Abstract

Plasmonic nanostructures presenting either structural asymmetry or metal-dielectric-metal (M-D-M) architecture are commonly used structures to increase the quality factor and the near-field confinement in plasmonic materials. This characteristic can be leveraged for example to increase the sensitivity of IR spectroscopy, via the surface enhanced IR absorption (SEIRA) effect. In this work, we combine structural asymmetry with the M-D-M architecture to realize Ag-Ag2O-Ag asymmetric ring resonators where two Ag layers sandwich a native silver oxide (Ag2O) layer. Their IR response is compared with the one of fully metallic (Ag) resonators of the same size and shape. The photothermal induced resonance technique (PTIR) is used to obtain near-field SEIRA absorption maps and spectra with nanoscale resolution. Although the native Ag2O layer is only 1 nm to 2 nm thick, it increases the quality factor of the resonators’ dark-mode by ≈27% and the SEIRA enhancement by ≈44% with respect to entirely Ag structures.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Asymmetric split ring resonators for optical sensing of organic materials

Basudev Lahiri, Ali Z. Khokhar, Richard M. De La Rue, Scott G. McMeekin, and Nigel P. Johnson
Opt. Express 17(2) 1107-1115 (2009)

Contrast and imaging performance in photo induced force microscopy

Mohammad Almajhadi and H. Kumar Wickramasinghe
Opt. Express 25(22) 26923-26938 (2017)

Enhanced Fano resonance of organic material films deposited on arrays of asymmetric split-ring resonators (A-SRRs)

Basudev Lahiri, Scott G. McMeekin, Richard M. De La Rue, and Nigel P. Johnson
Opt. Express 21(8) 9343-9352 (2013)

References

  • View by:
  • |
  • |
  • |

  1. D. R. Smith, J. B. Pendry, and M. C. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
    [Crossref] [PubMed]
  2. V. Aksyuk, B. Lahiri, G. Holland, and A. Centrone, “Near-field asymmetries in plasmonic resonators,” Nanoscale 7(8), 3634–3644 (2015).
    [Crossref] [PubMed]
  3. B. Lahiri, G. Holland, V. Aksyuk, and A. Centrone, “Nanoscale imaging of plasmonic hot spots and dark modes with the photothermal-induced resonance technique,” Nano Lett. 13(7), 3218–3224 (2013).
    [Crossref] [PubMed]
  4. E. Cubukcu, S. Zhang, Y.-S. Park, G. Bartal, and X. Zhang, “Split ring resonator sensors for infrared detection of single molecular monolayers,” Appl. Phys. Lett. 95(4), 043113 (2009).
    [Crossref]
  5. R. Adato, A. A. Yanik, J. J. Amsden, D. L. Kaplan, F. G. Omenetto, M. K. Hong, S. Erramilli, and H. Altug, “Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays,” Proc. Natl. Acad. Sci. U.S.A. 106(46), 19227–19232 (2009).
    [Crossref] [PubMed]
  6. A. J. Morfa, K. L. Rowlen, T. H. Reilly, M. J. Romero, and J. van de Lagemaat, “Plasmon-enhanced solar energy conversion in organic bulk heterojunction photovoltaics,” Appl. Phys. Lett. 92(1), 013504 (2008).
    [Crossref]
  7. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
    [Crossref] [PubMed]
  8. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
    [Crossref] [PubMed]
  9. C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95(20), 203901 (2005).
    [Crossref] [PubMed]
  10. S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306(5700), 1351–1353 (2004).
    [Crossref] [PubMed]
  11. V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics 1(1), 41–48 (2007).
    [Crossref]
  12. J. Zhou, T. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett. 95(22), 223902 (2005).
    [Crossref] [PubMed]
  13. B. Lahiri, A. Z. Khokhar, R. M. De La Rue, S. G. McMeekin, and N. P. Johnson, “Asymmetric split ring resonators for optical sensing of organic materials,” Opt. Express 17(2), 1107–1115 (2009).
    [Crossref] [PubMed]
  14. B. Lahiri, S. G. McMeekin, A. Z. Khokhar, R. M. De La Rue, and N. P. Johnson, “Magnetic response of split ring resonators (SRRs) at visible frequencies,” Opt. Express 18(3), 3210–3218 (2010).
    [Crossref] [PubMed]
  15. F. Le, D. W. Brandl, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, “Metallic nanoparticle arrays: a common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption,” ACS Nano 2(4), 707–718 (2008).
    [Crossref] [PubMed]
  16. A. Pucci, F. Neubrech, D. Weber, S. Hong, T. Toury, and M. L. de la Chapelle, “Surface enhanced infrared spectroscopy using gold nanoantennas,” Phys. Status Solidi B 247(8), 2071–2074 (2010).
    [Crossref]
  17. K. Chen, R. Adato, and H. Altug, “Dual-band perfect absorber for multispectral plasmon-enhanced infrared spectroscopy,” ACS Nano 6(9), 7998–8006 (2012).
    [Crossref] [PubMed]
  18. H. Aouani, H. Šípová, M. Rahmani, M. Navarro-Cia, K. Hegnerová, J. Homola, M. Hong, and S. A. Maier, “Ultrasensitive broadband probing of molecular vibrational modes with multifrequency optical antennas,” ACS Nano 7(1), 669–675 (2013).
    [Crossref] [PubMed]
  19. F. Neubrech, A. Pucci, T. W. Cornelius, S. Karim, A. García-Etxarri, and J. Aizpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett. 101(15), 157403 (2008).
    [Crossref] [PubMed]
  20. C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11(1), 69–75 (2011).
    [Crossref] [PubMed]
  21. R. Bukasov and J. S. Shumaker-Parry, “Silver nanocrescents with infrared plasmonic properties as tunable substrates for surface enhanced infrared absorption spectroscopy,” Anal. Chem. 81(11), 4531–4535 (2009).
    [Crossref] [PubMed]
  22. C. Huck, F. Neubrech, J. Vogt, A. Toma, D. Gerbert, J. Katzmann, T. Härtling, and A. Pucci, “Surface-enhanced infrared spectroscopy using nanometer-sized gaps,” ACS Nano 8(5), 4908–4914 (2014).
    [Crossref] [PubMed]
  23. M. Abb, Y. Wang, N. Papasimakis, C. H. de Groot, and O. L. Muskens, “Surface-enhanced infrared spectroscopy using metal oxide plasmonic antenna arrays,” Nano Lett. 14(1), 346–352 (2014).
    [Crossref] [PubMed]
  24. M. I. Stockman, “Nanoplasmonics: The physics behind the applications,” Phys. Today 64(2), 39–44 (2011).
    [Crossref]
  25. V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
    [Crossref] [PubMed]
  26. B. Lahiri, S. G. McMeekin, R. M. De la Rue, and N. P. Johnson, “Enhanced Fano resonance of organic material films deposited on arrays of asymmetric split-ring resonators (A-SRRs),” Opt. Express 21(8), 9343–9352 (2013).
    [Crossref] [PubMed]
  27. C. Debus and P. H. Bolivar, “Frequency selective surfaces for high sensitivity terahertz sensing,” Appl. Phys. Lett. 91(18), 184102 (2007).
    [Crossref]
  28. K. Aydin, I. M. Pryce, and H. A. Atwater, “Symmetry breaking and strong coupling in planar optical metamaterials,” Opt. Express 18(13), 13407–13417 (2010).
    [Crossref] [PubMed]
  29. H. Li and B. M. Cullum, “Dual layer and multilayer enhancements from silver film over nanostructured surface-enhanced Raman substrates,” Appl. Spectrosc. 59(4), 410–417 (2005).
    [Crossref] [PubMed]
  30. J. Luo, X. Y. Zhuang, W. Xiong, and J. Yao, “Numerical study on optical properties of Ag/SiO2SiO2/Ag sandwich nanocrescents substrate,” J. Mod. Opt. 59(15), 1316–1321 (2012).
    [Crossref]
  31. L. Yang, C. Du, and X. Luo, “Numerical study of optical properties of Ag/SiO2/Ag sandwich nanobowties,” J. Comput. Theor. Nanosci. 6(1), 106–111 (2009).
    [Crossref]
  32. D. Dey, J. Kohoutek, R. M. Gelfand, A. Bonakdar, and H. Mohseni, “Quantum-cascade laser integrated with a metal-dielectric-metal-based plasmonic antenna,” Opt. Lett. 35(16), 2783–2785 (2010).
    [Crossref] [PubMed]
  33. M. L. Wan, H. J. Du, Y. L. Song, F. Q. Zhou, and K. J. Dai, “Tunable localized surface plasmon resonances of asymmetric Au/SiO2/Au cross-shape nanobars,” Mod. Phys. Lett. B 28(17), 1450143 (2014).
    [Crossref]
  34. C. M. Soukoulis and M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nat. Photonics 5, 523–530 (2011).
  35. V. M. Shalaev, W. Cai, U. K. Chettiar, H.-K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, “Negative index of refraction in optical metamaterials,” Opt. Lett. 30(24), 3356–3358 (2005).
    [Crossref] [PubMed]
  36. T. Xu, A. Agrawal, M. Abashin, K. J. Chau, and H. J. Lezec, “All-angle negative refraction and active flat lensing of ultraviolet light,” Nature 497(7450), 470–474 (2013).
    [Crossref] [PubMed]
  37. B. Lahiri, G. Holland, and A. Centrone, “Chemical imaging beyond the diffraction limit: experimental validation of the PTIR technique,” Small 9(3), 439–445 (2013).
    [Crossref] [PubMed]
  38. A. Dazzi, R. Prazeres, F. Glotin, and J. M. Ortega, “Local infrared microspectroscopy with subwavelength spatial resolution with an atomic force microscope tip used as a photothermal sensor,” Opt. Lett. 30(18), 2388–2390 (2005).
    [Crossref] [PubMed]
  39. A. Derooij, “The Oxidation of silver by atomic oxygen,” Esa J-Eur. Space Agen. 13, 363–382 (1989).
  40. T. W. H. Oates, M. Losurdo, S. Noda, and K. Hinrichs, “The effect of atmospheric tarnishing on the optical and structural properties of silver nanoparticles,” J. Phys. D App. Phys. 46(14), 145308 (2013).
  41. F. Hao, P. Nordlander, Y. Sonnefraud, P. V. Dorpe, and S. A. Maier, “Tunability of subradiant dipolar and fano-type plasmon resonances in metallic ring/disk cavities: implications for nanoscale optical sensing,” ACS Nano 3(3), 643–652 (2009).
    [Crossref] [PubMed]
  42. N. Verellen, P. Van Dorpe, C. Huang, K. Lodewijks, G. A. E. Vandenbosch, L. Lagae, and V. V. Moshchalkov, “Plasmon line shaping using nanocrosses for high sensitivity localized surface plasmon resonance sensing,” Nano Lett. 11(2), 391–397 (2011).
    [Crossref] [PubMed]
  43. A. Dazzi, R. Prazeres, F. Glotin, J. M. Ortega, M. Al-Sawaftah, and M. de Frutos, “Chemical mapping of the distribution of viruses into infected bacteria with a photothermal method,” Ultramicroscopy 108(7), 635–641 (2008).
    [Crossref] [PubMed]
  44. A. Dazzi, C. B. Prater, Q. Hu, D. B. Chase, J. F. Rabolt, and C. Marcott, “AFM-IR: combining atomic force microscopy and infrared spectroscopy for nanoscale chemical characterization,” Appl. Spectrosc. 66(12), 1365–1384 (2012).
    [Crossref] [PubMed]
  45. A. M. Katzenmeyer, V. Aksyuk, and A. Centrone, “Nanoscale infrared spectroscopy: improving the spectral range of the photothermal induced resonance technique,” Anal. Chem. 85(4), 1972–1979 (2013).
    [Crossref] [PubMed]
  46. G. Ramer, A. Balbekova, A. Schwaighofer, and B. Lendl, “Method for time-resolved monitoring of a solid state biological film using photothermal infrared nanoscopy on the example of poly-L-lysine,” Anal. Chem. 87(8), 4415–4420 (2015).
    [Crossref] [PubMed]
  47. A. M. Katzenmeyer, G. Holland, K. Kjoller, and A. Centrone, “Absorption spectroscopy and imaging from the visible through mid-infrared with 20 nm resolution,” Anal. Chem. 87(6), 3154–3159 (2015).
    [Crossref] [PubMed]
  48. C. Marcott, M. Lo, K. Kjoller, C. Prater, and I. Noda, “Spatial differentiation of sub-micrometer domains in a poly(hydroxyalkanoate) copolymer using instrumentation that combines atomic force microscopy (AFM) and infrared (IR) spectroscopy,” Appl. Spectrosc. 65(10), 1145–1150 (2011).
    [Crossref] [PubMed]
  49. J. R. Felts, K. Kjoller, M. Lo, C. B. Prater, and W. P. King, “Nanometer-scale infrared spectroscopy of heterogeneous polymer nanostructures fabricated by tip-based nanofabrication,” ACS Nano 6(9), 8015–8021 (2012).
    [Crossref] [PubMed]
  50. Z. Cui, C. Coletta, A. Dazzi, P. Lefrançois, M. Gervais, S. Néron, and S. Remita, “Radiolytic method as a novel approach for the synthesis of nanostructured conducting polypyrrole,” Langmuir 30(46), 14086–14094 (2014).
    [Crossref] [PubMed]
  51. A. M. Katzenmeyer, J. Canivet, G. Holland, D. Farrusseng, and A. Centrone, “Assessing chemical heterogeneity at the nanoscale in mixed-ligand metal-organic frameworks with the PTIR technique,” Angew. Chem. Int. Ed. Engl. 53(11), 2852–2856 (2014).
    [Crossref] [PubMed]
  52. R. Dong, Y. Fang, J. Chae, J. Dai, Z. Xiao, Q. Dong, Y. Yuan, A. Centrone, X. C. Zeng, and J. Huang, “High-gain and low-driving-voltage photodetectors based on organolead triiodide perovskites,” Adv. Mater. 27(11), 1912–1918 (2015).
    [Crossref] [PubMed]
  53. Y. Yuan, J. Chae, Y. Shao, Q. Wang, Z. Xiao, A. Centrone, and J. Huang, “Photovoltaic switching mechanism in lateral structure hybrid perovskite solar cells,” Adv. Energy Mater. 5(15), 1500615 (2015).
    [Crossref]
  54. A. Deniset-Besseau, C. B. Prater, M. J. Virolle, and A. Dazzi, “Monitoring triacylglycerols accumulation by atomic force microscopy based infrared spectroscopy in streptomyces species for biodiesel applications,” J. Phys. Chem. Lett. 5(4), 654–658 (2014).
    [Crossref] [PubMed]
  55. C. Mayet, A. Dazzi, R. Prazeres, F. Allot, F. Glotin, and J. M. Ortega, “Sub-100 nm IR spectromicroscopy of living cells,” Opt. Lett. 33(14), 1611–1613 (2008).
    [Crossref] [PubMed]
  56. E. Kennedy, R. Al-Majmaie, M. Al-Rubeai, D. Zerulla, and J. H. Rice, “Nanoscale infrared absorption imaging permits non-destructive intracellular photosensitizer localization for subcellular uptake analysis,” RSC Advances 3(33), 13789–13795 (2013).
    [Crossref]
  57. T. Müller, F. S. Ruggeri, A. J. Kulik, U. Shimanovich, T. O. Mason, T. P. J. Knowles, and G. Dietler, “Nanoscale spatially resolved infrared spectra from single microdroplets,” Lab Chip 14(7), 1315–1319 (2014).
    [Crossref] [PubMed]
  58. A. J. Harrison, E. A. Bilgili, S. P. Beaudoin, and L. S. Taylor, “Atomic force microscope infrared spectroscopy of griseofulvin nanocrystals,” Anal. Chem. 85(23), 11449–11455 (2013).
    [Crossref] [PubMed]
  59. A. M. Katzenmeyer, J. Chae, R. Kasica, G. Holland, B. Lahiri, and A. Centrone, “Nanoscale imaging and spectroscopy of plasmonic modes with the PTIR technique,” Adv. Opt. Mater. 2(8), 718–722 (2014).
    [Crossref]
  60. F. Lu, M. Z. Jin, and M. A. Belkin, “Tip-enhanced infrared nanospectroscopy via molecular expansion force detection,” Nat. Photonics 8(4), 307–312 (2014).
    [Crossref]
  61. A. Centrone, “Infrared imaging and spectroscopy beyond the diffraction limit,” Annu. Rev. Anal. Chem. (Palo Alto, Calif.) 8(1), 101–126 (2015).
    [Crossref] [PubMed]
  62. R. Stanley, “Plasmonics in the mid-infrared,” Nat. Photonics 6(7), 409–411 (2012).
    [Crossref]
  63. J. H. Park, G. von Maltzahn, L. L. Ong, A. Centrone, T. A. Hatton, E. Ruoslahti, S. N. Bhatia, and M. J. Sailor, “Cooperative nanoparticles for tumor detection and photothermally triggered drug delivery,” Adv. Mater. 22(8), 880–885 (2010).
    [Crossref] [PubMed]
  64. G. von Maltzahn, A. Centrone, J. H. Park, R. Ramanathan, M. J. Sailor, T. A. Hatton, and S. N. Bhatia, “SERS-coded gold nanorods as a multifunctional platform for densely multiplexed near-infrared imaging and photothermal heating,” Adv. Mater. 21(31), 3175–3180 (2009).
    [Crossref] [PubMed]

