(1), 71–75 (2015).
    [Crossref] [PubMed]
  19. T. Sylvestre, S. Coen, P. Emplit, and M. Haelterman, “Self-induced modulational instability laser revisited: normal dispersion and dark-pulse train generation,” Opt. Lett. 27(7), 482–484 (2002).
    [Crossref] [PubMed]
  20. H. S. Yin, W. C. Xu, A. P. Luo, Z. C. Luo, and J. R. Liu, “Observation of dark pulse in a dispersion-managed fiber ring laser,” Opt. Commun. 283(21), 4338–4341 (2010).
    [Crossref]
  21. I. N. Iii, “All-fiber ring soliton laser mode locked with a nonlinear mirror,” Opt. Lett. 16(8), 539–541 (1991).
    [Crossref] [PubMed]
  22. V. J. Matsas, T. P. Newson, D. J. Richardson, and D. J. Payne, “Selfstarting passively mode-locked fibre ring soliton laser exploiting nonlinear polarisation rotation,” Electron. Lett. 28(15), 1391–1393 (1992).
    [Crossref]
  23. H. Zhang, D. Y. Tang, X. Wu, and L. M. Zhao, “Multi-wavelength dissipative soliton operation of an erbium-doped fiber laser,” Opt. Express 17(15), 12692–12697 (2009).
    [Crossref] [PubMed]
  24. Z. Luo, A. Luo, and W. Xu, “Tunable and switchable multiwavelength passively mode-locked fiber laser based on SESAM and inline birefringence comb filter,” IEEE Photonics J. 3(1), 64–70 (2011).
    [Crossref]
  25. X. Zhao, Z. Zheng, L. Liu, Y. Liu, Y. Jiang, X. Yang, and J. Zhu, “Switchable, dual-wavelength passively mode-locked ultrafast fiber laser based on a single-wall carbon nanotube modelocker and intracavity loss tuning,” Opt. Express 19(2), 1168–1173 (2011).
    [Crossref] [PubMed]
  26. X. Li, Y. Wang, Y. Wang, X. Hu, W. Zhao, X. Liu, J. Yu, C. Gao, W. Zhang, and Z. Yang, “Wavelengthswitchable and wavelength-tunable all-normal-dispersion mode-locked Yb-doped fiber laser based on singlewalled carbon nanotube wall paper absorber,” IEEE Photonics J. 4(1), 234–241 (2012).
    [Crossref]
  27. H. Zhang, D. Y. Tang, R. J. Knize, L. M. Zhao, Q. L. Bao, and K. P. Loh, “Graphene mode locked, wavelength-tunable, dissipative soliton fiber laser,” Appl. Phys. Lett. 96(11), 111112 (2010).
    [Crossref]
  28. S. Huang, Y. Wang, P. Yan, J. Zhao, H. Li, and R. Lin, “Tunable and switchable multi-wavelength dissipative soliton generation in a graphene oxide mode-locked Yb-doped fiber laser,” Opt. Express 22(10), 11417–11426 (2014).
    [Crossref] [PubMed]
  29. C. Zhao, Y. Zou, Y. Chen, Z. Wang, S. Lu, H. Zhang, S. Wen, and D. Tang, “Wavelength-tunable picosecond soliton fiber laser with Topological Insulator: Bi2Se3 as a mode locker,” Opt. Express 20(25), 27888–27895 (2012).
    [Crossref] [PubMed]
  30. P. Yan, R. Lin, H. Chen, H. Zhang, A. Liu, H. Yang, and S. Ruan, “Topological insulator solution filled in photonic crystal fiber for passive mode-locked fiberlaser,” IEEE Photonics Technol. Lett. 27(3), 264–267 (2015).
    [Crossref]
  31. P. Yan, R. Lin, S. Ruan, A. Liu, and H. Chen, “A 2.95 GHz, femtosecond passive harmonic mode-locked fiber laser based on evanescent field interaction with topological insulator film,” Opt. Express 23(1), 154–164 (2015).
    [Crossref] [PubMed]
  32. L. M. Zhao, D. Y. Tang, H. Zhang, X. Wu, Q. Bao, and K. P. Loh, “Dissipative soliton operation of an ytterbium-doped fiber laser mode locked with atomic multilayer graphene,” Opt. Lett. 35(21), 3622–3624 (2010).
    [Crossref] [PubMed]
  33. J. Xu, S. Wu, H. Li, J. Liu, R. Sun, F. Tan, Q. H. Yang, and P. Wang, “Dissipative soliton generation from a graphene oxide mode-locked Er-doped fiber laser,” Opt. Express 20(21), 23653–23658 (2012).
    [Crossref] [PubMed]
  34. Y. F. Song, L. Li, H. Zhang, Y. Shen, D. Y. Tang, and K. P. Loh, “Vector multi-soliton operation and interaction in a graphene mode-locked fiber laser,” Opt. Express 21(8), 10010–10018 (2013).
    [Crossref] [PubMed]
  35. S. Lu, C. Zhao, Y. Zou, S. Chen, Y. Chen, Y. Li, H. Zhang, S. Wen, and D. Tang, “Third order nonlinear optical property of Bi₂Se₃,” Opt. Express 21(2), 2072–2082 (2013).
    [Crossref] [PubMed]
  36. J. Wang, Z. Cai, P. Xu, G. Du, F. Wang, S. Ruan, Z. Sun, and T. Hasan, “Pulse dynamics in carbon nanotube mode-locked fiber lasers near zero cavity dispersion,” Opt. Express 23(8), 9947–9958 (2015).
    [Crossref] [PubMed]
  37. P. Wong, W. J. Liu, L. G. Huang, Y. Q. Li, N. Pan, and M. Lei, “Higher-order-effects management of soliton interactions in the Hirota equation,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 91(3), 033201 (2015).
    [Crossref] [PubMed]
  38. W. Liu, B. Tian, H. Zhang, T. Xu, and H. Li, “Solitary wave pulses in optical fibers with normal dispersion and higher-order effects,” Phys. Rev. A 79(6), 063810 (2009).
    [Crossref]
  39. R. Hirota, “Exact solution of the Korteweg-de Vries equation for multiple collisions of solitons,” Phys. Rev. Lett. 27(18), 1192–1194 (1971).
    [Crossref]

