Abstract

A novel time-gated digital optical frequency domain reflectometry (TGD-OFDR) technique with high spatial resolution over long measurement range is proposed and experimentally demonstrated. To solve the contradictory between the tuning rate of lightwave frequency, which determines the spatial resolution, and the measurable distance range in traditional OFDR, our proposed scheme sweeps the frequency of probe beam only within a time window, while the local reference remains a frequency-stable continuous lightwave. The frequency-to-distance mapping is digitally realized with equivalent references in data domain. In demonstrational experiments, a 1.6-m spatial resolution is obtained over an entire 110-km long fiber link, proving that the phase noises of the laser source as well as environmental perturbations are well suppressed. Meanwhile, the dynamic range was 26 dB with an average of only 373 measurements. The proposed reflectometry provides a simple-structure and high-performance solution for the applications where both high spatial resolution and long distance range are required.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Distributed fiber-optic vibration sensing based on phase extraction from time-gated digital OFDR

Shuai Wang, Xinyu Fan, Qingwen Liu, and Zuyuan He
Opt. Express 23(26) 33301-33309 (2015)

Ultra-long range optical frequency domain reflectometry using a coherence-enhanced highly linear frequency-swept fiber laser source

Jie Qin, Ling Zhang, Weilin Xie, Ran Cheng, Zhangweiyi Liu, Wei Wei, and Yi Dong
Opt. Express 27(14) 19359-19368 (2019)

Bandwidth-division in digitally enhanced optical frequency domain reflectometry

Nicolas Riesen, Timothy T.-Y. Lam, and Jong H. Chow
Opt. Express 21(4) 4017-4026 (2013)

References

  • View by:
  • |
  • |
  • |

  1. B. S. Kawasaki, K. O. Hill, and D. C. Johnson, “Optical time domain reflectometer for single-mode fiber at selectable wavelengths,” Appl. Phys. Lett. 38(10), 740–742 (1981).
    [Crossref]
  2. H. Izumita, Y. Koyamada, S. Furukawa, and I. Sankawa, “The performance limit of coherent OTDR enhanced with optical-fiber amplifiers due to optical nonlinear phenomena,” J. Lightwave Technol. 12(7), 1230–1238 (1994).
    [Crossref]
  3. H. Iida, Y. Koshikiya, F. Ito, and K. Tanaka, “High-sensitivity coherent optical time domain reflectometry employing frequency-division multiplexing,” J. Lightwave Technol. 30(8), 1121–1126 (2012).
    [Crossref]
  4. N. Zhu, Y. Tong, W. Chen, S. Wang, W. Sun, and J. Liu, “Improved wavelength coded optical time domain reflectometry based on the optical switch,” Opt. Express 22(12), 15111–15117 (2014).
    [Crossref] [PubMed]
  5. H. Barfuss and E. Brinkmeyer, “Modified optical frequency domain reflectometry with high spatial resolution for components of integrated optic systems,” J. Lightwave Technol. 7(1), 3–10 (1989).
    [Crossref]
  6. J. P. Von der Weid, R. Passy, G. Mussi, and N. Gisin, “On the characterization of optical fiber network components with optical frequency domain reflectometry,” J. Lightwave Technol. 15(7), 1131–1141 (1997).
    [Crossref]
  7. B. Soller, D. Gifford, M. Wolfe, and M. Froggatt, “High resolution optical frequency domain reflectometry for characterization of components and assemblies,” Opt. Express 13(2), 666–674 (2005).
    [Crossref] [PubMed]
  8. J. H. Geng, C. Spiegelberg, and S. B. Jiang, “Narrow linewidth fiber laser for 100-km optical frequency domain reflectometry,” IEEE Photonics Technol. Lett. 17(9), 1827–1829 (2005).
    [Crossref]
  9. Z. Ding, X. S. Yao, T. Liu, Y. Du, K. Liu, Q. Han, Z. Meng, J. Jiang, and H. Chen, “Long measurement range OFDR beyond laser coherence length,” IEEE Photonics Technol. Lett. 25(2), 202–205 (2013).
    [Crossref]
  10. X. Fan, Y. Koshikiya, and F. Ito, “Phase-noise-compensated optical frequency domain reflectometry with measurement range beyond laser coherence length realized using concatenative reference method,” Opt. Lett. 32(22), 3227–3229 (2007).
    [Crossref] [PubMed]
  11. X. Fan, Y. Koshikiya, and F. Ito, “Centimeter-level spatial resolution over 40 km realized by bandwidth-division phase-noise-compensated OFDR,” Opt. Express 19(20), 19122–19128 (2011).
    [Crossref] [PubMed]
  12. Y. Koshikiya, X. Fan, and F. Ito, “Influence of acoustic perturbation of fibers in phase-noise-compensated optical-frequency-domain reflectometry,” J. Lightwave Technol. 28(22), 3323–3328 (2010).
  13. N. Riesen, T. T. Y. Lam, and J. H. Chow, “Bandwidth-division in digitally enhanced optical frequency domain reflectometry,” Opt. Express 21(4), 4017–4026 (2013).
    [Crossref] [PubMed]
  14. N. Riesen, T. T. Y. Lam, and J. H. Chow, “Resolving the range ambiguity in OFDR using digital signal processing,” Meas. Sci. Technol. 25(12), 125102 (2014).
    [Crossref]
  15. Y. Koshikiya, X. Fan, and F. Ito, “Long range and cm-level spatial resolution measurement using coherent optical frequency domain reflectometry with SSB-SC modulator and narrow linewidth fiber laser,” J. Lightwave Technol. 26(18), 3287–3294 (2008).
    [Crossref]
  16. K. Shimizu, T. Horiguchi, and Y. Koyamada, “Characteristics and reduction of coherent fading noise in Rayleigh backscattering measurement for optical fibers and components,” J. Lightwave Technol. 10(7), 982–987 (1992).
    [Crossref]
  17. Y. Du, T. Liu, Z. Ding, B. Feng, X. Li, K. Liu, and J. Jiang, “Method for improving spatial resolution and amplitude by optimized deskew filter in long-range OFDR,” IEEE Photonics J. 6(5), 1–11 (2014).
    [Crossref]