2015 (6)

V. Aksyuk, B. Lahiri, G. Holland, and A. Centrone, “Near-field asymmetries in plasmonic resonators,” Nanoscale 7(8), 3634–3644 (2015).
[Crossref] [PubMed]

G. Ramer, A. Balbekova, A. Schwaighofer, and B. Lendl, “Method for time-resolved monitoring of a solid state biological film using photothermal infrared nanoscopy on the example of poly-L-lysine,” Anal. Chem. 87(8), 4415–4420 (2015).
[Crossref] [PubMed]

A. M. Katzenmeyer, G. Holland, K. Kjoller, and A. Centrone, “Absorption spectroscopy and imaging from the visible through mid-infrared with 20 nm resolution,” Anal. Chem. 87(6), 3154–3159 (2015).
[Crossref] [PubMed]

A. Centrone, “Infrared imaging and spectroscopy beyond the diffraction limit,” Annu. Rev. Anal. Chem. (Palo Alto, Calif.) 8(1), 101–126 (2015).
[Crossref] [PubMed]

R. Dong, Y. Fang, J. Chae, J. Dai, Z. Xiao, Q. Dong, Y. Yuan, A. Centrone, X. C. Zeng, and J. Huang, “High-gain and low-driving-voltage photodetectors based on organolead triiodide perovskites,” Adv. Mater. 27(11), 1912–1918 (2015).
[Crossref] [PubMed]

Y. Yuan, J. Chae, Y. Shao, Q. Wang, Z. Xiao, A. Centrone, and J. Huang, “Photovoltaic switching mechanism in lateral structure hybrid perovskite solar cells,” Adv. Energy Mater. 5(15), 1500615 (2015).
[Crossref]

2014 (9)

A. Deniset-Besseau, C. B. Prater, M. J. Virolle, and A. Dazzi, “Monitoring triacylglycerols accumulation by atomic force microscopy based infrared spectroscopy in streptomyces species for biodiesel applications,” J. Phys. Chem. Lett. 5(4), 654–658 (2014).
[Crossref] [PubMed]

A. M. Katzenmeyer, J. Chae, R. Kasica, G. Holland, B. Lahiri, and A. Centrone, “Nanoscale imaging and spectroscopy of plasmonic modes with the PTIR technique,” Adv. Opt. Mater. 2(8), 718–722 (2014).
[Crossref]

F. Lu, M. Z. Jin, and M. A. Belkin, “Tip-enhanced infrared nanospectroscopy via molecular expansion force detection,” Nat. Photonics 8(4), 307–312 (2014).
[Crossref]

T. Müller, F. S. Ruggeri, A. J. Kulik, U. Shimanovich, T. O. Mason, T. P. J. Knowles, and G. Dietler, “Nanoscale spatially resolved infrared spectra from single microdroplets,” Lab Chip 14(7), 1315–1319 (2014).
[Crossref] [PubMed]

Z. Cui, C. Coletta, A. Dazzi, P. Lefrançois, M. Gervais, S. Néron, and S. Remita, “Radiolytic method as a novel approach for the synthesis of nanostructured conducting polypyrrole,” Langmuir 30(46), 14086–14094 (2014).
[Crossref] [PubMed]

A. M. Katzenmeyer, J. Canivet, G. Holland, D. Farrusseng, and A. Centrone, “Assessing chemical heterogeneity at the nanoscale in mixed-ligand metal-organic frameworks with the PTIR technique,” Angew. Chem. Int. Ed. Engl. 53(11), 2852–2856 (2014).
[Crossref] [PubMed]

C. Huck, F. Neubrech, J. Vogt, A. Toma, D. Gerbert, J. Katzmann, T. Härtling, and A. Pucci, “Surface-enhanced infrared spectroscopy using nanometer-sized gaps,” ACS Nano 8(5), 4908–4914 (2014).
[Crossref] [PubMed]

M. Abb, Y. Wang, N. Papasimakis, C. H. de Groot, and O. L. Muskens, “Surface-enhanced infrared spectroscopy using metal oxide plasmonic antenna arrays,” Nano Lett. 14(1), 346–352 (2014).
[Crossref] [PubMed]

M. L. Wan, H. J. Du, Y. L. Song, F. Q. Zhou, and K. J. Dai, “Tunable localized surface plasmon resonances of asymmetric Au/SiO2/Au cross-shape nanobars,” Mod. Phys. Lett. B 28(17), 1450143 (2014).
[Crossref]

2013 (9)

T. Xu, A. Agrawal, M. Abashin, K. J. Chau, and H. J. Lezec, “All-angle negative refraction and active flat lensing of ultraviolet light,” Nature 497(7450), 470–474 (2013).
[Crossref] [PubMed]

B. Lahiri, G. Holland, and A. Centrone, “Chemical imaging beyond the diffraction limit: experimental validation of the PTIR technique,” Small 9(3), 439–445 (2013).
[Crossref] [PubMed]

T. W. H. Oates, M. Losurdo, S. Noda, and K. Hinrichs, “The effect of atmospheric tarnishing on the optical and structural properties of silver nanoparticles,” J. Phys. D App. Phys. 46(14), 145308 (2013).

B. Lahiri, G. Holland, V. Aksyuk, and A. Centrone, “Nanoscale imaging of plasmonic hot spots and dark modes with the photothermal-induced resonance technique,” Nano Lett. 13(7), 3218–3224 (2013).
[Crossref] [PubMed]

H. Aouani, H. Šípová, M. Rahmani, M. Navarro-Cia, K. Hegnerová, J. Homola, M. Hong, and S. A. Maier, “Ultrasensitive broadband probing of molecular vibrational modes with multifrequency optical antennas,” ACS Nano 7(1), 669–675 (2013).
[Crossref] [PubMed]

B. Lahiri, S. G. McMeekin, R. M. De la Rue, and N. P. Johnson, “Enhanced Fano resonance of organic material films deposited on arrays of asymmetric split-ring resonators (A-SRRs),” Opt. Express 21(8), 9343–9352 (2013).
[Crossref] [PubMed]

A. J. Harrison, E. A. Bilgili, S. P. Beaudoin, and L. S. Taylor, “Atomic force microscope infrared spectroscopy of griseofulvin nanocrystals,” Anal. Chem. 85(23), 11449–11455 (2013).
[Crossref] [PubMed]

E. Kennedy, R. Al-Majmaie, M. Al-Rubeai, D. Zerulla, and J. H. Rice, “Nanoscale infrared absorption imaging permits non-destructive intracellular photosensitizer localization for subcellular uptake analysis,” RSC Advances 3(33), 13789–13795 (2013).
[Crossref]

A. M. Katzenmeyer, V. Aksyuk, and A. Centrone, “Nanoscale infrared spectroscopy: improving the spectral range of the photothermal induced resonance technique,” Anal. Chem. 85(4), 1972–1979 (2013).
[Crossref] [PubMed]

2012 (5)

J. R. Felts, K. Kjoller, M. Lo, C. B. Prater, and W. P. King, “Nanometer-scale infrared spectroscopy of heterogeneous polymer nanostructures fabricated by tip-based nanofabrication,” ACS Nano 6(9), 8015–8021 (2012).
[Crossref] [PubMed]

R. Stanley, “Plasmonics in the mid-infrared,” Nat. Photonics 6(7), 409–411 (2012).
[Crossref]

A. Dazzi, C. B. Prater, Q. Hu, D. B. Chase, J. F. Rabolt, and C. Marcott, “AFM-IR: combining atomic force microscopy and infrared spectroscopy for nanoscale chemical characterization,” Appl. Spectrosc. 66(12), 1365–1384 (2012).
[Crossref] [PubMed]

K. Chen, R. Adato, and H. Altug, “Dual-band perfect absorber for multispectral plasmon-enhanced infrared spectroscopy,” ACS Nano 6(9), 7998–8006 (2012).
[Crossref] [PubMed]

J. Luo, X. Y. Zhuang, W. Xiong, and J. Yao, “Numerical study on optical properties of Ag/SiO2SiO2/Ag sandwich nanocrescents substrate,” J. Mod. Opt. 59(15), 1316–1321 (2012).
[Crossref]

2011 (5)

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11(1), 69–75 (2011).
[Crossref] [PubMed]

M. I. Stockman, “Nanoplasmonics: The physics behind the applications,” Phys. Today 64(2), 39–44 (2011).
[Crossref]

N. Verellen, P. Van Dorpe, C. Huang, K. Lodewijks, G. A. E. Vandenbosch, L. Lagae, and V. V. Moshchalkov, “Plasmon line shaping using nanocrosses for high sensitivity localized surface plasmon resonance sensing,” Nano Lett. 11(2), 391–397 (2011).
[Crossref] [PubMed]

C. M. Soukoulis and M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nat. Photonics 5, 523–530 (2011).

C. Marcott, M. Lo, K. Kjoller, C. Prater, and I. Noda, “Spatial differentiation of sub-micrometer domains in a poly(hydroxyalkanoate) copolymer using instrumentation that combines atomic force microscopy (AFM) and infrared (IR) spectroscopy,” Appl. Spectrosc. 65(10), 1145–1150 (2011).
[Crossref] [PubMed]

2010 (6)

B. Lahiri, S. G. McMeekin, A. Z. Khokhar, R. M. De La Rue, and N. P. Johnson, “Magnetic response of split ring resonators (SRRs) at visible frequencies,” Opt. Express 18(3), 3210–3218 (2010).
[Crossref] [PubMed]

K. Aydin, I. M. Pryce, and H. A. Atwater, “Symmetry breaking and strong coupling in planar optical metamaterials,” Opt. Express 18(13), 13407–13417 (2010).
[Crossref] [PubMed]

D. Dey, J. Kohoutek, R. M. Gelfand, A. Bonakdar, and H. Mohseni, “Quantum-cascade laser integrated with a metal-dielectric-metal-based plasmonic antenna,” Opt. Lett. 35(16), 2783–2785 (2010).
[Crossref] [PubMed]

J. H. Park, G. von Maltzahn, L. L. Ong, A. Centrone, T. A. Hatton, E. Ruoslahti, S. N. Bhatia, and M. J. Sailor, “Cooperative nanoparticles for tumor detection and photothermally triggered drug delivery,” Adv. Mater. 22(8), 880–885 (2010).
[Crossref] [PubMed]

A. Pucci, F. Neubrech, D. Weber, S. Hong, T. Toury, and M. L. de la Chapelle, “Surface enhanced infrared spectroscopy using gold nanoantennas,” Phys. Status Solidi B 247(8), 2071–2074 (2010).
[Crossref]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

2009 (7)

E. Cubukcu, S. Zhang, Y.-S. Park, G. Bartal, and X. Zhang, “Split ring resonator sensors for infrared detection of single molecular monolayers,” Appl. Phys. Lett. 95(4), 043113 (2009).
[Crossref]

R. Adato, A. A. Yanik, J. J. Amsden, D. L. Kaplan, F. G. Omenetto, M. K. Hong, S. Erramilli, and H. Altug, “Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays,” Proc. Natl. Acad. Sci. U.S.A. 106(46), 19227–19232 (2009).
[Crossref] [PubMed]

F. Hao, P. Nordlander, Y. Sonnefraud, P. V. Dorpe, and S. A. Maier, “Tunability of subradiant dipolar and fano-type plasmon resonances in metallic ring/disk cavities: implications for nanoscale optical sensing,” ACS Nano 3(3), 643–652 (2009).
[Crossref] [PubMed]

R. Bukasov and J. S. Shumaker-Parry, “Silver nanocrescents with infrared plasmonic properties as tunable substrates for surface enhanced infrared absorption spectroscopy,” Anal. Chem. 81(11), 4531–4535 (2009).
[Crossref] [PubMed]

L. Yang, C. Du, and X. Luo, “Numerical study of optical properties of Ag/SiO2/Ag sandwich nanobowties,” J. Comput. Theor. Nanosci. 6(1), 106–111 (2009).
[Crossref]

G. von Maltzahn, A. Centrone, J. H. Park, R. Ramanathan, M. J. Sailor, T. A. Hatton, and S. N. Bhatia, “SERS-coded gold nanorods as a multifunctional platform for densely multiplexed near-infrared imaging and photothermal heating,” Adv. Mater. 21(31), 3175–3180 (2009).
[Crossref] [PubMed]

B. Lahiri, A. Z. Khokhar, R. M. De La Rue, S. G. McMeekin, and N. P. Johnson, “Asymmetric split ring resonators for optical sensing of organic materials,” Opt. Express 17(2), 1107–1115 (2009).
[Crossref] [PubMed]

2008 (5)

C. Mayet, A. Dazzi, R. Prazeres, F. Allot, F. Glotin, and J. M. Ortega, “Sub-100 nm IR spectromicroscopy of living cells,” Opt. Lett. 33(14), 1611–1613 (2008).
[Crossref] [PubMed]

A. Dazzi, R. Prazeres, F. Glotin, J. M. Ortega, M. Al-Sawaftah, and M. de Frutos, “Chemical mapping of the distribution of viruses into infected bacteria with a photothermal method,” Ultramicroscopy 108(7), 635–641 (2008).
[Crossref] [PubMed]

A. J. Morfa, K. L. Rowlen, T. H. Reilly, M. J. Romero, and J. van de Lagemaat, “Plasmon-enhanced solar energy conversion in organic bulk heterojunction photovoltaics,” Appl. Phys. Lett. 92(1), 013504 (2008).
[Crossref]

F. Neubrech, A. Pucci, T. W. Cornelius, S. Karim, A. García-Etxarri, and J. Aizpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett. 101(15), 157403 (2008).
[Crossref] [PubMed]

F. Le, D. W. Brandl, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, “Metallic nanoparticle arrays: a common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption,” ACS Nano 2(4), 707–718 (2008).
[Crossref] [PubMed]

2007 (3)

V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics 1(1), 41–48 (2007).
[Crossref]

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
[Crossref] [PubMed]

C. Debus and P. H. Bolivar, “Frequency selective surfaces for high sensitivity terahertz sensing,” Appl. Phys. Lett. 91(18), 184102 (2007).
[Crossref]

2006 (1)

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

2005 (5)

2004 (2)

D. R. Smith, J. B. Pendry, and M. C. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
[Crossref] [PubMed]

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306(5700), 1351–1353 (2004).
[Crossref] [PubMed]

1989 (1)

A. Derooij, “The Oxidation of silver by atomic oxygen,” Esa J-Eur. Space Agen. 13, 363–382 (1989).

Abashin, M.

