Abstract

The humidity sensors constructed from polymer optical fiber Bragg gratings (POFBG) respond to the water content change in the fiber induced by varying environmental condition. The water content change is a diffusion process. Therefore the response time of the POFBG sensor strongly depends on the geometry and size of the fiber. In this work we investigate the use of laser micromachining of D-shaped and slotted structures to improve the response time of polymer fiber grating based humidity sensors. A significant improvement in the response time has been achieved in laser micromachined D-shaped POFBG humidity sensors. The slotted geometry allows water rapid access to the core region but this does not of itself improve response time due to the slow expansion of the bulk of the cladding. We show that by straining the slotted sensor, the expansion component can be removed resulting in the response time being determined only by the more rapid, water induced change in core refractive index. In this way the response time is reduced by a factor of 2.5.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Zeonex microstructured polymer optical fiber: fabrication friendly fibers for high temperature and humidity insensitive Bragg grating sensing

Getinet Woyessa, Andrea Fasano, Christos Markos, Alessio Stefani, Henrik K. Rasmussen, and Ole Bang
Opt. Mater. Express 7(1) 286-295 (2017)

Temperature insensitive hysteresis free highly sensitive polymer optical fiber Bragg grating humidity sensor

Getinet Woyessa, Kristian Nielsen, Alessio Stefani, Christos Markos, and Ole Bang
Opt. Express 24(2) 1206-1213 (2016)

Humidity responsivity of poly(methyl methacrylate)-based optical fiber Bragg grating sensors

Wei Zhang and David J. Webb
Opt. Lett. 39(10) 3026-3029 (2014)

References

  • View by:
  • |
  • |
  • |

  1. D. J. Webb and K. Kalli, “Polymer Fiber Bragg Gratings,” in Fiber Bragg Grating Sensors: Thirty Years From Research to Market, A. Cusano, A. Cutolo, and J. Albert ed. (Bentham Science, 2010).
  2. Z. Xiong, G.-D. Peng, B. Wu, and P. L. Chu, “Highly tunable Bragg gratings in single-mode polymer optical fibers,” IEEE Photonics Technol. Lett. 11(3), 352–354 (1999).
    [Crossref]
  3. H. Dobb, D. J. Webb, K. Kalli, A. Argyros, M. C. J. Large, and M. A. van Eijkelenborg, “Continuous wave ultraviolet light-induced fiber Bragg gratings in few- and single-mode microstructured polymer optical fibers,” Opt. Lett. 30(24), 3296–3298 (2005).
    [Crossref] [PubMed]
  4. W. Yuan, L. Khan, D. J. Webb, K. Kalli, H. K. Rasmussen, A. Stefani, and O. Bang, “Humidity insensitive TOPAS polymer fiber Bragg grating sensor,” Opt. Express 19(20), 19731–19739 (2011).
    [Crossref] [PubMed]
  5. N. G. Harbach, “Fiber Bragg gratings in polymer optical fibers,” PhD Thesis, Lausanne, EPFL (2008).
  6. C. Zhang, W. Zhang, D. J. Webb, and G.-D. Peng, “Optical fibre temperature and humidity sensor,” Electron. Lett. 46(9), 643–644 (2010).
    [Crossref]
  7. C. Zhang, X. Chen, D. J. Webb, and G.-D. Peng, “Water detection in jet fuel using a polymer optical fibre Bragg grating,” Proc. SPIE 7503, 750380 (2009).
    [Crossref]
  8. W. Zhang and D. J. Webb, “Humidity responsivity of poly(methyl methacrylate)-based optical fiber Bragg grating sensors,” Opt. Lett. 39(10), 3026–3029 (2014).
    [Crossref] [PubMed]
  9. W. Zhang, D. J. Webb, and G.-D. Peng, “Investigation into time response of polymer fiber Bragg grating based humidity sensors,” J. Lightwave Technol. 30(8), 1090–1096 (2012).
    [Crossref]
  10. W. Zhang, D. Webb, and G. Peng, “Polymer optical fiber Bragg grating acting as an intrinsic biochemical concentration sensor,” Opt. Lett. 37(8), 1370–1372 (2012).
    [Crossref] [PubMed]
  11. F. M. Cox, R. Lwin, M. C. J. Large, and C. M. B. Cordeiro, “Opening up optical fibres,” Opt. Express 15(19), 11843–11848 (2007).
    [Crossref] [PubMed]
  12. P. E. Dyer, “Excimer laser polymer ablation: twenty years on,” Appl. Phys., A Mater. Sci. Process. 77, 167–173 (2003).
  13. A. S. Holmes, “Excimer laser micromachining with half-tone masks for the fabrication of 3-D microstructures,” Science, Measurement and Technology, IEE Proc. 151, IET, (2004).
    [Crossref]
  14. J. Burt, A. Goater, A. Menachery, R. Pethig, and N. Rizvi, “Development of microtitre plates for electrokinetic assays,” J. Micromech. Microeng. 17(2), 250–257 (2007).
    [Crossref]
  15. G. N. Smith, T. Allsop, K. Kalli, C. Koutsides, R. Neal, K. Sugden, P. Culverhouse, and I. Bennion, “Characterisation and performance of a Terfenol-D coated femtosecond laser inscribed optical fibre Bragg sensor with a laser ablated microslot for the detection of static magnetic fields,” Opt. Express 19(1), 363–370 (2011).
    [Crossref] [PubMed]
  16. J. Crank, The Mathematics of Diffusion (Oxford University, 1975).
  17. K. E. Carroll, C. Zhang, D. J. Webb, K. Kalli, A. Argyros, and M. C. J. Large, “Thermal response of Bragg gratings in PMMA microstructured optical fibers,” Opt. Express 15(14), 8844–8850 (2007).
    [Crossref] [PubMed]
  18. W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, and O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun. 284(1), 176–182 (2011).
    [Crossref]