2015 (5)

2014 (3)

2013 (3)

2012 (3)

2011 (2)

X. Zhao, Z. Zheng, L. Liu, Y. Liu, Y. Jiang, X. Yang, and J. Zhu, “Switchable, dual-wavelength passively mode-locked ultrafast fiber laser based on a single-wall carbon nanotube modelocker and intracavity loss tuning,” Opt. Express 19(2), 1168–1173 (2011).
[Crossref] [PubMed]

Z. Luo, A. Luo, and W. Xu, “Tunable and switchable multiwavelength passively mode-locked fiber laser based on SESAM and inline birefringence comb filter,” IEEE Photonics J. 3(1), 64–70 (2011).
[Crossref]

2010 (6)

H. Zhang, D. Y. Tang, R. J. Knize, L. M. Zhao, Q. L. Bao, and K. P. Loh, “Graphene mode locked, wavelength-tunable, dissipative soliton fiber laser,” Appl. Phys. Lett. 96(11), 111112 (2010).
[Crossref]

H. S. Yin, W. C. Xu, A. P. Luo, Z. C. Luo, and J. R. Liu, “Observation of dark pulse in a dispersion-managed fiber ring laser,” Opt. Commun. 283(21), 4338–4341 (2010).
[Crossref]

D. J. Frantzeskakis, “Dark solitons in atomic Bose-Einstein condensates: from theory to experiments,” J. Phys. A Math. Theor. 43(21), 213001 (2010).
[Crossref]

H. Zhang, D. Y. Tang, L. M. Zhao, and R. J. Knize, “Vector dark domain wall solitons in a fiber ring laser,” Opt. Express 18(5), 4428–4433 (2010).
[Crossref] [PubMed]

M. Feng, K. L. Silverman, R. P. Mirin, and S. T. Cundiff, “Dark pulse quantum dot diode laser,” Opt. Express 18(13), 13385–13395 (2010).
[Crossref] [PubMed]

L. M. Zhao, D. Y. Tang, H. Zhang, X. Wu, Q. Bao, and K. P. Loh, “Dissipative soliton operation of an ytterbium-doped fiber laser mode locked with atomic multilayer graphene,” Opt. Lett. 35(21), 3622–3624 (2010).
[Crossref] [PubMed]

2009 (3)

H. Zhang, D. Y. Tang, X. Wu, and L. M. Zhao, “Multi-wavelength dissipative soliton operation of an erbium-doped fiber laser,” Opt. Express 17(15), 12692–12697 (2009).
[Crossref] [PubMed]

H. Zhang, D. Y. Tang, L. M. Zhao, and X. Wu, “Dark pulse emission of a fiber laser,” Phys. Rev. A 80(4), 045803 (2009).
[Crossref]

W. Liu, B. Tian, H. Zhang, T. Xu, and H. Li, “Solitary wave pulses in optical fibers with normal dispersion and higher-order effects,” Phys. Rev. A 79(6), 063810 (2009).
[Crossref]

2004 (1)

N. P. Proukakis, N. G. Parker, D. J. Frantzeskakis, and C. S. Adams, “Analogies between dark solitons in atomic Bose-Einstein condensates and optical systems,” J. Opt. B Quantum Semiclassical Opt. 6(5), S380–S391 (2004).
[Crossref]

2002 (1)

2000 (1)

1998 (1)

Y. S. Kivshar and B. Luther-Davies, “Dark optical solitons: Physics and applications,” Phys. Rep. 298(2-3), 81–197 (1998).
[Crossref]

1994 (1)

1992 (2)

V. J. Matsas, T. P. Newson, D. J. Richardson, and D. J. Payne, “Selfstarting passively mode-locked fibre ring soliton laser exploiting nonlinear polarisation rotation,” Electron. Lett. 28(15), 1391–1393 (1992).
[Crossref]

W. Zhao and E. Bourkoff, “Generation, propagation, and amplification of dark solitons,” J. Opt. Soc. Am. B 9(7), 1134–1144 (1992).
[Crossref]

1991 (1)

1989 (1)

1987 (1)

P. Emplit, J. P. Hamaide, R. Reynaud, C. Froehly, and A. Barthelemy, “Picosecond steps and dark pulses through nonlinear single mode fibers,” Opt. Commun. 62(6), 374–379 (1987).
[Crossref]

1971 (1)

R. Hirota, “Exact solution of the Korteweg-de Vries equation for multiple collisions of solitons,” Phys. Rev. Lett. 27(18), 1192–1194 (1971).
[Crossref]

Adams, C. S.

N. P. Proukakis, N. G. Parker, D. J. Frantzeskakis, and C. S. Adams, “Analogies between dark solitons in atomic Bose-Einstein condensates and optical systems,” J. Opt. B Quantum Semiclassical Opt. 6(5), S380–S391 (2004).
[Crossref]

Bao, Q.

Bao, Q. L.

H. Zhang, D. Y. Tang, R. J. Knize, L. M. Zhao, Q. L. Bao, and K. P. Loh, “Graphene mode locked, wavelength-tunable, dissipative soliton fiber laser,” Appl. Phys. Lett. 96(11), 111112 (2010).
[Crossref]

Barthelemy, A.

P. Emplit, J. P. Hamaide, R. Reynaud, C. Froehly, and A. Barthelemy, “Picosecond steps and dark pulses through nonlinear single mode fibers,” Opt. Commun. 62(6), 374–379 (1987).
[Crossref]

Bourkoff, E.

Cai, Z.

Chen, H.

P. Yan, R. Lin, S. Ruan, A. Liu, and H. Chen, “A 2.95 GHz, femtosecond passive harmonic mode-locked fiber laser based on evanescent field interaction with topological insulator film,” Opt. Express 23(1), 154–164 (2015).
[Crossref] [PubMed]

P. Yan, R. Lin, H. Chen, H. Zhang, A. Liu, H. Yang, and S. Ruan, “Topological insulator solution filled in photonic crystal fiber for passive mode-locked fiberlaser,” IEEE Photonics Technol. Lett. 27(3), 264–267 (2015).
[Crossref]

Chen, S.

