Abstract

We present a new method of SBS suppression in fiber amplifier system by employing simultaneously phase and intensity modulation. In this way, a GHz narrow-linewidth polarization-maintaining (PM) all-fiber pulsed laser is obtained based on a master oscillator power amplifier (MOPA) configuration. The pulsed seed is generated from a single-frequency continuous wave (CW) laser at 1064 nm by simultaneous modulation using an electro-optic intensity modulator (EOIM) and an electro-optic phase modulator (EOPM). Theoretical model is built and simulation framework has been established to estimate the SBS threshold of the pulsed amplifier system before and after modulation. In experiment, in order to suppress SBS effectively, the pulse width is set to be 4 ns and the phase modulation voltage is set to be 5 V. After amplifying by the amplifier chain, a ~3.5 ns pulsed laser with average/peak power of 293 W/3.9 kW is obtained at intensity repetition rate of 20 MHz and phase repetition rate of 100MHz, showing good agreement with simulation results. The linewidth of the output laser is ~4.5 GHz, the M2 factor at maximal output power is measured to be ~1.1 and the slope efficiency is ~86%.This method provides some references to suppress the SBS in narrow linewidth pulsed amplifier systems.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
560  W all fiber and polarization-maintaining amplifier with narrow linewidth and near-diffraction-limited beam quality

Yang Ran, Rumao Tao, Pengfei Ma, Xiaolin Wang, Rongtao Su, Pu Zhou, and Lei Si
Appl. Opt. 54(24) 7258-7263 (2015)

Pseudo-random binary sequence phase modulation for narrow linewidth, kilowatt, monolithic fiber amplifiers

Angel Flores, Craig Robin, Ann Lanari, and Iyad Dajani
Opt. Express 22(15) 17735-17744 (2014)

1.89 kW all-fiberized and polarization-maintained amplifiers with narrow linewidth and near-diffraction-limited beam quality

Pengfei Ma, Rumao Tao, Rongtao Su, Xiaolin Wang, Pu Zhou, and Zejin Liu
Opt. Express 24(4) 4187-4195 (2016)

