Abstract

A three-dimensional (3D) display with smooth motion parallax and large viewing angle is demonstrated, which is based on a microlens array and a coded two-dimensional (2D) image on a 50 inch liquid crystal device (LCD) panel with the resolution of 3840 × 2160. Combining with accurate depth cues expressing, the flipping images of the traditional integral imaging (II) are eliminated, and smooth motion parallax can be achieved. The image on the LCD panel is coded as an elemental image packed repeatedly, and the depth cue is determined by the repeated period of elemental image. To construct the 3D image with complex depth structure, the varying period of elemental image is required. Here, the detailed principle and coding method are presented. The shape and the texture of a target 3D image are designed by a structure image and an elemental image, respectively. In the experiment, two groups of structure images and their corresponding elemental images are utilized to construct a 3D scene with a football in a green net. The constructed 3D image exhibits obviously enhanced 3D perception and smooth motion parallax. The viewing angle is 60°, which is much larger than that of the traditional II.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Demonstration of a low-crosstalk super multi-view light field display with natural depth cues and smooth motion parallax

Peiren Wang, Xinzhu Sang, Xunbo Yu, Xin Gao, Binbin Yan, Boyang Liu, Li Liu, Chao Gao, Yang Le, Yuanhang Li, and Jingyan Du
Opt. Express 27(23) 34442-34453 (2019)

Multiview three-dimensional display with continuous motion parallax through planar aligned OLED microdisplays

Dongdong Teng, Yi Xiong, Lilin Liu, and Biao Wang
Opt. Express 23(5) 6007-6019 (2015)

Interactive floating full-parallax digital three-dimensional light-field display based on wavefront recomposing

Xinzhu Sang, Xin Gao, Xunbo Yu, Shujun Xing, Yuanhang Li, and Yongle Wu
Opt. Express 26(7) 8883-8889 (2018)