2014 (1)

2012 (2)

2011 (3)

2010 (1)

C. Zhang, W. Zhang, D. J. Webb, and G.-D. Peng, “Optical fibre temperature and humidity sensor,” Electron. Lett. 46(9), 643–644 (2010).
[Crossref]

2009 (1)

C. Zhang, X. Chen, D. J. Webb, and G.-D. Peng, “Water detection in jet fuel using a polymer optical fibre Bragg grating,” Proc. SPIE 7503, 750380 (2009).
[Crossref]

2007 (3)

2005 (1)

2003 (1)

P. E. Dyer, “Excimer laser polymer ablation: twenty years on,” Appl. Phys., A Mater. Sci. Process. 77, 167–173 (2003).

1999 (1)

Z. Xiong, G.-D. Peng, B. Wu, and P. L. Chu, “Highly tunable Bragg gratings in single-mode polymer optical fibers,” IEEE Photonics Technol. Lett. 11(3), 352–354 (1999).
[Crossref]

Allsop, T.

Andresen, S.

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, and O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun. 284(1), 176–182 (2011).
[Crossref]

Argyros, A.

Bache, M.

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, and O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun. 284(1), 176–182 (2011).
[Crossref]

Bang, O.

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, and O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun. 284(1), 176–182 (2011).
[Crossref]

W. Yuan, L. Khan, D. J. Webb, K. Kalli, H. K. Rasmussen, A. Stefani, and O. Bang, “Humidity insensitive TOPAS polymer fiber Bragg grating sensor,” Opt. Express 19(20), 19731–19739 (2011).
[Crossref] [PubMed]

Bennion, I.

Burt, J.

J. Burt, A. Goater, A. Menachery, R. Pethig, and N. Rizvi, “Development of microtitre plates for electrokinetic assays,” J. Micromech. Microeng. 17(2), 250–257 (2007).
[Crossref]

Carroll, K. E.

Chen, X.

C. Zhang, X. Chen, D. J. Webb, and G.-D. Peng, “Water detection in jet fuel using a polymer optical fibre Bragg grating,” Proc. SPIE 7503, 750380 (2009).
[Crossref]

Chu, P. L.

Z. Xiong, G.-D. Peng, B. Wu, and P. L. Chu, “Highly tunable Bragg gratings in single-mode polymer optical fibers,” IEEE Photonics Technol. Lett. 11(3), 352–354 (1999).
[Crossref]

Cordeiro, C. M. B.

Cox, F. M.

Culverhouse, P.

Dobb, H.

Dyer, P. E.

P. E. Dyer, “Excimer laser polymer ablation: twenty years on,” Appl. Phys., A Mater. Sci. Process. 77, 167–173 (2003).

Goater, A.