T. Xu, A. Agrawal, M. Abashin, K. J. Chau, and H. J. Lezec, “All-angle negative refraction and active flat lensing of ultraviolet light,” Nature 497(7450), 470–474 (2013).
[Crossref] [PubMed]

Abb, M.

M. Abb, Y. Wang, N. Papasimakis, C. H. de Groot, and O. L. Muskens, “Surface-enhanced infrared spectroscopy using metal oxide plasmonic antenna arrays,” Nano Lett. 14(1), 346–352 (2014).
[Crossref] [PubMed]

Adato, R.

K. Chen, R. Adato, and H. Altug, “Dual-band perfect absorber for multispectral plasmon-enhanced infrared spectroscopy,” ACS Nano 6(9), 7998–8006 (2012).
[Crossref] [PubMed]

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11(1), 69–75 (2011).
[Crossref] [PubMed]

R. Adato, A. A. Yanik, J. J. Amsden, D. L. Kaplan, F. G. Omenetto, M. K. Hong, S. Erramilli, and H. Altug, “Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays,” Proc. Natl. Acad. Sci. U.S.A. 106(46), 19227–19232 (2009).
[Crossref] [PubMed]

Agrawal, A.

T. Xu, A. Agrawal, M. Abashin, K. J. Chau, and H. J. Lezec, “All-angle negative refraction and active flat lensing of ultraviolet light,” Nature 497(7450), 470–474 (2013).
[Crossref] [PubMed]

Aizpurua, J.

F. Le, D. W. Brandl, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, “Metallic nanoparticle arrays: a common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption,” ACS Nano 2(4), 707–718 (2008).
[Crossref] [PubMed]

F. Neubrech, A. Pucci, T. W. Cornelius, S. Karim, A. García-Etxarri, and J. Aizpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett. 101(15), 157403 (2008).
[Crossref] [PubMed]

Aksyuk, V.

V. Aksyuk, B. Lahiri, G. Holland, and A. Centrone, “Near-field asymmetries in plasmonic resonators,” Nanoscale 7(8), 3634–3644 (2015).
[Crossref] [PubMed]

B. Lahiri, G. Holland, V. Aksyuk, and A. Centrone, “Nanoscale imaging of plasmonic hot spots and dark modes with the photothermal-induced resonance technique,” Nano Lett. 13(7), 3218–3224 (2013).
[Crossref] [PubMed]

A. M. Katzenmeyer, V. Aksyuk, and A. Centrone, “Nanoscale infrared spectroscopy: improving the spectral range of the photothermal induced resonance technique,” Anal. Chem. 85(4), 1972–1979 (2013).
[Crossref] [PubMed]

Allot, F.

Al-Majmaie, R.

E. Kennedy, R. Al-Majmaie, M. Al-Rubeai, D. Zerulla, and J. H. Rice, “Nanoscale infrared absorption imaging permits non-destructive intracellular photosensitizer localization for subcellular uptake analysis,” RSC Advances 3(33), 13789–13795 (2013).
[Crossref]

Al-Rubeai, M.

E. Kennedy, R. Al-Majmaie, M. Al-Rubeai, D. Zerulla, and J. H. Rice, “Nanoscale infrared absorption imaging permits non-destructive intracellular photosensitizer localization for subcellular uptake analysis,” RSC Advances 3(33), 13789–13795 (2013).
[Crossref]

Al-Sawaftah, M.

A. Dazzi, R. Prazeres, F. Glotin, J. M. Ortega, M. Al-Sawaftah, and M. de Frutos, “Chemical mapping of the distribution of viruses into infected bacteria with a photothermal method,” Ultramicroscopy 108(7), 635–641 (2008).
[Crossref] [PubMed]

Altug, H.

K. Chen, R. Adato, and H. Altug, “Dual-band perfect absorber for multispectral plasmon-enhanced infrared spectroscopy,” ACS Nano 6(9), 7998–8006 (2012).
[Crossref] [PubMed]

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11(1), 69–75 (2011).
[Crossref] [PubMed]

R. Adato, A. A. Yanik, J. J. Amsden, D. L. Kaplan, F. G. Omenetto, M. K. Hong, S. Erramilli, and H. Altug, “Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays,” Proc. Natl. Acad. Sci. U.S.A. 106(46), 19227–19232 (2009).
[Crossref] [PubMed]

Amsden, J. J.

R. Adato, A. A. Yanik, J. J. Amsden, D. L. Kaplan, F. G. Omenetto, M. K. Hong, S. Erramilli, and H. Altug, “Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays,” Proc. Natl. Acad. Sci. U.S.A. 106(46), 19227–19232 (2009).
[Crossref] [PubMed]

Aouani, H.

H. Aouani, H. Šípová, M. Rahmani, M. Navarro-Cia, K. Hegnerová, J. Homola, M. Hong, and S. A. Maier, “Ultrasensitive broadband probing of molecular vibrational modes with multifrequency optical antennas,” ACS Nano 7(1), 669–675 (2013).
[Crossref] [PubMed]

Arju, N.

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11(1), 69–75 (2011).
[Crossref] [PubMed]

Atwater, H. A.

Aydin, K.

Balbekova, A.

G. Ramer, A. Balbekova, A. Schwaighofer, and B. Lendl, “Method for time-resolved monitoring of a solid state biological film using photothermal infrared nanoscopy on the example of poly-L-lysine,” Anal. Chem. 87(8), 4415–4420 (2015).
[Crossref] [PubMed]

Bartal, G.

E. Cubukcu, S. Zhang, Y.-S. Park, G. Bartal, and X. Zhang, “Split ring resonator sensors for infrared detection of single molecular monolayers,” Appl. Phys. Lett. 95(4), 043113 (2009).
[Crossref]

Beaudoin, S. P.

A. J. Harrison, E. A. Bilgili, S. P. Beaudoin, and L. S. Taylor, “Atomic force microscope infrared spectroscopy of griseofulvin nanocrystals,” Anal. Chem. 85(23), 11449–11455 (2013).
[Crossref] [PubMed]

Belkin, M. A.

F. Lu, M. Z. Jin, and M. A. Belkin, “Tip-enhanced infrared nanospectroscopy via molecular expansion force detection,” Nat. Photonics 8(4), 307–312 (2014).
[Crossref]

Bhatia, S. N.

J. H. Park, G. von Maltzahn, L. L. Ong, A. Centrone, T. A. Hatton, E. Ruoslahti, S. N. Bhatia, and M. J. Sailor, “Cooperative nanoparticles for tumor detection and photothermally triggered drug delivery,” Adv. Mater. 22(8), 880–885 (2010).
[Crossref] [PubMed]

G. von Maltzahn, A. Centrone, J. H. Park, R. Ramanathan, M. J. Sailor, T. A. Hatton, and S. N. Bhatia, “SERS-coded gold nanorods as a multifunctional platform for densely multiplexed near-infrared imaging and photothermal heating,” Adv. Mater. 21(31), 3175–3180 (2009).
[Crossref] [PubMed]

Bilgili, E. A.

A. J. Harrison, E. A. Bilgili, S. P. Beaudoin, and L. S. Taylor, “Atomic force microscope infrared spectroscopy of griseofulvin nanocrystals,” Anal. Chem. 85(23), 11449–11455 (2013).
[Crossref] [PubMed]

Bolivar, P. H.

C. Debus and P. H. Bolivar, “Frequency selective surfaces for high sensitivity terahertz sensing,” Appl. Phys. Lett. 91(18), 184102 (2007).
[Crossref]

Bonakdar, A.

Brandl, D. W.

F. Le, D. W. Brandl, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, “Metallic nanoparticle arrays: a common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption,” ACS Nano 2(4), 707–718 (2008).
[Crossref] [PubMed]

Bukasov, R.

R. Bukasov and J. S. Shumaker-Parry, “Silver nanocrescents with infrared plasmonic properties as tunable substrates for surface enhanced infrared absorption spectroscopy,” Anal. Chem. 81(11), 4531–4535 (2009).
[Crossref] [PubMed]

Burger, S.

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95(20), 203901 (2005).
[Crossref] [PubMed]

Cai, W.

Canivet, J.

A. M. Katzenmeyer, J. Canivet, G. Holland, D. Farrusseng, and A. Centrone, “Assessing chemical heterogeneity at the nanoscale in mixed-ligand metal-organic frameworks with the PTIR technique,” Angew. Chem. Int. Ed. Engl. 53(11), 2852–2856 (2014).
[Crossref] [PubMed]

Centrone, A.

R. Dong, Y. Fang, J. Chae, J. Dai, Z. Xiao, Q. Dong, Y. Yuan, A. Centrone, X. C. Zeng, and J. Huang, “High-gain and low-driving-voltage photodetectors based on organolead triiodide perovskites,” Adv. Mater. 27(11), 1912–1918 (2015).
[Crossref] [PubMed]

A. Centrone, “Infrared imaging and spectroscopy beyond the diffraction limit,” Annu. Rev. Anal. Chem. (Palo Alto, Calif.) 8(1), 101–126 (2015).
[Crossref] [PubMed]

Y. Yuan, J. Chae, Y. Shao, Q. Wang, Z. Xiao, A. Centrone, and J. Huang, “Photovoltaic switching mechanism in lateral structure hybrid perovskite solar cells,” Adv. Energy Mater. 5(15), 1500615 (2015).
[Crossref]

A. M. Katzenmeyer, G. Holland, K. Kjoller, and A. Centrone, “Absorption spectroscopy and imaging from the visible through mid-infrared with 20 nm resolution,” Anal. Chem. 87(6), 3154–3159 (2015).
[Crossref] [PubMed]

V. Aksyuk, B. Lahiri, G. Holland, and A. Centrone, “Near-field asymmetries in plasmonic resonators,” Nanoscale 7(8), 3634–3644 (2015).
[Crossref] [PubMed]

A. M. Katzenmeyer, J. Chae, R. Kasica, G. Holland, B. Lahiri, and A. Centrone, “Nanoscale imaging and spectroscopy of plasmonic modes with the PTIR technique,” Adv. Opt. Mater. 2(8), 718–722 (2014).
[Crossref]

A. M. Katzenmeyer, J. Canivet, G. Holland, D. Farrusseng, and A. Centrone, “Assessing chemical heterogeneity at the nanoscale in mixed-ligand metal-organic frameworks with the PTIR technique,” Angew. Chem. Int. Ed. Engl. 53(11), 2852–2856 (2014).
[Crossref] [PubMed]

B. Lahiri, G. Holland, and A. Centrone, “Chemical imaging beyond the diffraction limit: experimental validation of the PTIR technique,” Small 9(3), 439–445 (2013).
[Crossref] [PubMed]

A. M. Katzenmeyer, V. Aksyuk, and A. Centrone, “Nanoscale infrared spectroscopy: improving the spectral range of the photothermal induced resonance technique,” Anal. Chem. 85(4), 1972–1979 (2013).
[Crossref] [PubMed]

B. Lahiri, G. Holland, V. Aksyuk, and A. Centrone, “Nanoscale imaging of plasmonic hot spots and dark modes with the photothermal-induced resonance technique,” Nano Lett. 13(7), 3218–3224 (2013).
[Crossref] [PubMed]

J. H. Park, G. von Maltzahn, L. L. Ong, A. Centrone, T. A. Hatton, E. Ruoslahti, S. N. Bhatia, and M. J. Sailor, “Cooperative nanoparticles for tumor detection and photothermally triggered drug delivery,” Adv. Mater. 22(8), 880–885 (2010).
[Crossref] [PubMed]

G. von Maltzahn, A. Centrone, J. H. Park, R. Ramanathan, M. J. Sailor, T. A. Hatton, and S. N. Bhatia, “SERS-coded gold nanorods as a multifunctional platform for densely multiplexed near-infrared imaging and photothermal heating,” Adv. Mater. 21(31), 3175–3180 (2009).
[Crossref] [PubMed]

Chae, J.

R. Dong, Y. Fang, J. Chae, J. Dai, Z. Xiao, Q. Dong, Y. Yuan, A. Centrone, X. C. Zeng, and J. Huang, “High-gain and low-driving-voltage photodetectors based on organolead triiodide perovskites,” Adv. Mater. 27(11), 1912–1918 (2015).
[Crossref] [PubMed]

Y. Yuan, J. Chae, Y. Shao, Q. Wang, Z. Xiao, A. Centrone, and J. Huang, “Photovoltaic switching mechanism in lateral structure hybrid perovskite solar cells,” Adv. Energy Mater. 5(15), 1500615 (2015).
[Crossref]

A. M. Katzenmeyer, J. Chae, R. Kasica, G. Holland, B. Lahiri, and A. Centrone, “Nanoscale imaging and spectroscopy of plasmonic modes with the PTIR technique,” Adv. Opt. Mater. 2(8), 718–722 (2014).
[Crossref]

Chase, D. B.