References

  • View by:
  • |
  • |
  • |

  1. J. Hong, Y. Kim, H.-J. Choi, J. Hahn, J.-H. Park, H. Kim, S.-W. Min, N. Chen, and B. Lee, “Three-dimensional display technologies of recent interest: principles, status, and issues [Invited],” Appl. Opt. 50(34), H87 (2011)
    [Crossref] [PubMed]
  2. Y.-C. Chang, L.-C. Tang, and C.-Y. Yin, “Efficient simulation of intensity profile of light through subpixel-matched lenticular lens array for two- and four-view auto-stereoscopic liquid-crystal display,” Appl. Opt. 52(1), A356–A359 (2013).
    [Crossref] [PubMed]
  3. Y. Maeda, D. Miyazaki, T. Mukai, and S. Maekawa, “Volumetric display using rotating prism sheets arranged in a symmetrical configuration,” Opt. Express 21(22), 27074–27086 (2013).
    [Crossref] [PubMed]
  4. E. Moon, M. Kim, J. Roh, H. Kim, and J. Hahn, “Holographic head-mounted display with RGB light emitting diode light source,” Opt. Express 22(6), 6526–6534 (2014).
    [Crossref] [PubMed]
  5. X. Xiao, B. Javidi, M. Martinez-Corral, and A. Stern, “Advances in three-dimensional integral imaging: sensing, display, and applications [Invited],” Appl. Opt. 52(4), 546–560 (2013).
    [Crossref] [PubMed]
  6. J.-S. Jang and B. Javidi, “Improved viewing resolution of three-dimensional integral imaging by use of nonstationary micro-optics,” Opt. Lett. 27(5), 324–326 (2002).
    [Crossref] [PubMed]
  7. A. Schwarz, J. Wang, A. Shemer, Z. Zalevsky, and B. Javidi, “Lensless three-dimensional integral imaging using variable and time multiplexed pinhole array,” Opt. Lett. 40(8), 1814–1817 (2015).
    [Crossref] [PubMed]
  8. Y. Oh, D. Shin, B.-G. Lee, S.-I. I. Jeong, and H.-J. Choi, “Resolution-enhanced integral imaging in focal mode with a time-multiplexed electrical mask array,” Opt. Express 22(15), 17620–17629 (2014).
    [Crossref] [PubMed]
  9. A. Castro, Y. Frauel, and B. Javidi, “Integral imaging with large depth of field using an asymmetric phase mask,” Opt. Express 15(16), 10266–10273 (2007).
    [Crossref] [PubMed]
  10. H. Liao, T. Dohi, and K. Nomura, “Autostereoscopic 3D display with long visualization depth using referential viewing area based integral photography,” IEEE Trans. Vis. Comput. Graph. 17(11), 1690–1701 (2010).
    [Crossref] [PubMed]
  11. X. Shen, Y.-J. Wang, H.-S. Chen, X. Xiao, Y. H. Lin, and B. Javidi, “Extended depth-of-focus 3D micro integral imaging display using a bifocal liquid crystal lens,” Opt. Lett. 40(4), 538–541 (2015).
    [Crossref] [PubMed]
  12. H.-S. Kim, K.-M. Jeong, S.-I. Hong, N.-Y. Jo, and J.-H. Park, “Analysis of image distortion based on light ray field by multi-view and horizontal parallax only integral imaging display,” Opt. Express 20(21), 23755–23768 (2012).
    [Crossref] [PubMed]
  13. B. Lee, S. Jung, and J.-H. Park, “Viewing-angle-enhanced integral imaging by lens switching,” Opt. Lett. 27(10), 818–820 (2002).
    [Crossref] [PubMed]
  14. Z.-L. Xiong, Q.-H. Wang, S.-L. Li, H. Deng, and C.-C. Ji, “Partially-overlapped viewing zone based integral imaging system with super wide viewing angle,” Opt. Express 22(19), 22268–22277 (2014).
    [Crossref] [PubMed]
  15. R. Martínez-Cuenca, H. Navarro, G. Saavedra, B. Javidi, and M. Martínez-Corral, “Enhanced viewing-angle integral imaging by multiple-axis telecentric relay system,” Opt. Express 15(24), 16255–16260 (2007).
    [Crossref] [PubMed]
  16. J. S. Jang and B. Javidi, “Improvement of viewing angle in integral imaging by use of moving lenslet arrays with low fill factor,” Appl. Opt. 42(11), 1996–2002 (2003).
    [Crossref] [PubMed]
  17. Y. Kim, J. H. Park, S. W. Min, S. Jung, H. Choi, and B. Lee, “Wide-viewing-angle integral three-dimensional imaging system by curving a screen and a lens array,” Appl. Opt. 44(4), 546–552 (2005).
    [Crossref] [PubMed]
  18. G. Park, J.-H. Jung, K. Hong, Y. Kim, Y.-H. Kim, S.-W. Min, and B. Lee, “Multi-viewer tracking integral imaging system and its viewing zone analysis,” Opt. Express 17(20), 17895–17908 (2009).
    [Crossref] [PubMed]
  19. F. Okano, H. Hoshino, J. Arai, and I. Yuma, “Three-dimensional video system based on integral photography,” Opt. Eng. 38(6), 1072–1077 (1999).
    [Crossref]
  20. X. Yu, X. Sang, S. Xing, T. Zhao, D. Chen, Y. Cai, B. Yan, K. Wang, J. Yuan, C. Yu, and W. Dou, “Natural three-dimensional display with smooth motion parallax using active partially pixelated masks,” Opt. Commun. 313, 146–151 (2014).
    [Crossref]
  21. S. J. Gortler, R. Grzeszczuk, R. Szeliski, and M. F. Cohen, “The Lumigraph,” in SIGGRAPH '96 Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques (ACM, 1996), pp. 43–54.

2015 (2)

2014 (4)

2013 (3)

2012 (1)

2011 (1)

2010 (1)

H. Liao, T. Dohi, and K. Nomura, “Autostereoscopic 3D display with long visualization depth using referential viewing area based integral photography,” IEEE Trans. Vis. Comput. Graph. 17(11), 1690–1701 (2010).
[Crossref] [PubMed]

2009 (1)

2007 (2)

2005 (1)

2003 (1)

2002 (2)

1999 (1)

F. Okano, H. Hoshino, J. Arai, and I. Yuma, “Three-dimensional video system based on integral photography,” Opt. Eng. 38(6), 1072–1077 (1999).
[Crossref]

Arai, J.

F. Okano, H. Hoshino, J. Arai, and I. Yuma, “Three-dimensional video system based on integral photography,” Opt. Eng. 38(6), 1072–1077 (1999).
[Crossref]

Cai, Y.

X. Yu, X. Sang, S. Xing, T. Zhao, D. Chen, Y. Cai, B. Yan, K. Wang, J. Yuan, C. Yu, and W. Dou, “Natural three-dimensional display with smooth motion parallax using active partially pixelated masks,” Opt. Commun. 313, 146–151 (2014).
[Crossref]

Castro, A.