J. Burt, A. Goater, A. Menachery, R. Pethig, and N. Rizvi, “Development of microtitre plates for electrokinetic assays,” J. Micromech. Microeng. 17(2), 250–257 (2007).
[Crossref]

Hansen, K. S.

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, and O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun. 284(1), 176–182 (2011).
[Crossref]

Herholdt-Rasmussen, N.

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, and O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun. 284(1), 176–182 (2011).
[Crossref]

Jacobsen, T.

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, and O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun. 284(1), 176–182 (2011).
[Crossref]

Kalli, K.

Khan, L.

Koutsides, C.

Large, M. C. J.

Lwin, R.

Menachery, A.

J. Burt, A. Goater, A. Menachery, R. Pethig, and N. Rizvi, “Development of microtitre plates for electrokinetic assays,” J. Micromech. Microeng. 17(2), 250–257 (2007).
[Crossref]

Neal, R.

Nielsen, F. K.

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, and O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun. 284(1), 176–182 (2011).
[Crossref]

Peng, G.

Peng, G.-D.

W. Zhang, D. J. Webb, and G.-D. Peng, “Investigation into time response of polymer fiber Bragg grating based humidity sensors,” J. Lightwave Technol. 30(8), 1090–1096 (2012).
[Crossref]

C. Zhang, W. Zhang, D. J. Webb, and G.-D. Peng, “Optical fibre temperature and humidity sensor,” Electron. Lett. 46(9), 643–644 (2010).
[Crossref]

C. Zhang, X. Chen, D. J. Webb, and G.-D. Peng, “Water detection in jet fuel using a polymer optical fibre Bragg grating,” Proc. SPIE 7503, 750380 (2009).
[Crossref]

Z. Xiong, G.-D. Peng, B. Wu, and P. L. Chu, “Highly tunable Bragg gratings in single-mode polymer optical fibers,” IEEE Photonics Technol. Lett. 11(3), 352–354 (1999).
[Crossref]

Pethig, R.

J. Burt, A. Goater, A. Menachery, R. Pethig, and N. Rizvi, “Development of microtitre plates for electrokinetic assays,” J. Micromech. Microeng. 17(2), 250–257 (2007).
[Crossref]

Rasmussen, H. K.

Rizvi, N.

J. Burt, A. Goater, A. Menachery, R. Pethig, and N. Rizvi, “Development of microtitre plates for electrokinetic assays,” J. Micromech. Microeng. 17(2), 250–257 (2007).
[Crossref]

Rose, B.

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, and O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun. 284(1), 176–182 (2011).
[Crossref]

Smith, G. N.

Sørensen, O. B.

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, and O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun. 284(1), 176–182 (2011).
[Crossref]

Stefani, A.

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, and O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun. 284(1), 176–182 (2011).
[Crossref]

W. Yuan, L. Khan, D. J. Webb, K. Kalli, H. K. Rasmussen, A. Stefani, and O. Bang, “Humidity insensitive TOPAS polymer fiber Bragg grating sensor,” Opt. Express 19(20), 19731–19739 (2011).
[Crossref] [PubMed]

Sugden, K.

van Eijkelenborg, M. A.

Webb, D.

Webb, D. J.

Wu, B.

Z. Xiong, G.-D. Peng, B. Wu, and P. L. Chu, “Highly tunable Bragg gratings in single-mode polymer optical fibers,” IEEE Photonics Technol. Lett. 11(3), 352–354 (1999).
[Crossref]

Xiong, Z.

Z. Xiong, G.-D. Peng, B. Wu, and P. L. Chu, “Highly tunable Bragg gratings in single-mode polymer optical fibers,” IEEE Photonics Technol. Lett. 11(3), 352–354 (1999).
[Crossref]

Yuan, W.

W. Yuan, L. Khan, D. J. Webb, K. Kalli, H. K. Rasmussen, A. Stefani, and O. Bang, “Humidity insensitive TOPAS polymer fiber Bragg grating sensor,” Opt. Express 19(20), 19731–19739 (2011).
[Crossref] [PubMed]

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, and O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun. 284(1), 176–182 (2011).
[Crossref]

Zhang, C.