References

  • View by:
  • |
  • |
  • |

  1. Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, L. M. B. Hickey, and P. W. Turner, “Power scaling of single-frequency ytterbium-doped fiber master-oscillator power-amplifier sources up to 500 W,” IEEE J. Sel. Top. Quantum Electron. 13(3), 546–551 (2007).
    [Crossref]
  2. L. Zhang, S. Cui, C. Liu, J. Zhou, and Y. Feng, “170 W, single-frequency, single-mode, linearly-polarized, Yb-doped all-fiber amplifier,” Opt. Express 21(5), 5456–5462 (2013).
    [Crossref] [PubMed]
  3. S. Gray, A. Liu, D. T. Walton, J. Wang, M. J. Li, X. Chen, A. B. Ruffin, J. A. Demeritt, and L. A. Zenteno, “502 Watt, single transverse mode, narrow linewidth, bidirectionally pumped Yb-doped fiber amplifier,” Opt. Express 15(25), 17044–17050 (2007).
    [Crossref] [PubMed]
  4. T. Theeg, H. Sayinc, J. Neumann, and D. Kracht, “All-fiber counter-propagation pumped single frequency amplifier stage with 300-W output power,” IEEE Photonics Technol. Lett. 24(20), 1864–1867 (2012).
    [Crossref]
  5. M. J. Li, X. Chen, J. Wang, S. Gray, A. Liu, J. A. Demeritt, A. B. Ruffin, A. M. Crowley, D. T. Walton, and L. A. Zenteno, “Al/Ge co-doped large mode area fiber with high SBS threshold,” Opt. Express 15(13), 8290–8299 (2007).
    [Crossref] [PubMed]
  6. Q. Fang, W. Shi, K. Kieu, E. Petersen, A. C. Pirson, and N. Peyghambarian, “High power and high energy monolithic single frequency 2 µm nanosecond pulsed fiber laser by using large core Tm-doped germanate fibers: experiment and modeling,” Opt. Express 20(15), 16410–16420 (2012).
    [Crossref]
  7. M. Leigh, W. Shi, J. Zong, J. Wang, S. Jiang, and N. Peyghambarian, “Compact, single-frequency all-fiber Q-switched laser at 1 microm,” Opt. Lett. 32(8), 897–899 (2007).
    [Crossref] [PubMed]
  8. J. Geng, Q. Wang, J. Smith, T. Luo, F. Amzajerdian, and S. Jiang, “All-fiber Q-switched single-frequency Tm-doped laser near 2 mum,” Opt. Lett. 34(23), 3713–3715 (2009).
    [Crossref] [PubMed]
  9. W. Shi, E. Petersen, Q. Fang, K. Kieu, A. Chavez-Pirson, N. Peyghambarian, and J. Yu, “mJ-level 2 μm transform-limited nanosecond pulses based on highly Tm-doped germanate fibers,” in Lasers, Sources, and Related Photonic Devices(Optical Society of America, San Diego, California, 2012), pp. h1A-h4A.
  10. Q. Fang, W. Shi, E. Petersen, K. Khanh, A. Chavez-Pirson, and N. Peyghambarian, “Half-mJ all-fiber-based single-frequency nanosecond pulsed fiber laser at 2-um,” IEEE Photonics Technol. Lett. 24(5), 353–355 (2012).
    [Crossref]
  11. C. Brooks and F. Di Teodoro, “1-mJ energy, 1-MW peak-power, 10-W average-power, spectrally narrow, diffraction-limited pulses from a photonic-crystal fiber amplifier,” Opt. Express 13(22), 8999–9002 (2005).
    [Crossref] [PubMed]
  12. Nufern Product Brief. NuKW: Kilowatt laser amplifier platform.
  13. F. Di Teodoro, J. Morais, T. S. McComb, M. K. Hemmat, E. C. Cheung, M. Weber, and R. Moyer, “SBS-managed high-peak-power nanosecond-pulse fiber-based master oscillator power amplifier,” Opt. Lett. 38(13), 2162–2164 (2013).
    [Crossref] [PubMed]
  14. Y. Liu, Z. Lv, Y. Dong, and Q. Li, “Research on stimulated Brillouin scattering suppression based on multi-frequency phase modulation,” Chin. Opt. Lett. 7(1), 29–31 (2009).
    [Crossref]
  15. G. P. Agrawal, Nonlinear Fiber Optics (Beijing World Publishing Corporation, 2005).
  16. R. W. Boyd, K. Rzaewski, and P. Narum, “Noise initiation of stimulated Brillouin scattering,” Phys. Rev. A 42(9), 5514–5521 (1990).
    [Crossref] [PubMed]
  17. S. Hocquet, D. Penninckx, J. F. Gleyze, C. Gouédard, and Y. Jaouën, “Nonsinusoidal phase modulations for high-power laser performance control: stimulated Brillouin scattering and FM-to-AM conversion,” Appl. Opt. 49(7), 1104–1115 (2010).
    [Crossref] [PubMed]
  18. J. Geng, Q. Wang, Z. Jiang, T. Luo, S. Jiang, and G. Czarnecki, “Kilowatt-peak-power, single-frequency, pulsed fiber laser near 2 μm,” Opt. Lett. 36(12), 2293–2295 (2011).
    [Crossref] [PubMed]
  19. J. W. Dawson, M. J. Messerly, R. J. Beach, M. Y. Shverdin, E. A. Stappaerts, A. K. Sridharan, P. H. Pax, J. E. Heebner, C. W. Siders, and C. P. Barty, “Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power,” Opt. Express 16(17), 13240–13266 (2008).
    [Crossref] [PubMed]

2013 (2)

2012 (3)

Q. Fang, W. Shi, E. Petersen, K. Khanh, A. Chavez-Pirson, and N. Peyghambarian, “Half-mJ all-fiber-based single-frequency nanosecond pulsed fiber laser at 2-um,” IEEE Photonics Technol. Lett. 24(5), 353–355 (2012).
[Crossref]

T. Theeg, H. Sayinc, J. Neumann, and D. Kracht, “All-fiber counter-propagation pumped single frequency amplifier stage with 300-W output power,” IEEE Photonics Technol. Lett. 24(20), 1864–1867 (2012).
[Crossref]

Q. Fang, W. Shi, K. Kieu, E. Petersen, A. C. Pirson, and N. Peyghambarian, “High power and high energy monolithic single frequency 2 µm nanosecond pulsed fiber laser by using large core Tm-doped germanate fibers: experiment and modeling,” Opt. Express 20(15), 16410–16420 (2012).
[Crossref]

2011 (1)

2010 (1)

2009 (2)

2008 (1)

2007 (4)

2005 (1)

1990 (1)

R. W. Boyd, K. Rzaewski, and P. Narum, “Noise initiation of stimulated Brillouin scattering,” Phys. Rev. A 42(9), 5514–5521 (1990).
[Crossref] [PubMed]

Amzajerdian, F.