Chau, K. J.

T. Xu, A. Agrawal, M. Abashin, K. J. Chau, and H. J. Lezec, “All-angle negative refraction and active flat lensing of ultraviolet light,” Nature 497(7450), 470–474 (2013).
[Crossref] [PubMed]

Chen, K.

K. Chen, R. Adato, and H. Altug, “Dual-band perfect absorber for multispectral plasmon-enhanced infrared spectroscopy,” ACS Nano 6(9), 7998–8006 (2012).
[Crossref] [PubMed]

Chettiar, U. K.

Coletta, C.

Z. Cui, C. Coletta, A. Dazzi, P. Lefrançois, M. Gervais, S. Néron, and S. Remita, “Radiolytic method as a novel approach for the synthesis of nanostructured conducting polypyrrole,” Langmuir 30(46), 14086–14094 (2014).
[Crossref] [PubMed]

Cornelius, T. W.

F. Neubrech, A. Pucci, T. W. Cornelius, S. Karim, A. García-Etxarri, and J. Aizpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett. 101(15), 157403 (2008).
[Crossref] [PubMed]

Cubukcu, E.

E. Cubukcu, S. Zhang, Y.-S. Park, G. Bartal, and X. Zhang, “Split ring resonator sensors for infrared detection of single molecular monolayers,” Appl. Phys. Lett. 95(4), 043113 (2009).
[Crossref]

Cui, Z.

Z. Cui, C. Coletta, A. Dazzi, P. Lefrançois, M. Gervais, S. Néron, and S. Remita, “Radiolytic method as a novel approach for the synthesis of nanostructured conducting polypyrrole,” Langmuir 30(46), 14086–14094 (2014).
[Crossref] [PubMed]

Cullum, B. M.

Cummer, S. A.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Dai, J.

R. Dong, Y. Fang, J. Chae, J. Dai, Z. Xiao, Q. Dong, Y. Yuan, A. Centrone, X. C. Zeng, and J. Huang, “High-gain and low-driving-voltage photodetectors based on organolead triiodide perovskites,” Adv. Mater. 27(11), 1912–1918 (2015).
[Crossref] [PubMed]

Dai, K. J.

M. L. Wan, H. J. Du, Y. L. Song, F. Q. Zhou, and K. J. Dai, “Tunable localized surface plasmon resonances of asymmetric Au/SiO2/Au cross-shape nanobars,” Mod. Phys. Lett. B 28(17), 1450143 (2014).
[Crossref]

Dazzi, A.

Z. Cui, C. Coletta, A. Dazzi, P. Lefrançois, M. Gervais, S. Néron, and S. Remita, “Radiolytic method as a novel approach for the synthesis of nanostructured conducting polypyrrole,” Langmuir 30(46), 14086–14094 (2014).
[Crossref] [PubMed]

A. Deniset-Besseau, C. B. Prater, M. J. Virolle, and A. Dazzi, “Monitoring triacylglycerols accumulation by atomic force microscopy based infrared spectroscopy in streptomyces species for biodiesel applications,” J. Phys. Chem. Lett. 5(4), 654–658 (2014).
[Crossref] [PubMed]

A. Dazzi, C. B. Prater, Q. Hu, D. B. Chase, J. F. Rabolt, and C. Marcott, “AFM-IR: combining atomic force microscopy and infrared spectroscopy for nanoscale chemical characterization,” Appl. Spectrosc. 66(12), 1365–1384 (2012).
[Crossref] [PubMed]

A. Dazzi, R. Prazeres, F. Glotin, J. M. Ortega, M. Al-Sawaftah, and M. de Frutos, “Chemical mapping of the distribution of viruses into infected bacteria with a photothermal method,” Ultramicroscopy 108(7), 635–641 (2008).
[Crossref] [PubMed]

C. Mayet, A. Dazzi, R. Prazeres, F. Allot, F. Glotin, and J. M. Ortega, “Sub-100 nm IR spectromicroscopy of living cells,” Opt. Lett. 33(14), 1611–1613 (2008).
[Crossref] [PubMed]

A. Dazzi, R. Prazeres, F. Glotin, and J. M. Ortega, “Local infrared microspectroscopy with subwavelength spatial resolution with an atomic force microscope tip used as a photothermal sensor,” Opt. Lett. 30(18), 2388–2390 (2005).
[Crossref] [PubMed]

de Frutos, M.

A. Dazzi, R. Prazeres, F. Glotin, J. M. Ortega, M. Al-Sawaftah, and M. de Frutos, “Chemical mapping of the distribution of viruses into infected bacteria with a photothermal method,” Ultramicroscopy 108(7), 635–641 (2008).
[Crossref] [PubMed]

de Groot, C. H.

M. Abb, Y. Wang, N. Papasimakis, C. H. de Groot, and O. L. Muskens, “Surface-enhanced infrared spectroscopy using metal oxide plasmonic antenna arrays,” Nano Lett. 14(1), 346–352 (2014).
[Crossref] [PubMed]

de la Chapelle, M. L.

A. Pucci, F. Neubrech, D. Weber, S. Hong, T. Toury, and M. L. de la Chapelle, “Surface enhanced infrared spectroscopy using gold nanoantennas,” Phys. Status Solidi B 247(8), 2071–2074 (2010).
[Crossref]

De la Rue, R. M.

Debus, C.

C. Debus and P. H. Bolivar, “Frequency selective surfaces for high sensitivity terahertz sensing,” Appl. Phys. Lett. 91(18), 184102 (2007).
[Crossref]

Deniset-Besseau, A.

A. Deniset-Besseau, C. B. Prater, M. J. Virolle, and A. Dazzi, “Monitoring triacylglycerols accumulation by atomic force microscopy based infrared spectroscopy in streptomyces species for biodiesel applications,” J. Phys. Chem. Lett. 5(4), 654–658 (2014).
[Crossref] [PubMed]

Derooij, A.

A. Derooij, “The Oxidation of silver by atomic oxygen,” Esa J-Eur. Space Agen. 13, 363–382 (1989).

Dey, D.

Dietler, G.

T. Müller, F. S. Ruggeri, A. J. Kulik, U. Shimanovich, T. O. Mason, T. P. J. Knowles, and G. Dietler, “Nanoscale spatially resolved infrared spectra from single microdroplets,” Lab Chip 14(7), 1315–1319 (2014).
[Crossref] [PubMed]

Dong, Q.

R. Dong, Y. Fang, J. Chae, J. Dai, Z. Xiao, Q. Dong, Y. Yuan, A. Centrone, X. C. Zeng, and J. Huang, “High-gain and low-driving-voltage photodetectors based on organolead triiodide perovskites,” Adv. Mater. 27(11), 1912–1918 (2015).
[Crossref] [PubMed]

Dong, R.

R. Dong, Y. Fang, J. Chae, J. Dai, Z. Xiao, Q. Dong, Y. Yuan, A. Centrone, X. C. Zeng, and J. Huang, “High-gain and low-driving-voltage photodetectors based on organolead triiodide perovskites,” Adv. Mater. 27(11), 1912–1918 (2015).
[Crossref] [PubMed]

Dorpe, P. V.

F. Hao, P. Nordlander, Y. Sonnefraud, P. V. Dorpe, and S. A. Maier, “Tunability of subradiant dipolar and fano-type plasmon resonances in metallic ring/disk cavities: implications for nanoscale optical sensing,” ACS Nano 3(3), 643–652 (2009).
[Crossref] [PubMed]

Drachev, V. P.

Du, C.

L. Yang, C. Du, and X. Luo, “Numerical study of optical properties of Ag/SiO2/Ag sandwich nanobowties,” J. Comput. Theor. Nanosci. 6(1), 106–111 (2009).
[Crossref]

Du, H. J.

M. L. Wan, H. J. Du, Y. L. Song, F. Q. Zhou, and K. J. Dai, “Tunable localized surface plasmon resonances of asymmetric Au/SiO2/Au cross-shape nanobars,” Mod. Phys. Lett. B 28(17), 1450143 (2014).
[Crossref]

Economou, E. N.

J. Zhou, T. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett. 95(22), 223902 (2005).
[Crossref] [PubMed]

Enkrich, C.

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95(20), 203901 (2005).
[Crossref] [PubMed]

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306(5700), 1351–1353 (2004).
[Crossref] [PubMed]

Erramilli, S.

R. Adato, A. A. Yanik, J. J. Amsden, D. L. Kaplan, F. G. Omenetto, M. K. Hong, S. Erramilli, and H. Altug, “Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays,” Proc. Natl. Acad. Sci. U.S.A. 106(46), 19227–19232 (2009).
[Crossref] [PubMed]

Fang, Y.

R. Dong, Y. Fang, J. Chae, J. Dai, Z. Xiao, Q. Dong, Y. Yuan, A. Centrone, X. C. Zeng, and J. Huang, “High-gain and low-driving-voltage photodetectors based on organolead triiodide perovskites,” Adv. Mater. 27(11), 1912–1918 (2015).
[Crossref] [PubMed]

Farrusseng, D.

A. M. Katzenmeyer, J. Canivet, G. Holland, D. Farrusseng, and A. Centrone, “Assessing chemical heterogeneity at the nanoscale in mixed-ligand metal-organic frameworks with the PTIR technique,” Angew. Chem. Int. Ed. Engl. 53(11), 2852–2856 (2014).
[Crossref] [PubMed]

Fedotov, V. A.

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
[Crossref] [PubMed]

Felts, J. R.

J. R. Felts, K. Kjoller, M. Lo, C. B. Prater, and W. P. King, “Nanometer-scale infrared spectroscopy of heterogeneous polymer nanostructures fabricated by tip-based nanofabrication,” ACS Nano 6(9), 8015–8021 (2012).
[Crossref] [PubMed]

García-Etxarri, A.

F. Neubrech, A. Pucci, T. W. Cornelius, S. Karim, A. García-Etxarri, and J. Aizpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett. 101(15), 157403 (2008).
[Crossref] [PubMed]

Gelfand, R. M.

Gerbert, D.

C. Huck, F. Neubrech, J. Vogt, A. Toma, D. Gerbert, J. Katzmann, T. Härtling, and A. Pucci, “Surface-enhanced infrared spectroscopy using nanometer-sized gaps,” ACS Nano 8(5), 4908–4914 (2014).
[Crossref] [PubMed]

Gervais, M.

Z. Cui, C. Coletta, A. Dazzi, P. Lefrançois, M. Gervais, S. Néron, and S. Remita, “Radiolytic method as a novel approach for the synthesis of nanostructured conducting polypyrrole,” Langmuir 30(46), 14086–14094 (2014).
[Crossref] [PubMed]

Glotin, F.

Halas, N. J.

F. Le, D. W. Brandl, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, “Metallic nanoparticle arrays: a common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption,” ACS Nano 2(4), 707–718 (2008).
[Crossref] [PubMed]

Hao, F.

F. Hao, P. Nordlander, Y. Sonnefraud, P. V. Dorpe, and S. A. Maier, “Tunability of subradiant dipolar and fano-type plasmon resonances in metallic ring/disk cavities: implications for nanoscale optical sensing,” ACS Nano 3(3), 643–652 (2009).
[Crossref] [PubMed]

Harrison, A. J.

A. J. Harrison, E. A. Bilgili, S. P. Beaudoin, and L. S. Taylor, “Atomic force microscope infrared spectroscopy of griseofulvin nanocrystals,” Anal. Chem. 85(23), 11449–11455 (2013).
[Crossref] [PubMed]

Härtling, T.

C. Huck, F. Neubrech, J. Vogt, A. Toma, D. Gerbert, J. Katzmann, T. Härtling, and A. Pucci, “Surface-enhanced infrared spectroscopy using nanometer-sized gaps,” ACS Nano 8(5), 4908–4914 (2014).
[Crossref] [PubMed]

Hatton, T. A.

J. H. Park, G. von Maltzahn, L. L. Ong, A. Centrone, T. A. Hatton, E. Ruoslahti, S. N. Bhatia, and M. J. Sailor, “Cooperative nanoparticles for tumor detection and photothermally triggered drug delivery,” Adv. Mater. 22(8), 880–885 (2010).
[Crossref] [PubMed]

G. von Maltzahn, A. Centrone, J. H. Park, R. Ramanathan, M. J. Sailor, T. A. Hatton, and S. N. Bhatia, “SERS-coded gold nanorods as a multifunctional platform for densely multiplexed near-infrared imaging and photothermal heating,” Adv. Mater. 21(31), 3175–3180 (2009).
[Crossref] [PubMed]

Hegnerová, K.

H. Aouani, H. Šípová, M. Rahmani, M. Navarro-Cia, K. Hegnerová, J. Homola, M. Hong, and S. A. Maier, “Ultrasensitive broadband probing of molecular vibrational modes with multifrequency optical antennas,” ACS Nano 7(1), 669–675 (2013).
[Crossref] [PubMed]

Hinrichs, K.

T. W. H. Oates, M. Losurdo, S. Noda, and K. Hinrichs, “The effect of atmospheric tarnishing on the optical and structural properties of silver nanoparticles,” J. Phys. D App. Phys. 46(14), 145308 (2013).

Holland, G.

V. Aksyuk, B. Lahiri, G. Holland, and A. Centrone, “Near-field asymmetries in plasmonic resonators,” Nanoscale 7(8), 3634–3644 (2015).
[Crossref] [PubMed]

A. M. Katzenmeyer, G. Holland, K. Kjoller, and A. Centrone, “Absorption spectroscopy and imaging from the visible through mid-infrared with 20 nm resolution,” Anal. Chem. 87(6), 3154–3159 (2015).
[Crossref] [PubMed]

A. M. Katzenmeyer, J. Chae, R. Kasica, G. Holland, B. Lahiri, and A. Centrone, “Nanoscale imaging and spectroscopy of plasmonic modes with the PTIR technique,” Adv. Opt. Mater. 2(8), 718–722 (2014).
[Crossref]

A. M. Katzenmeyer, J. Canivet, G. Holland, D. Farrusseng, and A. Centrone, “Assessing chemical heterogeneity at the nanoscale in mixed-ligand metal-organic frameworks with the PTIR technique,” Angew. Chem. Int. Ed. Engl. 53(11), 2852–2856 (2014).
[Crossref] [PubMed]

B. Lahiri, G. Holland, and A. Centrone, “Chemical imaging beyond the diffraction limit: experimental validation of the PTIR technique,” Small 9(3), 439–445 (2013).
[Crossref] [PubMed]

B. Lahiri, G. Holland, V. Aksyuk, and A. Centrone, “Nanoscale imaging of plasmonic hot spots and dark modes with the photothermal-induced resonance technique,” Nano Lett. 13(7), 3218–3224 (2013).
[Crossref] [PubMed]

Homola, J.