Chen, Y.

Chu, P. L.

Coen, S.

Cundiff, S. T.

Du, G.

Emplit, P.

Feng, M.

Frantzeskakis, D. J.

D. J. Frantzeskakis, “Dark solitons in atomic Bose-Einstein condensates: from theory to experiments,” J. Phys. A Math. Theor. 43(21), 213001 (2010).
[Crossref]

N. P. Proukakis, N. G. Parker, D. J. Frantzeskakis, and C. S. Adams, “Analogies between dark solitons in atomic Bose-Einstein condensates and optical systems,” J. Opt. B Quantum Semiclassical Opt. 6(5), S380–S391 (2004).
[Crossref]

Froehly, C.

P. Emplit, J. P. Hamaide, R. Reynaud, C. Froehly, and A. Barthelemy, “Picosecond steps and dark pulses through nonlinear single mode fibers,” Opt. Commun. 62(6), 374–379 (1987).
[Crossref]

Gao, C.

X. Li, Y. Wang, Y. Wang, X. Hu, W. Zhao, X. Liu, J. Yu, C. Gao, W. Zhang, and Z. Yang, “Wavelengthswitchable and wavelength-tunable all-normal-dispersion mode-locked Yb-doped fiber laser based on singlewalled carbon nanotube wall paper absorber,” IEEE Photonics J. 4(1), 234–241 (2012).
[Crossref]

Ge, Y. Q.

Guo, J.

Haelterman, M.

Hamaide, J. P.

Y. S. Kivshar, M. Haelterman, P. Emplit, and J. P. Hamaide, “Gordon-Haus effect on dark solitons,” Opt. Lett. 19(1), 19–21 (1994).
[Crossref] [PubMed]

P. Emplit, J. P. Hamaide, R. Reynaud, C. Froehly, and A. Barthelemy, “Picosecond steps and dark pulses through nonlinear single mode fibers,” Opt. Commun. 62(6), 374–379 (1987).
[Crossref]

Hasan, T.

Hirota, R.

R. Hirota, “Exact solution of the Korteweg-de Vries equation for multiple collisions of solitons,” Phys. Rev. Lett. 27(18), 1192–1194 (1971).
[Crossref]

Hu, X.

X. Li, Y. Wang, Y. Wang, X. Hu, W. Zhao, X. Liu, J. Yu, C. Gao, W. Zhang, and Z. Yang, “Wavelengthswitchable and wavelength-tunable all-normal-dispersion mode-locked Yb-doped fiber laser based on singlewalled carbon nanotube wall paper absorber,” IEEE Photonics J. 4(1), 234–241 (2012).
[Crossref]

Huang, L. G.

P. Wong, W. J. Liu, L. G. Huang, Y. Q. Li, N. Pan, and M. Lei, “Higher-order-effects management of soliton interactions in the Hirota equation,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 91(3), 033201 (2015).
[Crossref] [PubMed]

Huang, S.

Iii, I. N.

Jiang, Y.

Jin, X. X.

Kivshar, Y. S.

Y. S. Kivshar and B. Luther-Davies, “Dark optical solitons: Physics and applications,” Phys. Rep. 298(2-3), 81–197 (1998).
[Crossref]

Y. S. Kivshar, M. Haelterman, P. Emplit, and J. P. Hamaide, “Gordon-Haus effect on dark solitons,” Opt. Lett. 19(1), 19–21 (1994).
[Crossref] [PubMed]

Knize, R. J.

H. Zhang, D. Y. Tang, L. M. Zhao, and R. J. Knize, “Vector dark domain wall solitons in a fiber ring laser,” Opt. Express 18(5), 4428–4433 (2010).
[Crossref] [PubMed]

H. Zhang, D. Y. Tang, R. J. Knize, L. M. Zhao, Q. L. Bao, and K. P. Loh, “Graphene mode locked, wavelength-tunable, dissipative soliton fiber laser,” Appl. Phys. Lett. 96(11), 111112 (2010).
[Crossref]

Lei, M.

P. Wong, W. J. Liu, L. G. Huang, Y. Q. Li, N. Pan, and M. Lei, “Higher-order-effects management of soliton interactions in the Hirota equation,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 91(3), 033201 (2015).
[Crossref] [PubMed]

Li, H.

Li, L.

Li, X.

X. Li, Y. Wang, Y. Wang, X. Hu, W. Zhao, X. Liu, J. Yu, C. Gao, W. Zhang, and Z. Yang, “Wavelengthswitchable and wavelength-tunable all-normal-dispersion mode-locked Yb-doped fiber laser based on singlewalled carbon nanotube wall paper absorber,” IEEE Photonics J. 4(1), 234–241 (2012).
[Crossref]

Li, Y.

Li, Y. Q.

P. Wong, W. J. Liu, L. G. Huang, Y. Q. Li, N. Pan, and M. Lei, “Higher-order-effects management of soliton interactions in the Hirota equation,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 91(3), 033201 (2015).
[Crossref] [PubMed]

Lin, R.

Liu, A.

P. Yan, R. Lin, S. Ruan, A. Liu, and H. Chen, “A 2.95 GHz, femtosecond passive harmonic mode-locked fiber laser based on evanescent field interaction with topological insulator film,” Opt. Express 23(1), 154–164 (2015).
[Crossref] [PubMed]

P. Yan, R. Lin, H. Chen, H. Zhang, A. Liu, H. Yang, and S. Ruan, “Topological insulator solution filled in photonic crystal fiber for passive mode-locked fiberlaser,” IEEE Photonics Technol. Lett. 27(3), 264–267 (2015).
[Crossref]

Liu, J.

Liu, J. R.

H. S. Yin, W. C. Xu, A. P. Luo, Z. C. Luo, and J. R. Liu, “Observation of dark pulse in a dispersion-managed fiber ring laser,” Opt. Commun. 283(21), 4338–4341 (2010).
[Crossref]

Liu, L.