2014 (3)

N. Zhu, Y. Tong, W. Chen, S. Wang, W. Sun, and J. Liu, “Improved wavelength coded optical time domain reflectometry based on the optical switch,” Opt. Express 22(12), 15111–15117 (2014).
[Crossref] [PubMed]

N. Riesen, T. T. Y. Lam, and J. H. Chow, “Resolving the range ambiguity in OFDR using digital signal processing,” Meas. Sci. Technol. 25(12), 125102 (2014).
[Crossref]

Y. Du, T. Liu, Z. Ding, B. Feng, X. Li, K. Liu, and J. Jiang, “Method for improving spatial resolution and amplitude by optimized deskew filter in long-range OFDR,” IEEE Photonics J. 6(5), 1–11 (2014).
[Crossref]

2013 (2)

N. Riesen, T. T. Y. Lam, and J. H. Chow, “Bandwidth-division in digitally enhanced optical frequency domain reflectometry,” Opt. Express 21(4), 4017–4026 (2013).
[Crossref] [PubMed]

Z. Ding, X. S. Yao, T. Liu, Y. Du, K. Liu, Q. Han, Z. Meng, J. Jiang, and H. Chen, “Long measurement range OFDR beyond laser coherence length,” IEEE Photonics Technol. Lett. 25(2), 202–205 (2013).
[Crossref]

2012 (1)

2011 (1)

2010 (1)

2008 (1)

2007 (1)

2005 (2)

B. Soller, D. Gifford, M. Wolfe, and M. Froggatt, “High resolution optical frequency domain reflectometry for characterization of components and assemblies,” Opt. Express 13(2), 666–674 (2005).
[Crossref] [PubMed]

J. H. Geng, C. Spiegelberg, and S. B. Jiang, “Narrow linewidth fiber laser for 100-km optical frequency domain reflectometry,” IEEE Photonics Technol. Lett. 17(9), 1827–1829 (2005).
[Crossref]

1997 (1)

J. P. Von der Weid, R. Passy, G. Mussi, and N. Gisin, “On the characterization of optical fiber network components with optical frequency domain reflectometry,” J. Lightwave Technol. 15(7), 1131–1141 (1997).
[Crossref]

1994 (1)

H. Izumita, Y. Koyamada, S. Furukawa, and I. Sankawa, “The performance limit of coherent OTDR enhanced with optical-fiber amplifiers due to optical nonlinear phenomena,” J. Lightwave Technol. 12(7), 1230–1238 (1994).
[Crossref]