H. Aouani, H. Šípová, M. Rahmani, M. Navarro-Cia, K. Hegnerová, J. Homola, M. Hong, and S. A. Maier, “Ultrasensitive broadband probing of molecular vibrational modes with multifrequency optical antennas,” ACS Nano 7(1), 669–675 (2013).
[Crossref] [PubMed]

Hong, M.

H. Aouani, H. Šípová, M. Rahmani, M. Navarro-Cia, K. Hegnerová, J. Homola, M. Hong, and S. A. Maier, “Ultrasensitive broadband probing of molecular vibrational modes with multifrequency optical antennas,” ACS Nano 7(1), 669–675 (2013).
[Crossref] [PubMed]

Hong, M. K.

R. Adato, A. A. Yanik, J. J. Amsden, D. L. Kaplan, F. G. Omenetto, M. K. Hong, S. Erramilli, and H. Altug, “Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays,” Proc. Natl. Acad. Sci. U.S.A. 106(46), 19227–19232 (2009).
[Crossref] [PubMed]

Hong, S.

A. Pucci, F. Neubrech, D. Weber, S. Hong, T. Toury, and M. L. de la Chapelle, “Surface enhanced infrared spectroscopy using gold nanoantennas,” Phys. Status Solidi B 247(8), 2071–2074 (2010).
[Crossref]

Hu, Q.

Huang, C.

N. Verellen, P. Van Dorpe, C. Huang, K. Lodewijks, G. A. E. Vandenbosch, L. Lagae, and V. V. Moshchalkov, “Plasmon line shaping using nanocrosses for high sensitivity localized surface plasmon resonance sensing,” Nano Lett. 11(2), 391–397 (2011).
[Crossref] [PubMed]

Huang, J.

Y. Yuan, J. Chae, Y. Shao, Q. Wang, Z. Xiao, A. Centrone, and J. Huang, “Photovoltaic switching mechanism in lateral structure hybrid perovskite solar cells,” Adv. Energy Mater. 5(15), 1500615 (2015).
[Crossref]

R. Dong, Y. Fang, J. Chae, J. Dai, Z. Xiao, Q. Dong, Y. Yuan, A. Centrone, X. C. Zeng, and J. Huang, “High-gain and low-driving-voltage photodetectors based on organolead triiodide perovskites,” Adv. Mater. 27(11), 1912–1918 (2015).
[Crossref] [PubMed]

Huck, C.

C. Huck, F. Neubrech, J. Vogt, A. Toma, D. Gerbert, J. Katzmann, T. Härtling, and A. Pucci, “Surface-enhanced infrared spectroscopy using nanometer-sized gaps,” ACS Nano 8(5), 4908–4914 (2014).
[Crossref] [PubMed]

Jin, M. Z.

F. Lu, M. Z. Jin, and M. A. Belkin, “Tip-enhanced infrared nanospectroscopy via molecular expansion force detection,” Nat. Photonics 8(4), 307–312 (2014).
[Crossref]

Johnson, N. P.

Justice, B. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Kafesaki, M.

J. Zhou, T. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett. 95(22), 223902 (2005).
[Crossref] [PubMed]

Kaplan, D. L.

R. Adato, A. A. Yanik, J. J. Amsden, D. L. Kaplan, F. G. Omenetto, M. K. Hong, S. Erramilli, and H. Altug, “Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays,” Proc. Natl. Acad. Sci. U.S.A. 106(46), 19227–19232 (2009).
[Crossref] [PubMed]

Karim, S.

F. Neubrech, A. Pucci, T. W. Cornelius, S. Karim, A. García-Etxarri, and J. Aizpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett. 101(15), 157403 (2008).
[Crossref] [PubMed]

Kasica, R.

A. M. Katzenmeyer, J. Chae, R. Kasica, G. Holland, B. Lahiri, and A. Centrone, “Nanoscale imaging and spectroscopy of plasmonic modes with the PTIR technique,” Adv. Opt. Mater. 2(8), 718–722 (2014).
[Crossref]

Katzenmeyer, A. M.

A. M. Katzenmeyer, G. Holland, K. Kjoller, and A. Centrone, “Absorption spectroscopy and imaging from the visible through mid-infrared with 20 nm resolution,” Anal. Chem. 87(6), 3154–3159 (2015).
[Crossref] [PubMed]

A. M. Katzenmeyer, J. Chae, R. Kasica, G. Holland, B. Lahiri, and A. Centrone, “Nanoscale imaging and spectroscopy of plasmonic modes with the PTIR technique,” Adv. Opt. Mater. 2(8), 718–722 (2014).
[Crossref]

A. M. Katzenmeyer, J. Canivet, G. Holland, D. Farrusseng, and A. Centrone, “Assessing chemical heterogeneity at the nanoscale in mixed-ligand metal-organic frameworks with the PTIR technique,” Angew. Chem. Int. Ed. Engl. 53(11), 2852–2856 (2014).
[Crossref] [PubMed]

A. M. Katzenmeyer, V. Aksyuk, and A. Centrone, “Nanoscale infrared spectroscopy: improving the spectral range of the photothermal induced resonance technique,” Anal. Chem. 85(4), 1972–1979 (2013).
[Crossref] [PubMed]

Katzmann, J.

C. Huck, F. Neubrech, J. Vogt, A. Toma, D. Gerbert, J. Katzmann, T. Härtling, and A. Pucci, “Surface-enhanced infrared spectroscopy using nanometer-sized gaps,” ACS Nano 8(5), 4908–4914 (2014).
[Crossref] [PubMed]

Kennedy, E.

E. Kennedy, R. Al-Majmaie, M. Al-Rubeai, D. Zerulla, and J. H. Rice, “Nanoscale infrared absorption imaging permits non-destructive intracellular photosensitizer localization for subcellular uptake analysis,” RSC Advances 3(33), 13789–13795 (2013).
[Crossref]

Khanikaev, A. B.

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11(1), 69–75 (2011).
[Crossref] [PubMed]

Khokhar, A. Z.

Kildishev, A. V.

King, W. P.

J. R. Felts, K. Kjoller, M. Lo, C. B. Prater, and W. P. King, “Nanometer-scale infrared spectroscopy of heterogeneous polymer nanostructures fabricated by tip-based nanofabrication,” ACS Nano 6(9), 8015–8021 (2012).
[Crossref] [PubMed]

Kjoller, K.

A. M. Katzenmeyer, G. Holland, K. Kjoller, and A. Centrone, “Absorption spectroscopy and imaging from the visible through mid-infrared with 20 nm resolution,” Anal. Chem. 87(6), 3154–3159 (2015).
[Crossref] [PubMed]

J. R. Felts, K. Kjoller, M. Lo, C. B. Prater, and W. P. King, “Nanometer-scale infrared spectroscopy of heterogeneous polymer nanostructures fabricated by tip-based nanofabrication,” ACS Nano 6(9), 8015–8021 (2012).
[Crossref] [PubMed]

C. Marcott, M. Lo, K. Kjoller, C. Prater, and I. Noda, “Spatial differentiation of sub-micrometer domains in a poly(hydroxyalkanoate) copolymer using instrumentation that combines atomic force microscopy (AFM) and infrared (IR) spectroscopy,” Appl. Spectrosc. 65(10), 1145–1150 (2011).
[Crossref] [PubMed]

Knowles, T. P. J.

T. Müller, F. S. Ruggeri, A. J. Kulik, U. Shimanovich, T. O. Mason, T. P. J. Knowles, and G. Dietler, “Nanoscale spatially resolved infrared spectra from single microdroplets,” Lab Chip 14(7), 1315–1319 (2014).
[Crossref] [PubMed]

Kohoutek, J.

Koschny, T.

J. Zhou, T. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett. 95(22), 223902 (2005).
[Crossref] [PubMed]

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95(20), 203901 (2005).
[Crossref] [PubMed]

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306(5700), 1351–1353 (2004).
[Crossref] [PubMed]

Kulik, A. J.

T. Müller, F. S. Ruggeri, A. J. Kulik, U. Shimanovich, T. O. Mason, T. P. J. Knowles, and G. Dietler, “Nanoscale spatially resolved infrared spectra from single microdroplets,” Lab Chip 14(7), 1315–1319 (2014).
[Crossref] [PubMed]

Kundu, J.

F. Le, D. W. Brandl, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, “Metallic nanoparticle arrays: a common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption,” ACS Nano 2(4), 707–718 (2008).
[Crossref] [PubMed]

Lagae, L.

N. Verellen, P. Van Dorpe, C. Huang, K. Lodewijks, G. A. E. Vandenbosch, L. Lagae, and V. V. Moshchalkov, “Plasmon line shaping using nanocrosses for high sensitivity localized surface plasmon resonance sensing,” Nano Lett. 11(2), 391–397 (2011).
[Crossref] [PubMed]

Lahiri, B.

V. Aksyuk, B. Lahiri, G. Holland, and A. Centrone, “Near-field asymmetries in plasmonic resonators,” Nanoscale 7(8), 3634–3644 (2015).
[Crossref] [PubMed]

A. M. Katzenmeyer, J. Chae, R. Kasica, G. Holland, B. Lahiri, and A. Centrone, “Nanoscale imaging and spectroscopy of plasmonic modes with the PTIR technique,” Adv. Opt. Mater. 2(8), 718–722 (2014).
[Crossref]

B. Lahiri, G. Holland, and A. Centrone, “Chemical imaging beyond the diffraction limit: experimental validation of the PTIR technique,” Small 9(3), 439–445 (2013).
[Crossref] [PubMed]

B. Lahiri, G. Holland, V. Aksyuk, and A. Centrone, “Nanoscale imaging of plasmonic hot spots and dark modes with the photothermal-induced resonance technique,” Nano Lett. 13(7), 3218–3224 (2013).
[Crossref] [PubMed]

B. Lahiri, S. G. McMeekin, R. M. De la Rue, and N. P. Johnson, “Enhanced Fano resonance of organic material films deposited on arrays of asymmetric split-ring resonators (A-SRRs),” Opt. Express 21(8), 9343–9352 (2013).
[Crossref] [PubMed]

B. Lahiri, S. G. McMeekin, A. Z. Khokhar, R. M. De La Rue, and N. P. Johnson, “Magnetic response of split ring resonators (SRRs) at visible frequencies,” Opt. Express 18(3), 3210–3218 (2010).
[Crossref] [PubMed]

B. Lahiri, A. Z. Khokhar, R. M. De La Rue, S. G. McMeekin, and N. P. Johnson, “Asymmetric split ring resonators for optical sensing of organic materials,” Opt. Express 17(2), 1107–1115 (2009).
[Crossref] [PubMed]

Le, F.

F. Le, D. W. Brandl, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, “Metallic nanoparticle arrays: a common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption,” ACS Nano 2(4), 707–718 (2008).
[Crossref] [PubMed]

Lefrançois, P.

Z. Cui, C. Coletta, A. Dazzi, P. Lefrançois, M. Gervais, S. Néron, and S. Remita, “Radiolytic method as a novel approach for the synthesis of nanostructured conducting polypyrrole,” Langmuir 30(46), 14086–14094 (2014).
[Crossref] [PubMed]

Lendl, B.

G. Ramer, A. Balbekova, A. Schwaighofer, and B. Lendl, “Method for time-resolved monitoring of a solid state biological film using photothermal infrared nanoscopy on the example of poly-L-lysine,” Anal. Chem. 87(8), 4415–4420 (2015).
[Crossref] [PubMed]

Lezec, H. J.

T. Xu, A. Agrawal, M. Abashin, K. J. Chau, and H. J. Lezec, “All-angle negative refraction and active flat lensing of ultraviolet light,” Nature 497(7450), 470–474 (2013).
[Crossref] [PubMed]

Li, H.

Linden, S.

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95(20), 203901 (2005).
[Crossref] [PubMed]

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306(5700), 1351–1353 (2004).
[Crossref] [PubMed]

Lo, M.

J. R. Felts, K. Kjoller, M. Lo, C. B. Prater, and W. P. King, “Nanometer-scale infrared spectroscopy of heterogeneous polymer nanostructures fabricated by tip-based nanofabrication,” ACS Nano 6(9), 8015–8021 (2012).
[Crossref] [PubMed]

C. Marcott, M. Lo, K. Kjoller, C. Prater, and I. Noda, “Spatial differentiation of sub-micrometer domains in a poly(hydroxyalkanoate) copolymer using instrumentation that combines atomic force microscopy (AFM) and infrared (IR) spectroscopy,” Appl. Spectrosc. 65(10), 1145–1150 (2011).
[Crossref] [PubMed]

Lodewijks, K.

N. Verellen, P. Van Dorpe, C. Huang, K. Lodewijks, G. A. E. Vandenbosch, L. Lagae, and V. V. Moshchalkov, “Plasmon line shaping using nanocrosses for high sensitivity localized surface plasmon resonance sensing,” Nano Lett. 11(2), 391–397 (2011).
[Crossref] [PubMed]

Losurdo, M.

T. W. H. Oates, M. Losurdo, S. Noda, and K. Hinrichs, “The effect of atmospheric tarnishing on the optical and structural properties of silver nanoparticles,” J. Phys. D App. Phys. 46(14), 145308 (2013).

Lu, F.

F. Lu, M. Z. Jin, and M. A. Belkin, “Tip-enhanced infrared nanospectroscopy via molecular expansion force detection,” Nat. Photonics 8(4), 307–312 (2014).
[Crossref]

Luo, J.

J. Luo, X. Y. Zhuang, W. Xiong, and J. Yao, “Numerical study on optical properties of Ag/SiO2SiO2/Ag sandwich nanocrescents substrate,” J. Mod. Opt. 59(15), 1316–1321 (2012).
[Crossref]

Luo, X.

L. Yang, C. Du, and X. Luo, “Numerical study of optical properties of Ag/SiO2/Ag sandwich nanobowties,” J. Comput. Theor. Nanosci. 6(1), 106–111 (2009).
[Crossref]

Maier, S. A.

H. Aouani, H. Šípová, M. Rahmani, M. Navarro-Cia, K. Hegnerová, J. Homola, M. Hong, and S. A. Maier, “Ultrasensitive broadband probing of molecular vibrational modes with multifrequency optical antennas,” ACS Nano 7(1), 669–675 (2013).
[Crossref] [PubMed]

F. Hao, P. Nordlander, Y. Sonnefraud, P. V. Dorpe, and S. A. Maier, “Tunability of subradiant dipolar and fano-type plasmon resonances in metallic ring/disk cavities: implications for nanoscale optical sensing,” ACS Nano 3(3), 643–652 (2009).
[Crossref] [PubMed]

Marcott, C.

Mason, T. O.

T. Müller, F. S. Ruggeri, A. J. Kulik, U. Shimanovich, T. O. Mason, T. P. J. Knowles, and G. Dietler, “Nanoscale spatially resolved infrared spectra from single microdroplets,” Lab Chip 14(7), 1315–1319 (2014).
[Crossref] [PubMed]

Mayet, C.