Liu, W.

W. Liu, B. Tian, H. Zhang, T. Xu, and H. Li, “Solitary wave pulses in optical fibers with normal dispersion and higher-order effects,” Phys. Rev. A 79(6), 063810 (2009).
[Crossref]

Liu, W. J.

P. Wong, W. J. Liu, L. G. Huang, Y. Q. Li, N. Pan, and M. Lei, “Higher-order-effects management of soliton interactions in the Hirota equation,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 91(3), 033201 (2015).
[Crossref] [PubMed]

Liu, X.

X. Li, Y. Wang, Y. Wang, X. Hu, W. Zhao, X. Liu, J. Yu, C. Gao, W. Zhang, and Z. Yang, “Wavelengthswitchable and wavelength-tunable all-normal-dispersion mode-locked Yb-doped fiber laser based on singlewalled carbon nanotube wall paper absorber,” IEEE Photonics J. 4(1), 234–241 (2012).
[Crossref]

Liu, Y.

Loh, K. P.

Lu, S.

Luo, A.

Z. Luo, A. Luo, and W. Xu, “Tunable and switchable multiwavelength passively mode-locked fiber laser based on SESAM and inline birefringence comb filter,” IEEE Photonics J. 3(1), 64–70 (2011).
[Crossref]

Luo, A. P.

H. S. Yin, W. C. Xu, A. P. Luo, Z. C. Luo, and J. R. Liu, “Observation of dark pulse in a dispersion-managed fiber ring laser,” Opt. Commun. 283(21), 4338–4341 (2010).
[Crossref]

Luo, J. L.

Luo, Z.

Z. Luo, A. Luo, and W. Xu, “Tunable and switchable multiwavelength passively mode-locked fiber laser based on SESAM and inline birefringence comb filter,” IEEE Photonics J. 3(1), 64–70 (2011).
[Crossref]

Luo, Z. C.

H. S. Yin, W. C. Xu, A. P. Luo, Z. C. Luo, and J. R. Liu, “Observation of dark pulse in a dispersion-managed fiber ring laser,” Opt. Commun. 283(21), 4338–4341 (2010).
[Crossref]

Luther-Davies, B.

Y. S. Kivshar and B. Luther-Davies, “Dark optical solitons: Physics and applications,” Phys. Rep. 298(2-3), 81–197 (1998).
[Crossref]

Malomed, B. A.

Matsas, V. J.

V. J. Matsas, T. P. Newson, D. J. Richardson, and D. J. Payne, “Selfstarting passively mode-locked fibre ring soliton laser exploiting nonlinear polarisation rotation,” Electron. Lett. 28(15), 1391–1393 (1992).
[Crossref]

Mirin, R. P.

Mostofi, A.

Newson, T. P.

V. J. Matsas, T. P. Newson, D. J. Richardson, and D. J. Payne, “Selfstarting passively mode-locked fibre ring soliton laser exploiting nonlinear polarisation rotation,” Electron. Lett. 28(15), 1391–1393 (1992).
[Crossref]

Pan, N.

P. Wong, W. J. Liu, L. G. Huang, Y. Q. Li, N. Pan, and M. Lei, “Higher-order-effects management of soliton interactions in the Hirota equation,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 91(3), 033201 (2015).
[Crossref] [PubMed]

Parker, N. G.

N. P. Proukakis, N. G. Parker, D. J. Frantzeskakis, and C. S. Adams, “Analogies between dark solitons in atomic Bose-Einstein condensates and optical systems,” J. Opt. B Quantum Semiclassical Opt. 6(5), S380–S391 (2004).
[Crossref]

Payne, D. J.

V. J. Matsas, T. P. Newson, D. J. Richardson, and D. J. Payne, “Selfstarting passively mode-locked fibre ring soliton laser exploiting nonlinear polarisation rotation,” Electron. Lett. 28(15), 1391–1393 (1992).
[Crossref]

Proukakis, N. P.

N. P. Proukakis, N. G. Parker, D. J. Frantzeskakis, and C. S. Adams, “Analogies between dark solitons in atomic Bose-Einstein condensates and optical systems,” J. Opt. B Quantum Semiclassical Opt. 6(5), S380–S391 (2004).
[Crossref]

Reynaud, R.

P. Emplit, J. P. Hamaide, R. Reynaud, C. Froehly, and A. Barthelemy, “Picosecond steps and dark pulses through nonlinear single mode fibers,” Opt. Commun. 62(6), 374–379 (1987).
[Crossref]

Richardson, D. J.

V. J. Matsas, T. P. Newson, D. J. Richardson, and D. J. Payne, “Selfstarting passively mode-locked fibre ring soliton laser exploiting nonlinear polarisation rotation,” Electron. Lett. 28(15), 1391–1393 (1992).
[Crossref]

Ruan, S.

Shen, D.

Shen, D. Y.

Shen, Y.

Silverman, K. L.

Song, Y.

Song, Y. F.

Sun, R.

Sun, Z.

Sylvestre, T.

Tan, F.

Tang, D.

Tang, D. Y.