Chang, Y.-C.

Chen, D.

X. Yu, X. Sang, S. Xing, T. Zhao, D. Chen, Y. Cai, B. Yan, K. Wang, J. Yuan, C. Yu, and W. Dou, “Natural three-dimensional display with smooth motion parallax using active partially pixelated masks,” Opt. Commun. 313, 146–151 (2014).
[Crossref]

Chen, H.-S.

Chen, N.

Choi, H.

Choi, H.-J.

Cohen, M. F.

S. J. Gortler, R. Grzeszczuk, R. Szeliski, and M. F. Cohen, “The Lumigraph,” in SIGGRAPH '96 Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques (ACM, 1996), pp. 43–54.

Deng, H.

Dohi, T.

H. Liao, T. Dohi, and K. Nomura, “Autostereoscopic 3D display with long visualization depth using referential viewing area based integral photography,” IEEE Trans. Vis. Comput. Graph. 17(11), 1690–1701 (2010).
[Crossref] [PubMed]

Dou, W.

X. Yu, X. Sang, S. Xing, T. Zhao, D. Chen, Y. Cai, B. Yan, K. Wang, J. Yuan, C. Yu, and W. Dou, “Natural three-dimensional display with smooth motion parallax using active partially pixelated masks,” Opt. Commun. 313, 146–151 (2014).
[Crossref]

Frauel, Y.

Gortler, S. J.

S. J. Gortler, R. Grzeszczuk, R. Szeliski, and M. F. Cohen, “The Lumigraph,” in SIGGRAPH '96 Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques (ACM, 1996), pp. 43–54.

Grzeszczuk, R.

S. J. Gortler, R. Grzeszczuk, R. Szeliski, and M. F. Cohen, “The Lumigraph,” in SIGGRAPH '96 Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques (ACM, 1996), pp. 43–54.

Hahn, J.

Hong, J.

Hong, K.

Hong, S.-I.

Hoshino, H.

F. Okano, H. Hoshino, J. Arai, and I. Yuma, “Three-dimensional video system based on integral photography,” Opt. Eng. 38(6), 1072–1077 (1999).
[Crossref]

Jang, J. S.

Jang, J.-S.

Javidi, B.

Jeong, K.-M.

Jeong, S.-I. I.

Ji, C.-C.

Jo, N.-Y.

Jung, J.-H.

Jung, S.

Kim, H.

Kim, H.-S.

Kim, M.

Kim, Y.

Kim, Y.-H.

Lee, B.

Lee, B.-G.

Li, S.-L.

Liao, H.

H. Liao, T. Dohi, and K. Nomura, “Autostereoscopic 3D display with long visualization depth using referential viewing area based integral photography,” IEEE Trans. Vis. Comput. Graph. 17(11), 1690–1701 (2010).
[Crossref] [PubMed]

Lin, Y. H.

Maeda, Y.

Maekawa, S.

Martinez-Corral, M.

Martínez-Corral, M.

Martínez-Cuenca, R.

Min, S. W.

Min, S.-W.

Miyazaki, D.

Moon, E.

Mukai, T.

Navarro, H.

Nomura, K.

H. Liao, T. Dohi, and K. Nomura, “Autostereoscopic 3D display with long visualization depth using referential viewing area based integral photography,” IEEE Trans. Vis. Comput. Graph. 17(11), 1690–1701 (2010).
[Crossref] [PubMed]

Oh, Y.

Okano, F.

F. Okano, H. Hoshino, J. Arai, and I. Yuma, “Three-dimensional video system based on integral photography,” Opt. Eng. 38(6), 1072–1077 (1999).
[Crossref]

Park, G.

Park, J. H.

Park, J.-H.

Roh, J.

Saavedra, G.

Sang, X.

X. Yu, X. Sang, S. Xing, T. Zhao, D. Chen, Y. Cai, B. Yan, K. Wang, J. Yuan, C. Yu, and W. Dou, “Natural three-dimensional display with smooth motion parallax using active partially pixelated masks,” Opt. Commun. 313, 146–151 (2014).
[Crossref]

Schwarz, A.

Shemer, A.

Shen, X.

Shin, D.

Stern, A.

Szeliski, R.

S. J. Gortler, R. Grzeszczuk, R. Szeliski, and M. F. Cohen, “The Lumigraph,” in SIGGRAPH '96 Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques (ACM, 1996), pp. 43–54.