1992 (1)

K. Shimizu, T. Horiguchi, and Y. Koyamada, “Characteristics and reduction of coherent fading noise in Rayleigh backscattering measurement for optical fibers and components,” J. Lightwave Technol. 10(7), 982–987 (1992).
[Crossref]

1989 (1)

H. Barfuss and E. Brinkmeyer, “Modified optical frequency domain reflectometry with high spatial resolution for components of integrated optic systems,” J. Lightwave Technol. 7(1), 3–10 (1989).
[Crossref]

1981 (1)

B. S. Kawasaki, K. O. Hill, and D. C. Johnson, “Optical time domain reflectometer for single-mode fiber at selectable wavelengths,” Appl. Phys. Lett. 38(10), 740–742 (1981).
[Crossref]

Barfuss, H.

H. Barfuss and E. Brinkmeyer, “Modified optical frequency domain reflectometry with high spatial resolution for components of integrated optic systems,” J. Lightwave Technol. 7(1), 3–10 (1989).
[Crossref]

Brinkmeyer, E.

H. Barfuss and E. Brinkmeyer, “Modified optical frequency domain reflectometry with high spatial resolution for components of integrated optic systems,” J. Lightwave Technol. 7(1), 3–10 (1989).
[Crossref]

Chen, H.

Z. Ding, X. S. Yao, T. Liu, Y. Du, K. Liu, Q. Han, Z. Meng, J. Jiang, and H. Chen, “Long measurement range OFDR beyond laser coherence length,” IEEE Photonics Technol. Lett. 25(2), 202–205 (2013).
[Crossref]

Chen, W.

Chow, J. H.

N. Riesen, T. T. Y. Lam, and J. H. Chow, “Resolving the range ambiguity in OFDR using digital signal processing,” Meas. Sci. Technol. 25(12), 125102 (2014).
[Crossref]

N. Riesen, T. T. Y. Lam, and J. H. Chow, “Bandwidth-division in digitally enhanced optical frequency domain reflectometry,” Opt. Express 21(4), 4017–4026 (2013).
[Crossref] [PubMed]

Ding, Z.

Y. Du, T. Liu, Z. Ding, B. Feng, X. Li, K. Liu, and J. Jiang, “Method for improving spatial resolution and amplitude by optimized deskew filter in long-range OFDR,” IEEE Photonics J. 6(5), 1–11 (2014).
[Crossref]

Z. Ding, X. S. Yao, T. Liu, Y. Du, K. Liu, Q. Han, Z. Meng, J. Jiang, and H. Chen, “Long measurement range OFDR beyond laser coherence length,” IEEE Photonics Technol. Lett. 25(2), 202–205 (2013).
[Crossref]

Du, Y.

Y. Du, T. Liu, Z. Ding, B. Feng, X. Li, K. Liu, and J. Jiang, “Method for improving spatial resolution and amplitude by optimized deskew filter in long-range OFDR,” IEEE Photonics J. 6(5), 1–11 (2014).
[Crossref]

Z. Ding, X. S. Yao, T. Liu, Y. Du, K. Liu, Q. Han, Z. Meng, J. Jiang, and H. Chen, “Long measurement range OFDR beyond laser coherence length,” IEEE Photonics Technol. Lett. 25(2), 202–205 (2013).
[Crossref]

Fan, X.

Feng, B.

Y. Du, T. Liu, Z. Ding, B. Feng, X. Li, K. Liu, and J. Jiang, “Method for improving spatial resolution and amplitude by optimized deskew filter in long-range OFDR,” IEEE Photonics J. 6(5), 1–11 (2014).
[Crossref]

Froggatt, M.

Furukawa, S.

H. Izumita, Y. Koyamada, S. Furukawa, and I. Sankawa, “The performance limit of coherent OTDR enhanced with optical-fiber amplifiers due to optical nonlinear phenomena,” J. Lightwave Technol. 12(7), 1230–1238 (1994).
[Crossref]

Geng, J. H.

J. H. Geng, C. Spiegelberg, and S. B. Jiang, “Narrow linewidth fiber laser for 100-km optical frequency domain reflectometry,” IEEE Photonics Technol. Lett. 17(9), 1827–1829 (2005).
[Crossref]

Gifford, D.

Gisin, N.