Y. Q. Ge, J. L. Luo, L. Li, X. X. Jin, D. Y. Tang, D. Y. Shen, S. M. Zhang, and L. M. Zhao, “Initial conditions for dark soliton generation in normal-dispersion fiber lasers,” Appl. Opt. 54(1), 71–75 (2015).
[Crossref] [PubMed]

Y. F. Song, J. Guo, L. M. Zhao, D. Y. Shen, and D. Y. Tang, “280 GHz dark soliton fiber laser,” Opt. Lett. 39(12), 3484–3487 (2014).
[Crossref] [PubMed]

Y. F. Song, L. Li, H. Zhang, Y. Shen, D. Y. Tang, and K. P. Loh, “Vector multi-soliton operation and interaction in a graphene mode-locked fiber laser,” Opt. Express 21(8), 10010–10018 (2013).
[Crossref] [PubMed]

D. Y. Tang, L. Li, Y. F. Song, L. M. Zhao, H. Zhang, and D. Y. Shen, “Evidence of dark solitons in all-normal-dispersion-fiber lasers,” Phys. Rev. A 88(1), 013849 (2013).
[Crossref]

H. Zhang, D. Y. Tang, R. J. Knize, L. M. Zhao, Q. L. Bao, and K. P. Loh, “Graphene mode locked, wavelength-tunable, dissipative soliton fiber laser,” Appl. Phys. Lett. 96(11), 111112 (2010).
[Crossref]

H. Zhang, D. Y. Tang, L. M. Zhao, and R. J. Knize, “Vector dark domain wall solitons in a fiber ring laser,” Opt. Express 18(5), 4428–4433 (2010).
[Crossref] [PubMed]

L. M. Zhao, D. Y. Tang, H. Zhang, X. Wu, Q. Bao, and K. P. Loh, “Dissipative soliton operation of an ytterbium-doped fiber laser mode locked with atomic multilayer graphene,” Opt. Lett. 35(21), 3622–3624 (2010).
[Crossref] [PubMed]

H. Zhang, D. Y. Tang, X. Wu, and L. M. Zhao, “Multi-wavelength dissipative soliton operation of an erbium-doped fiber laser,” Opt. Express 17(15), 12692–12697 (2009).
[Crossref] [PubMed]

H. Zhang, D. Y. Tang, L. M. Zhao, and X. Wu, “Dark pulse emission of a fiber laser,” Phys. Rev. A 80(4), 045803 (2009).
[Crossref]

Tian, B.

W. Liu, B. Tian, H. Zhang, T. Xu, and H. Li, “Solitary wave pulses in optical fibers with normal dispersion and higher-order effects,” Phys. Rev. A 79(6), 063810 (2009).
[Crossref]

Wang, F.

Wang, J.

Wang, P.

Wang, Y.

S. Huang, Y. Wang, P. Yan, J. Zhao, H. Li, and R. Lin, “Tunable and switchable multi-wavelength dissipative soliton generation in a graphene oxide mode-locked Yb-doped fiber laser,” Opt. Express 22(10), 11417–11426 (2014).
[Crossref] [PubMed]

X. Li, Y. Wang, Y. Wang, X. Hu, W. Zhao, X. Liu, J. Yu, C. Gao, W. Zhang, and Z. Yang, “Wavelengthswitchable and wavelength-tunable all-normal-dispersion mode-locked Yb-doped fiber laser based on singlewalled carbon nanotube wall paper absorber,” IEEE Photonics J. 4(1), 234–241 (2012).
[Crossref]

X. Li, Y. Wang, Y. Wang, X. Hu, W. Zhao, X. Liu, J. Yu, C. Gao, W. Zhang, and Z. Yang, “Wavelengthswitchable and wavelength-tunable all-normal-dispersion mode-locked Yb-doped fiber laser based on singlewalled carbon nanotube wall paper absorber,” IEEE Photonics J. 4(1), 234–241 (2012).
[Crossref]

Wang, Z.

Wen, S.

Wong, P.

P. Wong, W. J. Liu, L. G. Huang, Y. Q. Li, N. Pan, and M. Lei, “Higher-order-effects management of soliton interactions in the Hirota equation,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 91(3), 033201 (2015).
[Crossref] [PubMed]

Wu, S.

Wu, X.

Xu, J.

Xu, P.

Xu, T.

W. Liu, B. Tian, H. Zhang, T. Xu, and H. Li, “Solitary wave pulses in optical fibers with normal dispersion and higher-order effects,” Phys. Rev. A 79(6), 063810 (2009).
[Crossref]

Xu, W.

Z. Luo, A. Luo, and W. Xu, “Tunable and switchable multiwavelength passively mode-locked fiber laser based on SESAM and inline birefringence comb filter,” IEEE Photonics J. 3(1), 64–70 (2011).
[Crossref]

Xu, W. C.

H. S. Yin, W. C. Xu, A. P. Luo, Z. C. Luo, and J. R. Liu, “Observation of dark pulse in a dispersion-managed fiber ring laser,” Opt. Commun. 283(21), 4338–4341 (2010).
[Crossref]

Yan, P.

Yang, H.

P. Yan, R. Lin, H. Chen, H. Zhang, A. Liu, H. Yang, and S. Ruan, “Topological insulator solution filled in photonic crystal fiber for passive mode-locked fiberlaser,” IEEE Photonics Technol. Lett. 27(3), 264–267 (2015).
[Crossref]

Yang, Q. H.

Yang, X.

Yang, Z.

X. Li, Y. Wang, Y. Wang, X. Hu, W. Zhao, X. Liu, J. Yu, C. Gao, W. Zhang, and Z. Yang, “Wavelengthswitchable and wavelength-tunable all-normal-dispersion mode-locked Yb-doped fiber laser based on singlewalled carbon nanotube wall paper absorber,” IEEE Photonics J. 4(1), 234–241 (2012).
[Crossref]

Yin, H. S.

H. S. Yin, W. C. Xu, A. P. Luo, Z. C. Luo, and J. R. Liu, “Observation of dark pulse in a dispersion-managed fiber ring laser,” Opt. Commun. 283(21), 4338–4341 (2010).
[Crossref]

Yu, J.

X. Li, Y. Wang, Y. Wang, X. Hu, W. Zhao, X. Liu, J. Yu, C. Gao, W. Zhang, and Z. Yang, “Wavelengthswitchable and wavelength-tunable all-normal-dispersion mode-locked Yb-doped fiber laser based on singlewalled carbon nanotube wall paper absorber,” IEEE Photonics J. 4(1), 234–241 (2012).
[Crossref]

Zhang, H.