McMeekin, S. G.

Mock, J. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Mohseni, H.

Morfa, A. J.

A. J. Morfa, K. L. Rowlen, T. H. Reilly, M. J. Romero, and J. van de Lagemaat, “Plasmon-enhanced solar energy conversion in organic bulk heterojunction photovoltaics,” Appl. Phys. Lett. 92(1), 013504 (2008).
[Crossref]

Moshchalkov, V. V.

N. Verellen, P. Van Dorpe, C. Huang, K. Lodewijks, G. A. E. Vandenbosch, L. Lagae, and V. V. Moshchalkov, “Plasmon line shaping using nanocrosses for high sensitivity localized surface plasmon resonance sensing,” Nano Lett. 11(2), 391–397 (2011).
[Crossref] [PubMed]

Müller, T.

T. Müller, F. S. Ruggeri, A. J. Kulik, U. Shimanovich, T. O. Mason, T. P. J. Knowles, and G. Dietler, “Nanoscale spatially resolved infrared spectra from single microdroplets,” Lab Chip 14(7), 1315–1319 (2014).
[Crossref] [PubMed]

Muskens, O. L.

M. Abb, Y. Wang, N. Papasimakis, C. H. de Groot, and O. L. Muskens, “Surface-enhanced infrared spectroscopy using metal oxide plasmonic antenna arrays,” Nano Lett. 14(1), 346–352 (2014).
[Crossref] [PubMed]

Navarro-Cia, M.

H. Aouani, H. Šípová, M. Rahmani, M. Navarro-Cia, K. Hegnerová, J. Homola, M. Hong, and S. A. Maier, “Ultrasensitive broadband probing of molecular vibrational modes with multifrequency optical antennas,” ACS Nano 7(1), 669–675 (2013).
[Crossref] [PubMed]

Néron, S.

Z. Cui, C. Coletta, A. Dazzi, P. Lefrançois, M. Gervais, S. Néron, and S. Remita, “Radiolytic method as a novel approach for the synthesis of nanostructured conducting polypyrrole,” Langmuir 30(46), 14086–14094 (2014).
[Crossref] [PubMed]

Neubrech, F.

C. Huck, F. Neubrech, J. Vogt, A. Toma, D. Gerbert, J. Katzmann, T. Härtling, and A. Pucci, “Surface-enhanced infrared spectroscopy using nanometer-sized gaps,” ACS Nano 8(5), 4908–4914 (2014).
[Crossref] [PubMed]

A. Pucci, F. Neubrech, D. Weber, S. Hong, T. Toury, and M. L. de la Chapelle, “Surface enhanced infrared spectroscopy using gold nanoantennas,” Phys. Status Solidi B 247(8), 2071–2074 (2010).
[Crossref]

F. Neubrech, A. Pucci, T. W. Cornelius, S. Karim, A. García-Etxarri, and J. Aizpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett. 101(15), 157403 (2008).
[Crossref] [PubMed]

Noda, I.

Noda, S.

T. W. H. Oates, M. Losurdo, S. Noda, and K. Hinrichs, “The effect of atmospheric tarnishing on the optical and structural properties of silver nanoparticles,” J. Phys. D App. Phys. 46(14), 145308 (2013).

Nordlander, P.

F. Hao, P. Nordlander, Y. Sonnefraud, P. V. Dorpe, and S. A. Maier, “Tunability of subradiant dipolar and fano-type plasmon resonances in metallic ring/disk cavities: implications for nanoscale optical sensing,” ACS Nano 3(3), 643–652 (2009).
[Crossref] [PubMed]

F. Le, D. W. Brandl, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, “Metallic nanoparticle arrays: a common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption,” ACS Nano 2(4), 707–718 (2008).
[Crossref] [PubMed]

Oates, T. W. H.

T. W. H. Oates, M. Losurdo, S. Noda, and K. Hinrichs, “The effect of atmospheric tarnishing on the optical and structural properties of silver nanoparticles,” J. Phys. D App. Phys. 46(14), 145308 (2013).

Omenetto, F. G.

R. Adato, A. A. Yanik, J. J. Amsden, D. L. Kaplan, F. G. Omenetto, M. K. Hong, S. Erramilli, and H. Altug, “Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays,” Proc. Natl. Acad. Sci. U.S.A. 106(46), 19227–19232 (2009).
[Crossref] [PubMed]

Ong, L. L.

J. H. Park, G. von Maltzahn, L. L. Ong, A. Centrone, T. A. Hatton, E. Ruoslahti, S. N. Bhatia, and M. J. Sailor, “Cooperative nanoparticles for tumor detection and photothermally triggered drug delivery,” Adv. Mater. 22(8), 880–885 (2010).
[Crossref] [PubMed]

Ortega, J. M.

Papasimakis, N.

M. Abb, Y. Wang, N. Papasimakis, C. H. de Groot, and O. L. Muskens, “Surface-enhanced infrared spectroscopy using metal oxide plasmonic antenna arrays,” Nano Lett. 14(1), 346–352 (2014).
[Crossref] [PubMed]

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
[Crossref] [PubMed]

Park, J. H.

J. H. Park, G. von Maltzahn, L. L. Ong, A. Centrone, T. A. Hatton, E. Ruoslahti, S. N. Bhatia, and M. J. Sailor, “Cooperative nanoparticles for tumor detection and photothermally triggered drug delivery,” Adv. Mater. 22(8), 880–885 (2010).
[Crossref] [PubMed]

G. von Maltzahn, A. Centrone, J. H. Park, R. Ramanathan, M. J. Sailor, T. A. Hatton, and S. N. Bhatia, “SERS-coded gold nanorods as a multifunctional platform for densely multiplexed near-infrared imaging and photothermal heating,” Adv. Mater. 21(31), 3175–3180 (2009).
[Crossref] [PubMed]

Park, Y.-S.

E. Cubukcu, S. Zhang, Y.-S. Park, G. Bartal, and X. Zhang, “Split ring resonator sensors for infrared detection of single molecular monolayers,” Appl. Phys. Lett. 95(4), 043113 (2009).
[Crossref]

Pendry, J. B.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

J. Zhou, T. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett. 95(22), 223902 (2005).
[Crossref] [PubMed]

D. R. Smith, J. B. Pendry, and M. C. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
[Crossref] [PubMed]

Polman, A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

Prater, C.

Prater, C. B.

A. Deniset-Besseau, C. B. Prater, M. J. Virolle, and A. Dazzi, “Monitoring triacylglycerols accumulation by atomic force microscopy based infrared spectroscopy in streptomyces species for biodiesel applications,” J. Phys. Chem. Lett. 5(4), 654–658 (2014).
[Crossref] [PubMed]

J. R. Felts, K. Kjoller, M. Lo, C. B. Prater, and W. P. King, “Nanometer-scale infrared spectroscopy of heterogeneous polymer nanostructures fabricated by tip-based nanofabrication,” ACS Nano 6(9), 8015–8021 (2012).
[Crossref] [PubMed]

A. Dazzi, C. B. Prater, Q. Hu, D. B. Chase, J. F. Rabolt, and C. Marcott, “AFM-IR: combining atomic force microscopy and infrared spectroscopy for nanoscale chemical characterization,” Appl. Spectrosc. 66(12), 1365–1384 (2012).
[Crossref] [PubMed]

Prazeres, R.

Prosvirnin, S. L.

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
[Crossref] [PubMed]

Pryce, I. M.

Pucci, A.

C. Huck, F. Neubrech, J. Vogt, A. Toma, D. Gerbert, J. Katzmann, T. Härtling, and A. Pucci, “Surface-enhanced infrared spectroscopy using nanometer-sized gaps,” ACS Nano 8(5), 4908–4914 (2014).
[Crossref] [PubMed]

A. Pucci, F. Neubrech, D. Weber, S. Hong, T. Toury, and M. L. de la Chapelle, “Surface enhanced infrared spectroscopy using gold nanoantennas,” Phys. Status Solidi B 247(8), 2071–2074 (2010).
[Crossref]

F. Neubrech, A. Pucci, T. W. Cornelius, S. Karim, A. García-Etxarri, and J. Aizpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett. 101(15), 157403 (2008).
[Crossref] [PubMed]

Rabolt, J. F.

Rahmani, M.

H. Aouani, H. Šípová, M. Rahmani, M. Navarro-Cia, K. Hegnerová, J. Homola, M. Hong, and S. A. Maier, “Ultrasensitive broadband probing of molecular vibrational modes with multifrequency optical antennas,” ACS Nano 7(1), 669–675 (2013).
[Crossref] [PubMed]

Ramanathan, R.

G. von Maltzahn, A. Centrone, J. H. Park, R. Ramanathan, M. J. Sailor, T. A. Hatton, and S. N. Bhatia, “SERS-coded gold nanorods as a multifunctional platform for densely multiplexed near-infrared imaging and photothermal heating,” Adv. Mater. 21(31), 3175–3180 (2009).
[Crossref] [PubMed]

Ramer, G.

G. Ramer, A. Balbekova, A. Schwaighofer, and B. Lendl, “Method for time-resolved monitoring of a solid state biological film using photothermal infrared nanoscopy on the example of poly-L-lysine,” Anal. Chem. 87(8), 4415–4420 (2015).
[Crossref] [PubMed]

Reilly, T. H.

A. J. Morfa, K. L. Rowlen, T. H. Reilly, M. J. Romero, and J. van de Lagemaat, “Plasmon-enhanced solar energy conversion in organic bulk heterojunction photovoltaics,” Appl. Phys. Lett. 92(1), 013504 (2008).
[Crossref]

Remita, S.

Z. Cui, C. Coletta, A. Dazzi, P. Lefrançois, M. Gervais, S. Néron, and S. Remita, “Radiolytic method as a novel approach for the synthesis of nanostructured conducting polypyrrole,” Langmuir 30(46), 14086–14094 (2014).
[Crossref] [PubMed]

Rice, J. H.

E. Kennedy, R. Al-Majmaie, M. Al-Rubeai, D. Zerulla, and J. H. Rice, “Nanoscale infrared absorption imaging permits non-destructive intracellular photosensitizer localization for subcellular uptake analysis,” RSC Advances 3(33), 13789–13795 (2013).
[Crossref]

Romero, M. J.

A. J. Morfa, K. L. Rowlen, T. H. Reilly, M. J. Romero, and J. van de Lagemaat, “Plasmon-enhanced solar energy conversion in organic bulk heterojunction photovoltaics,” Appl. Phys. Lett. 92(1), 013504 (2008).
[Crossref]

Rose, M.

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
[Crossref] [PubMed]

Rowlen, K. L.

A. J. Morfa, K. L. Rowlen, T. H. Reilly, M. J. Romero, and J. van de Lagemaat, “Plasmon-enhanced solar energy conversion in organic bulk heterojunction photovoltaics,” Appl. Phys. Lett. 92(1), 013504 (2008).
[Crossref]

Ruggeri, F. S.

T. Müller, F. S. Ruggeri, A. J. Kulik, U. Shimanovich, T. O. Mason, T. P. J. Knowles, and G. Dietler, “Nanoscale spatially resolved infrared spectra from single microdroplets,” Lab Chip 14(7), 1315–1319 (2014).
[Crossref] [PubMed]

Ruoslahti, E.

J. H. Park, G. von Maltzahn, L. L. Ong, A. Centrone, T. A. Hatton, E. Ruoslahti, S. N. Bhatia, and M. J. Sailor, “Cooperative nanoparticles for tumor detection and photothermally triggered drug delivery,” Adv. Mater. 22(8), 880–885 (2010).
[Crossref] [PubMed]

Sailor, M. J.

J. H. Park, G. von Maltzahn, L. L. Ong, A. Centrone, T. A. Hatton, E. Ruoslahti, S. N. Bhatia, and M. J. Sailor, “Cooperative nanoparticles for tumor detection and photothermally triggered drug delivery,” Adv. Mater. 22(8), 880–885 (2010).
[Crossref] [PubMed]

G. von Maltzahn, A. Centrone, J. H. Park, R. Ramanathan, M. J. Sailor, T. A. Hatton, and S. N. Bhatia, “SERS-coded gold nanorods as a multifunctional platform for densely multiplexed near-infrared imaging and photothermal heating,” Adv. Mater. 21(31), 3175–3180 (2009).
[Crossref] [PubMed]

Sarychev, A. K.

Schmidt, F.

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95(20), 203901 (2005).
[Crossref] [PubMed]

Schurig, D.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Schwaighofer, A.

G. Ramer, A. Balbekova, A. Schwaighofer, and B. Lendl, “Method for time-resolved monitoring of a solid state biological film using photothermal infrared nanoscopy on the example of poly-L-lysine,” Anal. Chem. 87(8), 4415–4420 (2015).
[Crossref] [PubMed]

Shalaev, V. M.

Shao, Y.

Y. Yuan, J. Chae, Y. Shao, Q. Wang, Z. Xiao, A. Centrone, and J. Huang, “Photovoltaic switching mechanism in lateral structure hybrid perovskite solar cells,” Adv. Energy Mater. 5(15), 1500615 (2015).
[Crossref]

Shimanovich, U.

T. Müller, F. S. Ruggeri, A. J. Kulik, U. Shimanovich, T. O. Mason, T. P. J. Knowles, and G. Dietler, “Nanoscale spatially resolved infrared spectra from single microdroplets,” Lab Chip 14(7), 1315–1319 (2014).
[Crossref] [PubMed]

Shumaker-Parry, J. S.

R. Bukasov and J. S. Shumaker-Parry, “Silver nanocrescents with infrared plasmonic properties as tunable substrates for surface enhanced infrared absorption spectroscopy,” Anal. Chem. 81(11), 4531–4535 (2009).
[Crossref] [PubMed]

Shvets, G.

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11(1), 69–75 (2011).
[Crossref] [PubMed]

Šípová, H.

H. Aouani, H. Šípová, M. Rahmani, M. Navarro-Cia, K. Hegnerová, J. Homola, M. Hong, and S. A. Maier, “Ultrasensitive broadband probing of molecular vibrational modes with multifrequency optical antennas,” ACS Nano 7(1), 669–675 (2013).
[Crossref] [PubMed]

Smith, D. R.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

D. R. Smith, J. B. Pendry, and M. C. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
[Crossref] [PubMed]

Song, Y. L.

M. L. Wan, H. J. Du, Y. L. Song, F. Q. Zhou, and K. J. Dai, “Tunable localized surface plasmon resonances of asymmetric Au/SiO2/Au cross-shape nanobars,” Mod. Phys. Lett. B 28(17), 1450143 (2014).
[Crossref]

Sonnefraud, Y.

F. Hao, P. Nordlander, Y. Sonnefraud, P. V. Dorpe, and S. A. Maier, “Tunability of subradiant dipolar and fano-type plasmon resonances in metallic ring/disk cavities: implications for nanoscale optical sensing,” ACS Nano 3(3), 643–652 (2009).
[Crossref] [PubMed]

Soukoulis, C. M.