J. P. Von der Weid, R. Passy, G. Mussi, and N. Gisin, “On the characterization of optical fiber network components with optical frequency domain reflectometry,” J. Lightwave Technol. 15(7), 1131–1141 (1997).
[Crossref]

Han, Q.

Z. Ding, X. S. Yao, T. Liu, Y. Du, K. Liu, Q. Han, Z. Meng, J. Jiang, and H. Chen, “Long measurement range OFDR beyond laser coherence length,” IEEE Photonics Technol. Lett. 25(2), 202–205 (2013).
[Crossref]

Hill, K. O.

B. S. Kawasaki, K. O. Hill, and D. C. Johnson, “Optical time domain reflectometer for single-mode fiber at selectable wavelengths,” Appl. Phys. Lett. 38(10), 740–742 (1981).
[Crossref]

Horiguchi, T.

K. Shimizu, T. Horiguchi, and Y. Koyamada, “Characteristics and reduction of coherent fading noise in Rayleigh backscattering measurement for optical fibers and components,” J. Lightwave Technol. 10(7), 982–987 (1992).
[Crossref]

Iida, H.

Ito, F.

Izumita, H.

H. Izumita, Y. Koyamada, S. Furukawa, and I. Sankawa, “The performance limit of coherent OTDR enhanced with optical-fiber amplifiers due to optical nonlinear phenomena,” J. Lightwave Technol. 12(7), 1230–1238 (1994).
[Crossref]

Jiang, J.

Y. Du, T. Liu, Z. Ding, B. Feng, X. Li, K. Liu, and J. Jiang, “Method for improving spatial resolution and amplitude by optimized deskew filter in long-range OFDR,” IEEE Photonics J. 6(5), 1–11 (2014).
[Crossref]

Z. Ding, X. S. Yao, T. Liu, Y. Du, K. Liu, Q. Han, Z. Meng, J. Jiang, and H. Chen, “Long measurement range OFDR beyond laser coherence length,” IEEE Photonics Technol. Lett. 25(2), 202–205 (2013).
[Crossref]

Jiang, S. B.

J. H. Geng, C. Spiegelberg, and S. B. Jiang, “Narrow linewidth fiber laser for 100-km optical frequency domain reflectometry,” IEEE Photonics Technol. Lett. 17(9), 1827–1829 (2005).
[Crossref]

Johnson, D. C.

B. S. Kawasaki, K. O. Hill, and D. C. Johnson, “Optical time domain reflectometer for single-mode fiber at selectable wavelengths,” Appl. Phys. Lett. 38(10), 740–742 (1981).
[Crossref]

Kawasaki, B. S.

B. S. Kawasaki, K. O. Hill, and D. C. Johnson, “Optical time domain reflectometer for single-mode fiber at selectable wavelengths,” Appl. Phys. Lett. 38(10), 740–742 (1981).
[Crossref]

Koshikiya, Y.

Koyamada, Y.

H. Izumita, Y. Koyamada, S. Furukawa, and I. Sankawa, “The performance limit of coherent OTDR enhanced with optical-fiber amplifiers due to optical nonlinear phenomena,” J. Lightwave Technol. 12(7), 1230–1238 (1994).
[Crossref]

K. Shimizu, T. Horiguchi, and Y. Koyamada, “Characteristics and reduction of coherent fading noise in Rayleigh backscattering measurement for optical fibers and components,” J. Lightwave Technol. 10(7), 982–987 (1992).
[Crossref]

Lam, T. T. Y.

N. Riesen, T. T. Y. Lam, and J. H. Chow, “Resolving the range ambiguity in OFDR using digital signal processing,” Meas. Sci. Technol. 25(12), 125102 (2014).
[Crossref]

N. Riesen, T. T. Y. Lam, and J. H. Chow, “Bandwidth-division in digitally enhanced optical frequency domain reflectometry,” Opt. Express 21(4), 4017–4026 (2013).
[Crossref] [PubMed]

Li, X.

Y. Du, T. Liu, Z. Ding, B. Feng, X. Li, K. Liu, and J. Jiang, “Method for improving spatial resolution and amplitude by optimized deskew filter in long-range OFDR,” IEEE Photonics J. 6(5), 1–11 (2014).
[Crossref]

Liu, J.

Liu, K.