C. Zhang, W. Zhang, D. J. Webb, and G.-D. Peng, “Optical fibre temperature and humidity sensor,” Electron. Lett. 46(9), 643–644 (2010).
[Crossref]

C. Zhang, X. Chen, D. J. Webb, and G.-D. Peng, “Water detection in jet fuel using a polymer optical fibre Bragg grating,” Proc. SPIE 7503, 750380 (2009).
[Crossref]

K. E. Carroll, C. Zhang, D. J. Webb, K. Kalli, A. Argyros, and M. C. J. Large, “Thermal response of Bragg gratings in PMMA microstructured optical fibers,” Opt. Express 15(14), 8844–8850 (2007).
[Crossref] [PubMed]

Zhang, W.

Appl. Phys., A Mater. Sci. Process. (1)

P. E. Dyer, “Excimer laser polymer ablation: twenty years on,” Appl. Phys., A Mater. Sci. Process. 77, 167–173 (2003).

Electron. Lett. (1)

C. Zhang, W. Zhang, D. J. Webb, and G.-D. Peng, “Optical fibre temperature and humidity sensor,” Electron. Lett. 46(9), 643–644 (2010).
[Crossref]

IEEE Photonics Technol. Lett. (1)

Z. Xiong, G.-D. Peng, B. Wu, and P. L. Chu, “Highly tunable Bragg gratings in single-mode polymer optical fibers,” IEEE Photonics Technol. Lett. 11(3), 352–354 (1999).
[Crossref]

J. Lightwave Technol. (1)

J. Micromech. Microeng. (1)

J. Burt, A. Goater, A. Menachery, R. Pethig, and N. Rizvi, “Development of microtitre plates for electrokinetic assays,” J. Micromech. Microeng. 17(2), 250–257 (2007).
[Crossref]

Opt. Commun. (1)

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, and O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun. 284(1), 176–182 (2011).
[Crossref]

Opt. Express (4)

Opt. Lett. (3)

Proc. SPIE (1)

C. Zhang, X. Chen, D. J. Webb, and G.-D. Peng, “Water detection in jet fuel using a polymer optical fibre Bragg grating,” Proc. SPIE 7503, 750380 (2009).
[Crossref]

Other (4)

D. J. Webb and K. Kalli, “Polymer Fiber Bragg Gratings,” in Fiber Bragg Grating Sensors: Thirty Years From Research to Market, A. Cusano, A. Cutolo, and J. Albert ed. (Bentham Science, 2010).

N. G. Harbach, “Fiber Bragg gratings in polymer optical fibers,” PhD Thesis, Lausanne, EPFL (2008).

A. S. Holmes, “Excimer laser micromachining with half-tone masks for the fabrication of 3-D microstructures,” Science, Measurement and Technology, IEE Proc. 151, IET, (2004).
[Crossref]

J. Crank, The Mathematics of Diffusion (Oxford University, 1975).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Schematic diagram of (a) the excimer laser and mask projection scanning system, (b) slotted POFBG and (c) D-shaped POFBG where the laser micromachined structures (on cladding) are over the grating region.
Fig. 2
Fig. 2 Microscope images of laser-micromachined microstructures on POFBG cladding layer (a) slot, (b) open bay, (c) D-shape.
Fig. 3
Fig. 3 Experimental setup for humidity sensing.
Fig. 4
Fig. 4 (a) Wavelength responses of four POFBGs step-changed from 40% RH to 90% RH at 24°C, the wavelength traces for four POFBGs were offset to give a better view. (b) Normalized wavelength changes of POFBG sensors against a 10% step relative humidity change.
Fig. 5
Fig. 5 Wavelength changes of pre-strained and unstrained slotted POFBGs to a 10% humidity step change.

Tables (1)

Tables Icon

Table 1 Summary of humidity response times of POFBG sensors used in this work

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Δ λ B = λ B ( η+β )ΔH
C C 1 C 0 C 1 =1 2 a n=1 exp(D α n 2 t) J 0 (r α n ) α n J 1 (a α n )
C C 1 C 0 C 1 =1 2 a n=1 exp(D α n 2 t) J 0 (r α n ) α n J 1 (a α n )
C(t,r)=1 2 a n=1 exp(D α n 2 t) J 0 (r α n ) α n J 1 (a α n )
C(t,r)= 2 a n=1 exp(D α n 2 t) J 0 (r α n ) α n J 1 (a α n )

Metrics