P. Yan, R. Lin, H. Chen, H. Zhang, A. Liu, H. Yang, and S. Ruan, “Topological insulator solution filled in photonic crystal fiber for passive mode-locked fiberlaser,” IEEE Photonics Technol. Lett. 27(3), 264–267 (2015).
[Crossref]

D. Tang, J. Guo, Y. Song, H. Zhang, L. Zhao, and D. Shen, “Dark soliton fiber lasers,” Opt. Express 22(16), 19831–19837 (2014).
[Crossref] [PubMed]

D. Y. Tang, L. Li, Y. F. Song, L. M. Zhao, H. Zhang, and D. Y. Shen, “Evidence of dark solitons in all-normal-dispersion-fiber lasers,” Phys. Rev. A 88(1), 013849 (2013).
[Crossref]

Y. F. Song, L. Li, H. Zhang, Y. Shen, D. Y. Tang, and K. P. Loh, “Vector multi-soliton operation and interaction in a graphene mode-locked fiber laser,” Opt. Express 21(8), 10010–10018 (2013).
[Crossref] [PubMed]

S. Lu, C. Zhao, Y. Zou, S. Chen, Y. Chen, Y. Li, H. Zhang, S. Wen, and D. Tang, “Third order nonlinear optical property of Bi₂Se₃,” Opt. Express 21(2), 2072–2082 (2013).
[Crossref] [PubMed]

C. Zhao, Y. Zou, Y. Chen, Z. Wang, S. Lu, H. Zhang, S. Wen, and D. Tang, “Wavelength-tunable picosecond soliton fiber laser with Topological Insulator: Bi2Se3 as a mode locker,” Opt. Express 20(25), 27888–27895 (2012).
[Crossref] [PubMed]

L. M. Zhao, D. Y. Tang, H. Zhang, X. Wu, Q. Bao, and K. P. Loh, “Dissipative soliton operation of an ytterbium-doped fiber laser mode locked with atomic multilayer graphene,” Opt. Lett. 35(21), 3622–3624 (2010).
[Crossref] [PubMed]

H. Zhang, D. Y. Tang, L. M. Zhao, and R. J. Knize, “Vector dark domain wall solitons in a fiber ring laser,” Opt. Express 18(5), 4428–4433 (2010).
[Crossref] [PubMed]

H. Zhang, D. Y. Tang, R. J. Knize, L. M. Zhao, Q. L. Bao, and K. P. Loh, “Graphene mode locked, wavelength-tunable, dissipative soliton fiber laser,” Appl. Phys. Lett. 96(11), 111112 (2010).
[Crossref]

H. Zhang, D. Y. Tang, L. M. Zhao, and X. Wu, “Dark pulse emission of a fiber laser,” Phys. Rev. A 80(4), 045803 (2009).
[Crossref]

W. Liu, B. Tian, H. Zhang, T. Xu, and H. Li, “Solitary wave pulses in optical fibers with normal dispersion and higher-order effects,” Phys. Rev. A 79(6), 063810 (2009).
[Crossref]

H. Zhang, D. Y. Tang, X. Wu, and L. M. Zhao, “Multi-wavelength dissipative soliton operation of an erbium-doped fiber laser,” Opt. Express 17(15), 12692–12697 (2009).
[Crossref] [PubMed]

Zhang, S. M.

Zhang, W.

X. Li, Y. Wang, Y. Wang, X. Hu, W. Zhao, X. Liu, J. Yu, C. Gao, W. Zhang, and Z. Yang, “Wavelengthswitchable and wavelength-tunable all-normal-dispersion mode-locked Yb-doped fiber laser based on singlewalled carbon nanotube wall paper absorber,” IEEE Photonics J. 4(1), 234–241 (2012).
[Crossref]

Zhao, C.

Zhao, J.

Zhao, L.

Zhao, L. M.

Y. Q. Ge, J. L. Luo, L. Li, X. X. Jin, D. Y. Tang, D. Y. Shen, S. M. Zhang, and L. M. Zhao, “Initial conditions for dark soliton generation in normal-dispersion fiber lasers,” Appl. Opt. 54(1), 71–75 (2015).
[Crossref] [PubMed]

Y. F. Song, J. Guo, L. M. Zhao, D. Y. Shen, and D. Y. Tang, “280 GHz dark soliton fiber laser,” Opt. Lett. 39(12), 3484–3487 (2014).
[Crossref] [PubMed]

D. Y. Tang, L. Li, Y. F. Song, L. M. Zhao, H. Zhang, and D. Y. Shen, “Evidence of dark solitons in all-normal-dispersion-fiber lasers,” Phys. Rev. A 88(1), 013849 (2013).
[Crossref]

H. Zhang, D. Y. Tang, R. J. Knize, L. M. Zhao, Q. L. Bao, and K. P. Loh, “Graphene mode locked, wavelength-tunable, dissipative soliton fiber laser,” Appl. Phys. Lett. 96(11), 111112 (2010).
[Crossref]

H. Zhang, D. Y. Tang, L. M. Zhao, and R. J. Knize, “Vector dark domain wall solitons in a fiber ring laser,” Opt. Express 18(5), 4428–4433 (2010).
[Crossref] [PubMed]

L. M. Zhao, D. Y. Tang, H. Zhang, X. Wu, Q. Bao, and K. P. Loh, “Dissipative soliton operation of an ytterbium-doped fiber laser mode locked with atomic multilayer graphene,” Opt. Lett. 35(21), 3622–3624 (2010).
[Crossref] [PubMed]

H. Zhang, D. Y. Tang, X. Wu, and L. M. Zhao, “Multi-wavelength dissipative soliton operation of an erbium-doped fiber laser,” Opt. Express 17(15), 12692–12697 (2009).
[Crossref] [PubMed]

H. Zhang, D. Y. Tang, L. M. Zhao, and X. Wu, “Dark pulse emission of a fiber laser,” Phys. Rev. A 80(4), 045803 (2009).
[Crossref]

Zhao, W.

X. Li, Y. Wang, Y. Wang, X. Hu, W. Zhao, X. Liu, J. Yu, C. Gao, W. Zhang, and Z. Yang, “Wavelengthswitchable and wavelength-tunable all-normal-dispersion mode-locked Yb-doped fiber laser based on singlewalled carbon nanotube wall paper absorber,” IEEE Photonics J. 4(1), 234–241 (2012).
[Crossref]

W. Zhao and E. Bourkoff, “Generation, propagation, and amplification of dark solitons,” J. Opt. Soc. Am. B 9(7), 1134–1144 (1992).
[Crossref]

W. Zhao and E. Bourkoff, “Propagation properties of dark solitons,” Opt. Lett. 14(13), 703–705 (1989).
[Crossref] [PubMed]

Zhao, X.