Y. Du, T. Liu, Z. Ding, B. Feng, X. Li, K. Liu, and J. Jiang, “Method for improving spatial resolution and amplitude by optimized deskew filter in long-range OFDR,” IEEE Photonics J. 6(5), 1–11 (2014).
[Crossref]

Z. Ding, X. S. Yao, T. Liu, Y. Du, K. Liu, Q. Han, Z. Meng, J. Jiang, and H. Chen, “Long measurement range OFDR beyond laser coherence length,” IEEE Photonics Technol. Lett. 25(2), 202–205 (2013).
[Crossref]

Liu, T.

Y. Du, T. Liu, Z. Ding, B. Feng, X. Li, K. Liu, and J. Jiang, “Method for improving spatial resolution and amplitude by optimized deskew filter in long-range OFDR,” IEEE Photonics J. 6(5), 1–11 (2014).
[Crossref]

Z. Ding, X. S. Yao, T. Liu, Y. Du, K. Liu, Q. Han, Z. Meng, J. Jiang, and H. Chen, “Long measurement range OFDR beyond laser coherence length,” IEEE Photonics Technol. Lett. 25(2), 202–205 (2013).
[Crossref]

Meng, Z.

Z. Ding, X. S. Yao, T. Liu, Y. Du, K. Liu, Q. Han, Z. Meng, J. Jiang, and H. Chen, “Long measurement range OFDR beyond laser coherence length,” IEEE Photonics Technol. Lett. 25(2), 202–205 (2013).
[Crossref]

Mussi, G.

J. P. Von der Weid, R. Passy, G. Mussi, and N. Gisin, “On the characterization of optical fiber network components with optical frequency domain reflectometry,” J. Lightwave Technol. 15(7), 1131–1141 (1997).
[Crossref]

Passy, R.

J. P. Von der Weid, R. Passy, G. Mussi, and N. Gisin, “On the characterization of optical fiber network components with optical frequency domain reflectometry,” J. Lightwave Technol. 15(7), 1131–1141 (1997).
[Crossref]

Riesen, N.

N. Riesen, T. T. Y. Lam, and J. H. Chow, “Resolving the range ambiguity in OFDR using digital signal processing,” Meas. Sci. Technol. 25(12), 125102 (2014).
[Crossref]

N. Riesen, T. T. Y. Lam, and J. H. Chow, “Bandwidth-division in digitally enhanced optical frequency domain reflectometry,” Opt. Express 21(4), 4017–4026 (2013).
[Crossref] [PubMed]

Sankawa, I.

H. Izumita, Y. Koyamada, S. Furukawa, and I. Sankawa, “The performance limit of coherent OTDR enhanced with optical-fiber amplifiers due to optical nonlinear phenomena,” J. Lightwave Technol. 12(7), 1230–1238 (1994).
[Crossref]

Shimizu, K.

K. Shimizu, T. Horiguchi, and Y. Koyamada, “Characteristics and reduction of coherent fading noise in Rayleigh backscattering measurement for optical fibers and components,” J. Lightwave Technol. 10(7), 982–987 (1992).
[Crossref]

Soller, B.

Spiegelberg, C.

J. H. Geng, C. Spiegelberg, and S. B. Jiang, “Narrow linewidth fiber laser for 100-km optical frequency domain reflectometry,” IEEE Photonics Technol. Lett. 17(9), 1827–1829 (2005).
[Crossref]

Sun, W.

Tanaka, K.

Tong, Y.

Von der Weid, J. P.

J. P. Von der Weid, R. Passy, G. Mussi, and N. Gisin, “On the characterization of optical fiber network components with optical frequency domain reflectometry,” J. Lightwave Technol. 15(7), 1131–1141 (1997).
[Crossref]

Wang, S.

Wolfe, M.

Yao, X. S.

Z. Ding, X. S. Yao, T. Liu, Y. Du, K. Liu, Q. Han, Z. Meng, J. Jiang, and H. Chen, “Long measurement range OFDR beyond laser coherence length,” IEEE Photonics Technol. Lett. 25(2), 202–205 (2013).
[Crossref]

Zhu, N.