C. M. Soukoulis and M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nat. Photonics 5, 523–530 (2011).

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95(20), 203901 (2005).
[Crossref] [PubMed]

J. Zhou, T. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett. 95(22), 223902 (2005).
[Crossref] [PubMed]

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306(5700), 1351–1353 (2004).
[Crossref] [PubMed]

Stanley, R.

R. Stanley, “Plasmonics in the mid-infrared,” Nat. Photonics 6(7), 409–411 (2012).
[Crossref]

Starr, A. F.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Stockman, M. I.

M. I. Stockman, “Nanoplasmonics: The physics behind the applications,” Phys. Today 64(2), 39–44 (2011).
[Crossref]

Taylor, L. S.

A. J. Harrison, E. A. Bilgili, S. P. Beaudoin, and L. S. Taylor, “Atomic force microscope infrared spectroscopy of griseofulvin nanocrystals,” Anal. Chem. 85(23), 11449–11455 (2013).
[Crossref] [PubMed]

Toma, A.

C. Huck, F. Neubrech, J. Vogt, A. Toma, D. Gerbert, J. Katzmann, T. Härtling, and A. Pucci, “Surface-enhanced infrared spectroscopy using nanometer-sized gaps,” ACS Nano 8(5), 4908–4914 (2014).
[Crossref] [PubMed]

Toury, T.

A. Pucci, F. Neubrech, D. Weber, S. Hong, T. Toury, and M. L. de la Chapelle, “Surface enhanced infrared spectroscopy using gold nanoantennas,” Phys. Status Solidi B 247(8), 2071–2074 (2010).
[Crossref]

Urzhumov, Y. A.

F. Le, D. W. Brandl, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, “Metallic nanoparticle arrays: a common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption,” ACS Nano 2(4), 707–718 (2008).
[Crossref] [PubMed]

van de Lagemaat, J.

A. J. Morfa, K. L. Rowlen, T. H. Reilly, M. J. Romero, and J. van de Lagemaat, “Plasmon-enhanced solar energy conversion in organic bulk heterojunction photovoltaics,” Appl. Phys. Lett. 92(1), 013504 (2008).
[Crossref]

Van Dorpe, P.

N. Verellen, P. Van Dorpe, C. Huang, K. Lodewijks, G. A. E. Vandenbosch, L. Lagae, and V. V. Moshchalkov, “Plasmon line shaping using nanocrosses for high sensitivity localized surface plasmon resonance sensing,” Nano Lett. 11(2), 391–397 (2011).
[Crossref] [PubMed]

Vandenbosch, G. A. E.

N. Verellen, P. Van Dorpe, C. Huang, K. Lodewijks, G. A. E. Vandenbosch, L. Lagae, and V. V. Moshchalkov, “Plasmon line shaping using nanocrosses for high sensitivity localized surface plasmon resonance sensing,” Nano Lett. 11(2), 391–397 (2011).
[Crossref] [PubMed]

Verellen, N.

N. Verellen, P. Van Dorpe, C. Huang, K. Lodewijks, G. A. E. Vandenbosch, L. Lagae, and V. V. Moshchalkov, “Plasmon line shaping using nanocrosses for high sensitivity localized surface plasmon resonance sensing,” Nano Lett. 11(2), 391–397 (2011).
[Crossref] [PubMed]

Virolle, M. J.

A. Deniset-Besseau, C. B. Prater, M. J. Virolle, and A. Dazzi, “Monitoring triacylglycerols accumulation by atomic force microscopy based infrared spectroscopy in streptomyces species for biodiesel applications,” J. Phys. Chem. Lett. 5(4), 654–658 (2014).
[Crossref] [PubMed]

Vogt, J.

C. Huck, F. Neubrech, J. Vogt, A. Toma, D. Gerbert, J. Katzmann, T. Härtling, and A. Pucci, “Surface-enhanced infrared spectroscopy using nanometer-sized gaps,” ACS Nano 8(5), 4908–4914 (2014).
[Crossref] [PubMed]

von Maltzahn, G.

J. H. Park, G. von Maltzahn, L. L. Ong, A. Centrone, T. A. Hatton, E. Ruoslahti, S. N. Bhatia, and M. J. Sailor, “Cooperative nanoparticles for tumor detection and photothermally triggered drug delivery,” Adv. Mater. 22(8), 880–885 (2010).
[Crossref] [PubMed]

G. von Maltzahn, A. Centrone, J. H. Park, R. Ramanathan, M. J. Sailor, T. A. Hatton, and S. N. Bhatia, “SERS-coded gold nanorods as a multifunctional platform for densely multiplexed near-infrared imaging and photothermal heating,” Adv. Mater. 21(31), 3175–3180 (2009).
[Crossref] [PubMed]

Wan, M. L.

M. L. Wan, H. J. Du, Y. L. Song, F. Q. Zhou, and K. J. Dai, “Tunable localized surface plasmon resonances of asymmetric Au/SiO2/Au cross-shape nanobars,” Mod. Phys. Lett. B 28(17), 1450143 (2014).
[Crossref]

Wang, H.

F. Le, D. W. Brandl, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, “Metallic nanoparticle arrays: a common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption,” ACS Nano 2(4), 707–718 (2008).
[Crossref] [PubMed]

Wang, Q.

Y. Yuan, J. Chae, Y. Shao, Q. Wang, Z. Xiao, A. Centrone, and J. Huang, “Photovoltaic switching mechanism in lateral structure hybrid perovskite solar cells,” Adv. Energy Mater. 5(15), 1500615 (2015).
[Crossref]

Wang, Y.

M. Abb, Y. Wang, N. Papasimakis, C. H. de Groot, and O. L. Muskens, “Surface-enhanced infrared spectroscopy using metal oxide plasmonic antenna arrays,” Nano Lett. 14(1), 346–352 (2014).
[Crossref] [PubMed]

Weber, D.

A. Pucci, F. Neubrech, D. Weber, S. Hong, T. Toury, and M. L. de la Chapelle, “Surface enhanced infrared spectroscopy using gold nanoantennas,” Phys. Status Solidi B 247(8), 2071–2074 (2010).
[Crossref]

Wegener, M.

C. M. Soukoulis and M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nat. Photonics 5, 523–530 (2011).

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95(20), 203901 (2005).
[Crossref] [PubMed]

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306(5700), 1351–1353 (2004).
[Crossref] [PubMed]

Wiltshire, M. C.

D. R. Smith, J. B. Pendry, and M. C. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
[Crossref] [PubMed]

Wu, C.

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11(1), 69–75 (2011).
[Crossref] [PubMed]

Xiao, Z.

Y. Yuan, J. Chae, Y. Shao, Q. Wang, Z. Xiao, A. Centrone, and J. Huang, “Photovoltaic switching mechanism in lateral structure hybrid perovskite solar cells,” Adv. Energy Mater. 5(15), 1500615 (2015).
[Crossref]

R. Dong, Y. Fang, J. Chae, J. Dai, Z. Xiao, Q. Dong, Y. Yuan, A. Centrone, X. C. Zeng, and J. Huang, “High-gain and low-driving-voltage photodetectors based on organolead triiodide perovskites,” Adv. Mater. 27(11), 1912–1918 (2015).
[Crossref] [PubMed]

Xiong, W.

J. Luo, X. Y. Zhuang, W. Xiong, and J. Yao, “Numerical study on optical properties of Ag/SiO2SiO2/Ag sandwich nanocrescents substrate,” J. Mod. Opt. 59(15), 1316–1321 (2012).
[Crossref]

Xu, T.

T. Xu, A. Agrawal, M. Abashin, K. J. Chau, and H. J. Lezec, “All-angle negative refraction and active flat lensing of ultraviolet light,” Nature 497(7450), 470–474 (2013).
[Crossref] [PubMed]

Yang, L.

L. Yang, C. Du, and X. Luo, “Numerical study of optical properties of Ag/SiO2/Ag sandwich nanobowties,” J. Comput. Theor. Nanosci. 6(1), 106–111 (2009).
[Crossref]

Yanik, A. A.

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11(1), 69–75 (2011).
[Crossref] [PubMed]

R. Adato, A. A. Yanik, J. J. Amsden, D. L. Kaplan, F. G. Omenetto, M. K. Hong, S. Erramilli, and H. Altug, “Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays,” Proc. Natl. Acad. Sci. U.S.A. 106(46), 19227–19232 (2009).
[Crossref] [PubMed]

Yao, J.

J. Luo, X. Y. Zhuang, W. Xiong, and J. Yao, “Numerical study on optical properties of Ag/SiO2SiO2/Ag sandwich nanocrescents substrate,” J. Mod. Opt. 59(15), 1316–1321 (2012).
[Crossref]

Yuan, H.-K.

Yuan, Y.

R. Dong, Y. Fang, J. Chae, J. Dai, Z. Xiao, Q. Dong, Y. Yuan, A. Centrone, X. C. Zeng, and J. Huang, “High-gain and low-driving-voltage photodetectors based on organolead triiodide perovskites,” Adv. Mater. 27(11), 1912–1918 (2015).
[Crossref] [PubMed]

Y. Yuan, J. Chae, Y. Shao, Q. Wang, Z. Xiao, A. Centrone, and J. Huang, “Photovoltaic switching mechanism in lateral structure hybrid perovskite solar cells,” Adv. Energy Mater. 5(15), 1500615 (2015).
[Crossref]

Zeng, X. C.

R. Dong, Y. Fang, J. Chae, J. Dai, Z. Xiao, Q. Dong, Y. Yuan, A. Centrone, X. C. Zeng, and J. Huang, “High-gain and low-driving-voltage photodetectors based on organolead triiodide perovskites,” Adv. Mater. 27(11), 1912–1918 (2015).
[Crossref] [PubMed]

Zerulla, D.

E. Kennedy, R. Al-Majmaie, M. Al-Rubeai, D. Zerulla, and J. H. Rice, “Nanoscale infrared absorption imaging permits non-destructive intracellular photosensitizer localization for subcellular uptake analysis,” RSC Advances 3(33), 13789–13795 (2013).
[Crossref]

Zhang, S.

E. Cubukcu, S. Zhang, Y.-S. Park, G. Bartal, and X. Zhang, “Split ring resonator sensors for infrared detection of single molecular monolayers,” Appl. Phys. Lett. 95(4), 043113 (2009).
[Crossref]

Zhang, X.

E. Cubukcu, S. Zhang, Y.-S. Park, G. Bartal, and X. Zhang, “Split ring resonator sensors for infrared detection of single molecular monolayers,” Appl. Phys. Lett. 95(4), 043113 (2009).
[Crossref]

Zheludev, N. I.

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
[Crossref] [PubMed]

Zhou, F. Q.

M. L. Wan, H. J. Du, Y. L. Song, F. Q. Zhou, and K. J. Dai, “Tunable localized surface plasmon resonances of asymmetric Au/SiO2/Au cross-shape nanobars,” Mod. Phys. Lett. B 28(17), 1450143 (2014).
[Crossref]

Zhou, J.

J. Zhou, T. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett. 95(22), 223902 (2005).
[Crossref] [PubMed]

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306(5700), 1351–1353 (2004).
[Crossref] [PubMed]

Zhou, J. F.

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95(20), 203901 (2005).
[Crossref] [PubMed]

Zhuang, X. Y.

J. Luo, X. Y. Zhuang, W. Xiong, and J. Yao, “Numerical study on optical properties of Ag/SiO2SiO2/Ag sandwich nanocrescents substrate,” J. Mod. Opt. 59(15), 1316–1321 (2012).
[Crossref]

Zschiedrich, L.

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95(20), 203901 (2005).
[Crossref] [PubMed]

ACS Nano (6)

F. Le, D. W. Brandl, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, “Metallic nanoparticle arrays: a common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption,” ACS Nano 2(4), 707–718 (2008).
[Crossref] [PubMed]

K. Chen, R. Adato, and H. Altug, “Dual-band perfect absorber for multispectral plasmon-enhanced infrared spectroscopy,” ACS Nano 6(9), 7998–8006 (2012).
[Crossref] [PubMed]

H. Aouani, H. Šípová, M. Rahmani, M. Navarro-Cia, K. Hegnerová, J. Homola, M. Hong, and S. A. Maier, “Ultrasensitive broadband probing of molecular vibrational modes with multifrequency optical antennas,” ACS Nano 7(1), 669–675 (2013).
[Crossref] [PubMed]

C. Huck, F. Neubrech, J. Vogt, A. Toma, D. Gerbert, J. Katzmann, T. Härtling, and A. Pucci, “Surface-enhanced infrared spectroscopy using nanometer-sized gaps,” ACS Nano 8(5), 4908–4914 (2014).
[Crossref] [PubMed]

F. Hao, P. Nordlander, Y. Sonnefraud, P. V. Dorpe, and S. A. Maier, “Tunability of subradiant dipolar and fano-type plasmon resonances in metallic ring/disk cavities: implications for nanoscale optical sensing,” ACS Nano 3(3), 643–652 (2009).
[Crossref] [PubMed]

J. R. Felts, K. Kjoller, M. Lo, C. B. Prater, and W. P. King, “Nanometer-scale infrared spectroscopy of heterogeneous polymer nanostructures fabricated by tip-based nanofabrication,” ACS Nano 6(9), 8015–8021 (2012).
[Crossref] [PubMed]

Adv. Energy Mater. (1)

Y. Yuan, J. Chae, Y. Shao, Q. Wang, Z. Xiao, A. Centrone, and J. Huang, “Photovoltaic switching mechanism in lateral structure hybrid perovskite solar cells,” Adv. Energy Mater. 5(15), 1500615 (2015).
[Crossref]

Adv. Mater. (3)

J. H. Park, G. von Maltzahn, L. L. Ong, A. Centrone, T. A. Hatton, E. Ruoslahti, S. N. Bhatia, and M. J. Sailor, “Cooperative nanoparticles for tumor detection and photothermally triggered drug delivery,” Adv. Mater. 22(8), 880–885 (2010).
[Crossref] [PubMed]

G. von Maltzahn, A. Centrone, J. H. Park, R. Ramanathan, M. J. Sailor, T. A. Hatton, and S. N. Bhatia, “SERS-coded gold nanorods as a multifunctional platform for densely multiplexed near-infrared imaging and photothermal heating,” Adv. Mater. 21(31), 3175–3180 (2009).
[Crossref] [PubMed]

R. Dong, Y. Fang, J. Chae, J. Dai, Z. Xiao, Q. Dong, Y. Yuan, A. Centrone, X. C. Zeng, and J. Huang, “High-gain and low-driving-voltage photodetectors based on organolead triiodide perovskites,” Adv. Mater. 27(11), 1912–1918 (2015).
[Crossref] [PubMed]