Zheng, Z.

Zhu, J.

Zou, Y.

Appl. Opt. (1)

Appl. Phys. Lett. (1)

H. Zhang, D. Y. Tang, R. J. Knize, L. M. Zhao, Q. L. Bao, and K. P. Loh, “Graphene mode locked, wavelength-tunable, dissipative soliton fiber laser,” Appl. Phys. Lett. 96(11), 111112 (2010).
[Crossref]

Electron. Lett. (1)

V. J. Matsas, T. P. Newson, D. J. Richardson, and D. J. Payne, “Selfstarting passively mode-locked fibre ring soliton laser exploiting nonlinear polarisation rotation,” Electron. Lett. 28(15), 1391–1393 (1992).
[Crossref]

IEEE Photonics J. (2)

Z. Luo, A. Luo, and W. Xu, “Tunable and switchable multiwavelength passively mode-locked fiber laser based on SESAM and inline birefringence comb filter,” IEEE Photonics J. 3(1), 64–70 (2011).
[Crossref]

X. Li, Y. Wang, Y. Wang, X. Hu, W. Zhao, X. Liu, J. Yu, C. Gao, W. Zhang, and Z. Yang, “Wavelengthswitchable and wavelength-tunable all-normal-dispersion mode-locked Yb-doped fiber laser based on singlewalled carbon nanotube wall paper absorber,” IEEE Photonics J. 4(1), 234–241 (2012).
[Crossref]

IEEE Photonics Technol. Lett. (1)

P. Yan, R. Lin, H. Chen, H. Zhang, A. Liu, H. Yang, and S. Ruan, “Topological insulator solution filled in photonic crystal fiber for passive mode-locked fiberlaser,” IEEE Photonics Technol. Lett. 27(3), 264–267 (2015).
[Crossref]

J. Opt. B Quantum Semiclassical Opt. (1)

N. P. Proukakis, N. G. Parker, D. J. Frantzeskakis, and C. S. Adams, “Analogies between dark solitons in atomic Bose-Einstein condensates and optical systems,” J. Opt. B Quantum Semiclassical Opt. 6(5), S380–S391 (2004).
[Crossref]

J. Opt. Soc. Am. B (2)

J. Phys. A Math. Theor. (1)

D. J. Frantzeskakis, “Dark solitons in atomic Bose-Einstein condensates: from theory to experiments,” J. Phys. A Math. Theor. 43(21), 213001 (2010).
[Crossref]

Opt. Commun. (2)

P. Emplit, J. P. Hamaide, R. Reynaud, C. Froehly, and A. Barthelemy, “Picosecond steps and dark pulses through nonlinear single mode fibers,” Opt. Commun. 62(6), 374–379 (1987).
[Crossref]

H. S. Yin, W. C. Xu, A. P. Luo, Z. C. Luo, and J. R. Liu, “Observation of dark pulse in a dispersion-managed fiber ring laser,” Opt. Commun. 283(21), 4338–4341 (2010).
[Crossref]

Opt. Express (12)

X. Zhao, Z. Zheng, L. Liu, Y. Liu, Y. Jiang, X. Yang, and J. Zhu, “Switchable, dual-wavelength passively mode-locked ultrafast fiber laser based on a single-wall carbon nanotube modelocker and intracavity loss tuning,” Opt. Express 19(2), 1168–1173 (2011).
[Crossref] [PubMed]

H. Zhang, D. Y. Tang, X. Wu, and L. M. Zhao, “Multi-wavelength dissipative soliton operation of an erbium-doped fiber laser,” Opt. Express 17(15), 12692–12697 (2009).
[Crossref] [PubMed]

P. Yan, R. Lin, S. Ruan, A. Liu, and H. Chen, “A 2.95 GHz, femtosecond passive harmonic mode-locked fiber laser based on evanescent field interaction with topological insulator film,” Opt. Express 23(1), 154–164 (2015).
[Crossref] [PubMed]

S. Huang, Y. Wang, P. Yan, J. Zhao, H. Li, and R. Lin, “Tunable and switchable multi-wavelength dissipative soliton generation in a graphene oxide mode-locked Yb-doped fiber laser,” Opt. Express 22(10), 11417–11426 (2014).
[Crossref] [PubMed]

C. Zhao, Y. Zou, Y. Chen, Z. Wang, S. Lu, H. Zhang, S. Wen, and D. Tang, “Wavelength-tunable picosecond soliton fiber laser with Topological Insulator: Bi2Se3 as a mode locker,” Opt. Express 20(25), 27888–27895 (2012).
[Crossref] [PubMed]

J. Xu, S. Wu, H. Li, J. Liu, R. Sun, F. Tan, Q. H. Yang, and P. Wang, “Dissipative soliton generation from a graphene oxide mode-locked Er-doped fiber laser,” Opt. Express 20(21), 23653–23658 (2012).
[Crossref] [PubMed]

Y. F. Song, L. Li, H. Zhang, Y. Shen, D. Y. Tang, and K. P. Loh, “Vector multi-soliton operation and interaction in a graphene mode-locked fiber laser,” Opt. Express 21(8), 10010–10018 (2013).
[Crossref] [PubMed]

S. Lu, C. Zhao, Y. Zou, S. Chen, Y. Chen, Y. Li, H. Zhang, S. Wen, and D. Tang, “Third order nonlinear optical property of Bi₂Se₃,” Opt. Express 21(2), 2072–2082 (2013).
[Crossref] [PubMed]

J. Wang, Z. Cai, P. Xu, G. Du, F. Wang, S. Ruan, Z. Sun, and T. Hasan, “Pulse dynamics in carbon nanotube mode-locked fiber lasers near zero cavity dispersion,” Opt. Express 23(8), 9947–9958 (2015).
[Crossref] [PubMed]