Appl. Phys. Lett. (1)

B. S. Kawasaki, K. O. Hill, and D. C. Johnson, “Optical time domain reflectometer for single-mode fiber at selectable wavelengths,” Appl. Phys. Lett. 38(10), 740–742 (1981).
[Crossref]

IEEE Photonics J. (1)

Y. Du, T. Liu, Z. Ding, B. Feng, X. Li, K. Liu, and J. Jiang, “Method for improving spatial resolution and amplitude by optimized deskew filter in long-range OFDR,” IEEE Photonics J. 6(5), 1–11 (2014).
[Crossref]

IEEE Photonics Technol. Lett. (2)

J. H. Geng, C. Spiegelberg, and S. B. Jiang, “Narrow linewidth fiber laser for 100-km optical frequency domain reflectometry,” IEEE Photonics Technol. Lett. 17(9), 1827–1829 (2005).
[Crossref]

Z. Ding, X. S. Yao, T. Liu, Y. Du, K. Liu, Q. Han, Z. Meng, J. Jiang, and H. Chen, “Long measurement range OFDR beyond laser coherence length,” IEEE Photonics Technol. Lett. 25(2), 202–205 (2013).
[Crossref]

J. Lightwave Technol. (7)

H. Barfuss and E. Brinkmeyer, “Modified optical frequency domain reflectometry with high spatial resolution for components of integrated optic systems,” J. Lightwave Technol. 7(1), 3–10 (1989).
[Crossref]

J. P. Von der Weid, R. Passy, G. Mussi, and N. Gisin, “On the characterization of optical fiber network components with optical frequency domain reflectometry,” J. Lightwave Technol. 15(7), 1131–1141 (1997).
[Crossref]

H. Izumita, Y. Koyamada, S. Furukawa, and I. Sankawa, “The performance limit of coherent OTDR enhanced with optical-fiber amplifiers due to optical nonlinear phenomena,” J. Lightwave Technol. 12(7), 1230–1238 (1994).
[Crossref]

H. Iida, Y. Koshikiya, F. Ito, and K. Tanaka, “High-sensitivity coherent optical time domain reflectometry employing frequency-division multiplexing,” J. Lightwave Technol. 30(8), 1121–1126 (2012).
[Crossref]

Y. Koshikiya, X. Fan, and F. Ito, “Long range and cm-level spatial resolution measurement using coherent optical frequency domain reflectometry with SSB-SC modulator and narrow linewidth fiber laser,” J. Lightwave Technol. 26(18), 3287–3294 (2008).
[Crossref]

K. Shimizu, T. Horiguchi, and Y. Koyamada, “Characteristics and reduction of coherent fading noise in Rayleigh backscattering measurement for optical fibers and components,” J. Lightwave Technol. 10(7), 982–987 (1992).
[Crossref]

Y. Koshikiya, X. Fan, and F. Ito, “Influence of acoustic perturbation of fibers in phase-noise-compensated optical-frequency-domain reflectometry,” J. Lightwave Technol. 28(22), 3323–3328 (2010).

Meas. Sci. Technol. (1)

N. Riesen, T. T. Y. Lam, and J. H. Chow, “Resolving the range ambiguity in OFDR using digital signal processing,” Meas. Sci. Technol. 25(12), 125102 (2014).
[Crossref]

Opt. Express (4)

Opt. Lett. (1)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic diagram of the time-gated digital OFDR system. FG: function generator; AOM: acousto-optic modulator; BPD: balanced photo detector; A/D: analog-to-digital convertor; PC: personal computer.
Fig. 2
Fig. 2 Probe pulse with a time window of τp and a frequency chirp range of Δf.
Fig. 3
Fig. 3 Frequencies of the beat signals received by BPD and the two equivalent references.
Fig. 4
Fig. 4 Experimental setup. RFSG: radio frequency signal generation; EDFA: Erbium-doped Optical Fiber Amplifier; FRM: Faraday rotator mirror; PBS: polarization beam splitter.
Fig. 5
Fig. 5 Measured trace of reflectivity of back scattered and reflected lightwave along 110 km long FUT after averaging 373 measurement.
Fig. 6
Fig. 6 Reflection peaks of the leading pigtail (a), the FC/APC connector at 29.5 km (b), the FC/APC connector at 80.1 km (c), and the open PC connector at 110.7 km (d), respectively.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

E p ( t )=rect( t τ p ) E 0 exp[ jωt+jπγ t 2 ],
E reflect, τ d ( t )= R E 0 rect( t τ d τ p )exp[ jω( t τ d )+jπγ ( t τ d ) 2 ],
I beat, t d ( t )=2 R rect( t τ d τ p ) E 0 E loc cos[ πγ ( t τ d ) 2 ω τ d +θ( t ) ],
τ ref = f max γ τ p .

Metrics