Tang, L.-C.

Wang, J.

Wang, K.

X. Yu, X. Sang, S. Xing, T. Zhao, D. Chen, Y. Cai, B. Yan, K. Wang, J. Yuan, C. Yu, and W. Dou, “Natural three-dimensional display with smooth motion parallax using active partially pixelated masks,” Opt. Commun. 313, 146–151 (2014).
[Crossref]

Wang, Q.-H.

Wang, Y.-J.

Xiao, X.

Xing, S.

X. Yu, X. Sang, S. Xing, T. Zhao, D. Chen, Y. Cai, B. Yan, K. Wang, J. Yuan, C. Yu, and W. Dou, “Natural three-dimensional display with smooth motion parallax using active partially pixelated masks,” Opt. Commun. 313, 146–151 (2014).
[Crossref]

Xiong, Z.-L.

Yan, B.

X. Yu, X. Sang, S. Xing, T. Zhao, D. Chen, Y. Cai, B. Yan, K. Wang, J. Yuan, C. Yu, and W. Dou, “Natural three-dimensional display with smooth motion parallax using active partially pixelated masks,” Opt. Commun. 313, 146–151 (2014).
[Crossref]

Yin, C.-Y.

Yu, C.

X. Yu, X. Sang, S. Xing, T. Zhao, D. Chen, Y. Cai, B. Yan, K. Wang, J. Yuan, C. Yu, and W. Dou, “Natural three-dimensional display with smooth motion parallax using active partially pixelated masks,” Opt. Commun. 313, 146–151 (2014).
[Crossref]

Yu, X.

X. Yu, X. Sang, S. Xing, T. Zhao, D. Chen, Y. Cai, B. Yan, K. Wang, J. Yuan, C. Yu, and W. Dou, “Natural three-dimensional display with smooth motion parallax using active partially pixelated masks,” Opt. Commun. 313, 146–151 (2014).
[Crossref]

Yuan, J.

X. Yu, X. Sang, S. Xing, T. Zhao, D. Chen, Y. Cai, B. Yan, K. Wang, J. Yuan, C. Yu, and W. Dou, “Natural three-dimensional display with smooth motion parallax using active partially pixelated masks,” Opt. Commun. 313, 146–151 (2014).
[Crossref]

Yuma, I.

F. Okano, H. Hoshino, J. Arai, and I. Yuma, “Three-dimensional video system based on integral photography,” Opt. Eng. 38(6), 1072–1077 (1999).
[Crossref]

Zalevsky, Z.

Zhao, T.

X. Yu, X. Sang, S. Xing, T. Zhao, D. Chen, Y. Cai, B. Yan, K. Wang, J. Yuan, C. Yu, and W. Dou, “Natural three-dimensional display with smooth motion parallax using active partially pixelated masks,” Opt. Commun. 313, 146–151 (2014).
[Crossref]

Appl. Opt. (5)

IEEE Trans. Vis. Comput. Graph. (1)

H. Liao, T. Dohi, and K. Nomura, “Autostereoscopic 3D display with long visualization depth using referential viewing area based integral photography,” IEEE Trans. Vis. Comput. Graph. 17(11), 1690–1701 (2010).
[Crossref] [PubMed]

Opt. Commun. (1)

X. Yu, X. Sang, S. Xing, T. Zhao, D. Chen, Y. Cai, B. Yan, K. Wang, J. Yuan, C. Yu, and W. Dou, “Natural three-dimensional display with smooth motion parallax using active partially pixelated masks,” Opt. Commun. 313, 146–151 (2014).
[Crossref]

Opt. Eng. (1)

F. Okano, H. Hoshino, J. Arai, and I. Yuma, “Three-dimensional video system based on integral photography,” Opt. Eng. 38(6), 1072–1077 (1999).
[Crossref]

Opt. Express (8)

H.-S. Kim, K.-M. Jeong, S.-I. Hong, N.-Y. Jo, and J.-H. Park, “Analysis of image distortion based on light ray field by multi-view and horizontal parallax only integral imaging display,” Opt. Express 20(21), 23755–23768 (2012).
[Crossref] [PubMed]

G. Park, J.-H. Jung, K. Hong, Y. Kim, Y.-H. Kim, S.-W. Min, and B. Lee, “Multi-viewer tracking integral imaging system and its viewing zone analysis,” Opt. Express 17(20), 17895–17908 (2009).
[Crossref] [PubMed]