H. Zhang, D. Y. Tang, L. M. Zhao, and R. J. Knize, “Vector dark domain wall solitons in a fiber ring laser,” Opt. Express 18(5), 4428–4433 (2010).
[Crossref] [PubMed]

M. Feng, K. L. Silverman, R. P. Mirin, and S. T. Cundiff, “Dark pulse quantum dot diode laser,” Opt. Express 18(13), 13385–13395 (2010).
[Crossref] [PubMed]

D. Tang, J. Guo, Y. Song, H. Zhang, L. Zhao, and D. Shen, “Dark soliton fiber lasers,” Opt. Express 22(16), 19831–19837 (2014).
[Crossref] [PubMed]

Opt. Lett. (6)

Phys. Rep. (1)

Y. S. Kivshar and B. Luther-Davies, “Dark optical solitons: Physics and applications,” Phys. Rep. 298(2-3), 81–197 (1998).
[Crossref]

Phys. Rev. A (3)

H. Zhang, D. Y. Tang, L. M. Zhao, and X. Wu, “Dark pulse emission of a fiber laser,” Phys. Rev. A 80(4), 045803 (2009).
[Crossref]

D. Y. Tang, L. Li, Y. F. Song, L. M. Zhao, H. Zhang, and D. Y. Shen, “Evidence of dark solitons in all-normal-dispersion-fiber lasers,” Phys. Rev. A 88(1), 013849 (2013).
[Crossref]

W. Liu, B. Tian, H. Zhang, T. Xu, and H. Li, “Solitary wave pulses in optical fibers with normal dispersion and higher-order effects,” Phys. Rev. A 79(6), 063810 (2009).
[Crossref]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

P. Wong, W. J. Liu, L. G. Huang, Y. Q. Li, N. Pan, and M. Lei, “Higher-order-effects management of soliton interactions in the Hirota equation,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 91(3), 033201 (2015).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

R. Hirota, “Exact solution of the Korteweg-de Vries equation for multiple collisions of solitons,” Phys. Rev. Lett. 27(18), 1192–1194 (1971).
[Crossref]

Other (3)

R. K. Dodd, J. C. Eilbeck, J. D. Gibbon, and H. C. Morris, Solitons and Nonlinear Wave Equations (Academic Press, 1982).

Y. S. Kivishar and G. Agrawal, Optical Solitons: From Fiber to Photonic Crystals, Academic, New York, NY, USA, 2003.

G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed., Academic press, San Diego (2002).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Characterization of a prepared Sb2Te3 layer: (a) SEM images of fiber taper, (b) enlarged film surface, (c) Raman spectrum.
Fig. 2
Fig. 2 (a) Measured linear absorption, (b) measured nonlinear saturable absorption of the fiber-taper TI: Sb2Te3 SA.
Fig. 3
Fig. 3 Configuration of the mode-locked EDF laser. COL, collimator; QWP, quarter waveplate; HWP, half waveplate; ISO, polarization-dependent isolator; PBS, polarization beam splitter; WDM, wavelength-division multiplexer.
Fig. 4
Fig. 4 Experimental results of the mode-locked EDF laser: (a) Optical spectrum of dark solitons, (b) the oscilloscope trace of dark solitons in the time scales of 10 ns/div, (c) radio frequency (RF) spectrum of the mode-locked laser.
Fig. 5
Fig. 5 Analytically simulated dark soliton formation with solution (7) in Eq. (1). The corresponding parameters are g ( z ) = 0.000892 d B / m , m = 1 , n = 1 , ω 1 = 1 , ω 2 = 2 and σ = 5.3 with (a) γ ( z ) = 0.0023 W 1 m 1 , β 2 ( z ) 2.3 f s 2 m m 1 , (b) γ ( z ) = 0.0023 exp ( 2 x 2 ) and β 2 ( z ) 2.3 exp ( 0.000892 x 2 x 2 ) .

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

A z = i β 2 ( z ) 2 2 A τ 2 + i γ ( z ) | A | 2 A + g ( z ) 2 A ,
A ( z , τ ) = g ( z , τ ) f ( z , τ ) ,
[ D z + i 2 β 2 ( z ) D τ 2 λ ( z ) ] g · f = 0 ,
[ i 2 β 2 ( z ) D τ 2 λ ( z ) ] f · f = i exp [ g ( z ) d z ] γ ( z ) | g | 2 .
D z m D τ n ( g f ) = ( x x ) m ( t t ) n × g ( x , t ) f ( x , t ) | x = x , t = t .
g = g 0 ( 1 + ε g 1 + ε 2 g 2 + ) ,
f = 1 + ε f 1 + ε 2 f 2 + ,
g 0 = m exp [ i k 1 ( z ) + i ω 1 τ ] , g 1 = n exp [ k 2 ( z ) + ω 2 τ + σ ] , f 1 = ρ ( z ) exp [ k 2 ( z ) + ω 2 τ + σ ] ,
λ ( z ) = i | m | 2 exp [ g ( z ) d z ] γ ( z ) , β 2 ( z ) = 4 | m | 2 exp [ g ( z ) d z ] γ ( z ) ω 2 2 , k 2 ( z ) = ω 1 ω 2 4 | m | 2 exp [ g ( z ) d z ] γ ( z ) ] d z , ρ ( z ) = 2 n | m | 2 exp [ g ( z ) d z ] γ ( z ) 2 | m | 2 exp [ g ( z ) d z ] γ ( z ) ω 2 2 β 2 ( z ) , k 1 ( z ) = [ 1 2 ω 1 2 β 2 ( z ) + | m | 2 exp [ g ( z ) d z ] γ ( z ) ] d z
A ( z , τ ) = g f = g 0 ( 1 + g 1 ) 1 + f 1 = m exp [ i ω 1 t + 1 2 g ( z ) d z + λ ( z ) d z + i ω 1 2 ω 2 k 2 ( z ) d z ] Tanh [ k 2 ( z ) + ω 2 τ + σ ] .

Metrics