Adv. Opt. Mater. (1)

A. M. Katzenmeyer, J. Chae, R. Kasica, G. Holland, B. Lahiri, and A. Centrone, “Nanoscale imaging and spectroscopy of plasmonic modes with the PTIR technique,” Adv. Opt. Mater. 2(8), 718–722 (2014).
[Crossref]

Anal. Chem. (5)

A. J. Harrison, E. A. Bilgili, S. P. Beaudoin, and L. S. Taylor, “Atomic force microscope infrared spectroscopy of griseofulvin nanocrystals,” Anal. Chem. 85(23), 11449–11455 (2013).
[Crossref] [PubMed]

R. Bukasov and J. S. Shumaker-Parry, “Silver nanocrescents with infrared plasmonic properties as tunable substrates for surface enhanced infrared absorption spectroscopy,” Anal. Chem. 81(11), 4531–4535 (2009).
[Crossref] [PubMed]

A. M. Katzenmeyer, V. Aksyuk, and A. Centrone, “Nanoscale infrared spectroscopy: improving the spectral range of the photothermal induced resonance technique,” Anal. Chem. 85(4), 1972–1979 (2013).
[Crossref] [PubMed]

G. Ramer, A. Balbekova, A. Schwaighofer, and B. Lendl, “Method for time-resolved monitoring of a solid state biological film using photothermal infrared nanoscopy on the example of poly-L-lysine,” Anal. Chem. 87(8), 4415–4420 (2015).
[Crossref] [PubMed]

A. M. Katzenmeyer, G. Holland, K. Kjoller, and A. Centrone, “Absorption spectroscopy and imaging from the visible through mid-infrared with 20 nm resolution,” Anal. Chem. 87(6), 3154–3159 (2015).
[Crossref] [PubMed]

Angew. Chem. Int. Ed. Engl. (1)

A. M. Katzenmeyer, J. Canivet, G. Holland, D. Farrusseng, and A. Centrone, “Assessing chemical heterogeneity at the nanoscale in mixed-ligand metal-organic frameworks with the PTIR technique,” Angew. Chem. Int. Ed. Engl. 53(11), 2852–2856 (2014).
[Crossref] [PubMed]

Annu. Rev. Anal. Chem. (Palo Alto, Calif.) (1)

A. Centrone, “Infrared imaging and spectroscopy beyond the diffraction limit,” Annu. Rev. Anal. Chem. (Palo Alto, Calif.) 8(1), 101–126 (2015).
[Crossref] [PubMed]

Appl. Phys. Lett. (3)

C. Debus and P. H. Bolivar, “Frequency selective surfaces for high sensitivity terahertz sensing,” Appl. Phys. Lett. 91(18), 184102 (2007).
[Crossref]

E. Cubukcu, S. Zhang, Y.-S. Park, G. Bartal, and X. Zhang, “Split ring resonator sensors for infrared detection of single molecular monolayers,” Appl. Phys. Lett. 95(4), 043113 (2009).
[Crossref]

A. J. Morfa, K. L. Rowlen, T. H. Reilly, M. J. Romero, and J. van de Lagemaat, “Plasmon-enhanced solar energy conversion in organic bulk heterojunction photovoltaics,” Appl. Phys. Lett. 92(1), 013504 (2008).
[Crossref]

Appl. Spectrosc. (3)

Esa J-Eur. Space Agen. (1)

A. Derooij, “The Oxidation of silver by atomic oxygen,” Esa J-Eur. Space Agen. 13, 363–382 (1989).

J. Comput. Theor. Nanosci. (1)

L. Yang, C. Du, and X. Luo, “Numerical study of optical properties of Ag/SiO2/Ag sandwich nanobowties,” J. Comput. Theor. Nanosci. 6(1), 106–111 (2009).
[Crossref]

J. Mod. Opt. (1)

J. Luo, X. Y. Zhuang, W. Xiong, and J. Yao, “Numerical study on optical properties of Ag/SiO2SiO2/Ag sandwich nanocrescents substrate,” J. Mod. Opt. 59(15), 1316–1321 (2012).
[Crossref]

J. Phys. Chem. Lett. (1)

A. Deniset-Besseau, C. B. Prater, M. J. Virolle, and A. Dazzi, “Monitoring triacylglycerols accumulation by atomic force microscopy based infrared spectroscopy in streptomyces species for biodiesel applications,” J. Phys. Chem. Lett. 5(4), 654–658 (2014).
[Crossref] [PubMed]

J. Phys. D App. Phys. (1)

T. W. H. Oates, M. Losurdo, S. Noda, and K. Hinrichs, “The effect of atmospheric tarnishing on the optical and structural properties of silver nanoparticles,” J. Phys. D App. Phys. 46(14), 145308 (2013).

Lab Chip (1)

T. Müller, F. S. Ruggeri, A. J. Kulik, U. Shimanovich, T. O. Mason, T. P. J. Knowles, and G. Dietler, “Nanoscale spatially resolved infrared spectra from single microdroplets,” Lab Chip 14(7), 1315–1319 (2014).
[Crossref] [PubMed]

Langmuir (1)

Z. Cui, C. Coletta, A. Dazzi, P. Lefrançois, M. Gervais, S. Néron, and S. Remita, “Radiolytic method as a novel approach for the synthesis of nanostructured conducting polypyrrole,” Langmuir 30(46), 14086–14094 (2014).
[Crossref] [PubMed]

Mod. Phys. Lett. B (1)

M. L. Wan, H. J. Du, Y. L. Song, F. Q. Zhou, and K. J. Dai, “Tunable localized surface plasmon resonances of asymmetric Au/SiO2/Au cross-shape nanobars,” Mod. Phys. Lett. B 28(17), 1450143 (2014).
[Crossref]

Nano Lett. (3)

M. Abb, Y. Wang, N. Papasimakis, C. H. de Groot, and O. L. Muskens, “Surface-enhanced infrared spectroscopy using metal oxide plasmonic antenna arrays,” Nano Lett. 14(1), 346–352 (2014).
[Crossref] [PubMed]

B. Lahiri, G. Holland, V. Aksyuk, and A. Centrone, “Nanoscale imaging of plasmonic hot spots and dark modes with the photothermal-induced resonance technique,” Nano Lett. 13(7), 3218–3224 (2013).
[Crossref] [PubMed]

N. Verellen, P. Van Dorpe, C. Huang, K. Lodewijks, G. A. E. Vandenbosch, L. Lagae, and V. V. Moshchalkov, “Plasmon line shaping using nanocrosses for high sensitivity localized surface plasmon resonance sensing,” Nano Lett. 11(2), 391–397 (2011).
[Crossref] [PubMed]

Nanoscale (1)

V. Aksyuk, B. Lahiri, G. Holland, and A. Centrone, “Near-field asymmetries in plasmonic resonators,” Nanoscale 7(8), 3634–3644 (2015).
[Crossref] [PubMed]

Nat. Mater. (2)

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11(1), 69–75 (2011).
[Crossref] [PubMed]

Nat. Photonics (4)

V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics 1(1), 41–48 (2007).
[Crossref]

C. M. Soukoulis and M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nat. Photonics 5, 523–530 (2011).

R. Stanley, “Plasmonics in the mid-infrared,” Nat. Photonics 6(7), 409–411 (2012).
[Crossref]

F. Lu, M. Z. Jin, and M. A. Belkin, “Tip-enhanced infrared nanospectroscopy via molecular expansion force detection,” Nat. Photonics 8(4), 307–312 (2014).
[Crossref]

Nature (1)

T. Xu, A. Agrawal, M. Abashin, K. J. Chau, and H. J. Lezec, “All-angle negative refraction and active flat lensing of ultraviolet light,” Nature 497(7450), 470–474 (2013).
[Crossref] [PubMed]

Opt. Express (4)

Opt. Lett. (4)

Phys. Rev. Lett. (4)

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
[Crossref] [PubMed]

J. Zhou, T. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett. 95(22), 223902 (2005).
[Crossref] [PubMed]

F. Neubrech, A. Pucci, T. W. Cornelius, S. Karim, A. García-Etxarri, and J. Aizpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett. 101(15), 157403 (2008).
[Crossref] [PubMed]

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95(20), 203901 (2005).
[Crossref] [PubMed]

Phys. Status Solidi B (1)

A. Pucci, F. Neubrech, D. Weber, S. Hong, T. Toury, and M. L. de la Chapelle, “Surface enhanced infrared spectroscopy using gold nanoantennas,” Phys. Status Solidi B 247(8), 2071–2074 (2010).
[Crossref]

Phys. Today (1)

M. I. Stockman, “Nanoplasmonics: The physics behind the applications,” Phys. Today 64(2), 39–44 (2011).
[Crossref]

Proc. Natl. Acad. Sci. U.S.A. (1)

R. Adato, A. A. Yanik, J. J. Amsden, D. L. Kaplan, F. G. Omenetto, M. K. Hong, S. Erramilli, and H. Altug, “Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays,” Proc. Natl. Acad. Sci. U.S.A. 106(46), 19227–19232 (2009).
[Crossref] [PubMed]

RSC Advances (1)

E. Kennedy, R. Al-Majmaie, M. Al-Rubeai, D. Zerulla, and J. H. Rice, “Nanoscale infrared absorption imaging permits non-destructive intracellular photosensitizer localization for subcellular uptake analysis,” RSC Advances 3(33), 13789–13795 (2013).
[Crossref]

Science (3)

D. R. Smith, J. B. Pendry, and M. C. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
[Crossref] [PubMed]

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306(5700), 1351–1353 (2004).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Small (1)

B. Lahiri, G. Holland, and A. Centrone, “Chemical imaging beyond the diffraction limit: experimental validation of the PTIR technique,” Small 9(3), 439–445 (2013).
[Crossref] [PubMed]

Ultramicroscopy (1)

A. Dazzi, R. Prazeres, F. Glotin, J. M. Ortega, M. Al-Sawaftah, and M. de Frutos, “Chemical mapping of the distribution of viruses into infected bacteria with a photothermal method,” Ultramicroscopy 108(7), 635–641 (2008).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Nanofabrication scheme: a) ZnSe right angle prisms were cleaned in an ultrasonic bath with acetone (1 min) and isopropyl alcohol (1 min) followed by oxygen plasma cleaning (15 min) before the ASRRs fabrication. b) a PMMA bilayer (250 nm and 300 nm) positive electron beam resist was spun (25 Hz) on the ZnSe prism and cured (140 °C for 15 min and 30 min respectively) before depositing an aluminum charge dissipation layer (30 nm ± 5 nm) with an electron-beam evaporator. c) the resonator arrays (200 μm x 200 μm) were written with electron beam lithography (100 kV accelerating voltage, 1000 µC/cm2 electron beam dose). The aluminum layer was then removed using an aqueous tetramethylammonium hydroxide (2.4% volume fraction) solution. d) The pattern was developed with a mixture of methyl iso-butylketone and isopropyl alcohol e) electron beam deposition was used to deposit a 5 nm chromium adhesion layer and a silver layer (≈170 nm for ARRS-Ag or ≈85 nm for ASRR-Ag-Ag2O-Ag), f) In the case of ASRR-Ag-Ag2O-Ag (dotted arrows), a thin dielectric layer (green) is grown in air, g) In the case of ASRR-Ag-Ag2O-Ag the M-D-M structure is obtained by electron beam deposition of a second (≈85 nm thick) silver layer, h) The resonators arrays are obtained after lift of in N-methyl-2-pyrrolidone PMMA remover.
Fig. 2
Fig. 2 AFM images of ASRR-Ag (a) and ASRR-Ag-Ag2O-Ag (b) arrays All scale bars are 1 µm.
Fig. 3
Fig. 3 Far-field FTIR reflection spectra of ASRR-Ag (dark blue) and ASRR-Ag-Ag2O-Ag (dark green); both arrays show plasmonic peaks with the characteristic Fano-distortion in the same spectral region. The spectra are displayed with a common intensity scale. The fitting curves using the Fano-interference model are drawn with dotted lines for ASRR-Ag (light blue) and ASRR-AgO-Ag (light green).
Fig. 4
Fig. 4 a) Schematic of the PTIR measurement. When IR laser pulses (purple) are absorbed by the sample (PMMA coating A-SRRs) it expands deflecting the AFM cantilever. The deflection amplitude is proportional to the absorbed energy and it is measured by the AFM four-quadrant detector on a time scale much faster than the AFM feedback. b) The PTIR signal is defined by the maximum of the peak to peak deflection during the cantilever ring down. c) The laser is focused under the AFM tip to a spot of ≈30 µm in diameter. The tip is used to extract local IR spectra and maps. The total internal reflection geometry minimizes the light-tip direct interaction.
Fig. 5
Fig. 5 a) AFM image of PMMA coated ASRR-Ag. b, c, d) PTIR images obtained in correspondence of PMMA absorption peaks: b) CH3 wagging mode at 1191 cm−1 (8.40 µm), c) C-O stretching mode at 1263 cm−1 (7.92 µm) and d), CH3 antisymmetric deformation mode at 1455 cm−1 (6.87 µm). e) AFM image of PMMA coated ASRR-Ag-Ag2O-Ag. f, g, h) PTIR images obtained in correspondence of PMMA absorption peaks: f) CH3 wagging mode at 1191 cm−1 (8.40 µm), g) C-O stretching mode at 1263 cm−1 (7.92 µm) and h), CH3 antisymmetric deformation mode at 1455 cm−1 (6.87 µm). The blue dotted lines schematically outline the embedded resonators. Hot-spots corresponding to the regions of enhanced absorption are observed in the gaps between the resonators arcs. A common intensity scale is shared across all PTIR images. All scale bars are 1 µm. The intensities of the PTIR images of the two samples are not normalized with respect to the PMMA nor Ag thickness as described in main text for the PTIR spectra.
Fig. 6
Fig. 6 The normalized PTIR spectra obtained from the SEIRA hot-spots locations for ASRR-Ag (blue), ASRR-Ag-Ag2O-Ag (red), are compared with the PTIR spectrum of the bare PMMA reference film measured in proximity of the ASSR-Ag reference array (black). PTIR spectra for each sample were averaged over 8 hot-spot locations and displayed in common intensity scale. Each spectrum was scaled with respect to the relative intensity of the bare PMMA spectra in each data set and with respect to the Ag thickness of the resonators as described in the main text. The vertical dotted line mark the spectral position at which the near-field SEIRA enhancement was quantified.

Tables (1)

Tables Icon

Table 1 Geometrical dimensions of the ASRR samples as measured by AFM and characteristic of the plasmon resonant frequency in those devices as measured by FTIR. The uncertainties in the resonator dimensions represent a single standard deviation in the measurements on nominally identical devices. The uncertainty in the plasmon resonant frequency and Q factor represent a single standard deviation from Fano interference fitting of FTIR resonance peak.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

s( ω )= a r j b j Γ j e i φ j ω ω j +i Γ j

Metrics