Z.-L. Xiong, Q.-H. Wang, S.-L. Li, H. Deng, and C.-C. Ji, “Partially-overlapped viewing zone based integral imaging system with super wide viewing angle,” Opt. Express 22(19), 22268–22277 (2014).
[Crossref] [PubMed]

R. Martínez-Cuenca, H. Navarro, G. Saavedra, B. Javidi, and M. Martínez-Corral, “Enhanced viewing-angle integral imaging by multiple-axis telecentric relay system,” Opt. Express 15(24), 16255–16260 (2007).
[Crossref] [PubMed]

Y. Oh, D. Shin, B.-G. Lee, S.-I. I. Jeong, and H.-J. Choi, “Resolution-enhanced integral imaging in focal mode with a time-multiplexed electrical mask array,” Opt. Express 22(15), 17620–17629 (2014).
[Crossref] [PubMed]

A. Castro, Y. Frauel, and B. Javidi, “Integral imaging with large depth of field using an asymmetric phase mask,” Opt. Express 15(16), 10266–10273 (2007).
[Crossref] [PubMed]

Y. Maeda, D. Miyazaki, T. Mukai, and S. Maekawa, “Volumetric display using rotating prism sheets arranged in a symmetrical configuration,” Opt. Express 21(22), 27074–27086 (2013).
[Crossref] [PubMed]

E. Moon, M. Kim, J. Roh, H. Kim, and J. Hahn, “Holographic head-mounted display with RGB light emitting diode light source,” Opt. Express 22(6), 6526–6534 (2014).
[Crossref] [PubMed]

Opt. Lett. (4)

Other (1)

S. J. Gortler, R. Grzeszczuk, R. Szeliski, and M. F. Cohen, “The Lumigraph,” in SIGGRAPH '96 Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques (ACM, 1996), pp. 43–54.

Supplementary Material (2)

NameDescription
» Visualization 1: MP4 (2018 KB)      Video of the 3D scene
» Visualization 2: MP4 (1568 KB)      Video of the dynamic 3D scene

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Schematic diagram of the large viewing angle 3D images. (a) Formation of floating 3D image. (b) Formation of deep image.
Fig. 2
Fig. 2 Coding process of two layer display content with different depth
Fig. 3
Fig. 3 Pictures taken at different positions for 3D display with digitally generated tompographic images
Fig. 4
Fig. 4 Formation principle of the proposed 3D display with complex depth structure
Fig. 5
Fig. 5 Structure images and their corresponding icon images
Fig. 6
Fig. 6 Coding process of the designed 3D scene
Fig. 7
Fig. 7 Photographs taken at different viewing angles (see Visualization 1)
Fig. 8
Fig. 8 Light field produced by the designed 3D image (EPI)
Fig. 9
Fig. 9 Spot diagrams of the microlens array: Viewing angles from the center of the screen are (a)0°, (b)10°,(c) 20°, (d) 30°, (e) 40°. RMS radius of the spot diagrams (a) 1.304 μm, (b) 8.009 μm, (c) 32.435 μm, (d) 87.830 μm, (e) 247.43 μm.
Fig. 10
Fig. 10 Photographs of a dynamic 3D scene (see Visualization 2)

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

θ = 2 arc tan ( T 0 / 2 g )
T = d o u t + g d o u t T 0
T = d i n g d i n T 0
F ( x , y ; d o u t ) = f ( 1 x [ x / T ] int T T , 1 y [ y / T ] int T T ) w h e r e , T = d o u t + g d o u t T 0
F ( x , y ; d i n ) = f ( x [ x / T ] int T T , y [ y / T ] int T T ) w h e r e , T = d i n g d i n T 0
F t o t a l ( x , y ) = F 1 ( x , y ; d 1 ) + F 2 ( x , y ; d 2 )
F s t r u c t u r e ( x , y ) = f ( 1 x [ x / T ] int T T , 1 y [ y / T ] int T T ) w h e r e , T = d ( x , y ) + g d ( x , y ) T 0
F s t r u c t u r e ( x , y ) = f ( x [ x / T ] int T T , y [ y / T ] int T T ) w h e r e , T = d ( x , y ) g d ( x , y ) T 0
F t o t a l ( x , y ) = F s t r u c t u r e 1 ( x , y ) + F s t r u c t u r e 2 ( x , y )

Metrics