Barty, C. P.

Beach, R. J.

Boyd, R. W.

R. W. Boyd, K. Rzaewski, and P. Narum, “Noise initiation of stimulated Brillouin scattering,” Phys. Rev. A 42(9), 5514–5521 (1990).
[Crossref] [PubMed]

Brooks, C.

Chavez-Pirson, A.

Q. Fang, W. Shi, E. Petersen, K. Khanh, A. Chavez-Pirson, and N. Peyghambarian, “Half-mJ all-fiber-based single-frequency nanosecond pulsed fiber laser at 2-um,” IEEE Photonics Technol. Lett. 24(5), 353–355 (2012).
[Crossref]

Chen, X.

Cheung, E. C.

Crowley, A. M.

Cui, S.

Czarnecki, G.

Dawson, J. W.

Demeritt, J. A.

Di Teodoro, F.

Dong, Y.

Fang, Q.

Q. Fang, W. Shi, E. Petersen, K. Khanh, A. Chavez-Pirson, and N. Peyghambarian, “Half-mJ all-fiber-based single-frequency nanosecond pulsed fiber laser at 2-um,” IEEE Photonics Technol. Lett. 24(5), 353–355 (2012).
[Crossref]

Q. Fang, W. Shi, K. Kieu, E. Petersen, A. C. Pirson, and N. Peyghambarian, “High power and high energy monolithic single frequency 2 µm nanosecond pulsed fiber laser by using large core Tm-doped germanate fibers: experiment and modeling,” Opt. Express 20(15), 16410–16420 (2012).
[Crossref]

Feng, Y.

Geng, J.

Gleyze, J. F.

Gouédard, C.

Gray, S.

Heebner, J. E.

Hemmat, M. K.

Hickey, L. M. B.

Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, L. M. B. Hickey, and P. W. Turner, “Power scaling of single-frequency ytterbium-doped fiber master-oscillator power-amplifier sources up to 500 W,” IEEE J. Sel. Top. Quantum Electron. 13(3), 546–551 (2007).
[Crossref]

Hocquet, S.

Horley, R.

Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, L. M. B. Hickey, and P. W. Turner, “Power scaling of single-frequency ytterbium-doped fiber master-oscillator power-amplifier sources up to 500 W,” IEEE J. Sel. Top. Quantum Electron. 13(3), 546–551 (2007).
[Crossref]

Jaouën, Y.

Jeong, Y.

Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, L. M. B. Hickey, and P. W. Turner, “Power scaling of single-frequency ytterbium-doped fiber master-oscillator power-amplifier sources up to 500 W,” IEEE J. Sel. Top. Quantum Electron. 13(3), 546–551 (2007).
[Crossref]

Jiang, S.

Jiang, Z.

Khanh, K.

Q. Fang, W. Shi, E. Petersen, K. Khanh, A. Chavez-Pirson, and N. Peyghambarian, “Half-mJ all-fiber-based single-frequency nanosecond pulsed fiber laser at 2-um,” IEEE Photonics Technol. Lett. 24(5), 353–355 (2012).
[Crossref]

Kieu, K.

Kracht, D.

T. Theeg, H. Sayinc, J. Neumann, and D. Kracht, “All-fiber counter-propagation pumped single frequency amplifier stage with 300-W output power,” IEEE Photonics Technol. Lett. 24(20), 1864–1867 (2012).
[Crossref]

Leigh, M.

Li, M. J.

Li, Q.

Liu, A.

Liu, C.

Liu, Y.

Luo, T.

Lv, Z.

McComb, T. S.

Messerly, M. J.

Morais, J.

Moyer, R.

Narum, P.

R. W. Boyd, K. Rzaewski, and P. Narum, “Noise initiation of stimulated Brillouin scattering,” Phys. Rev. A 42(9), 5514–5521 (1990).
[Crossref] [PubMed]

Neumann, J.

T. Theeg, H. Sayinc, J. Neumann, and D. Kracht, “All-fiber counter-propagation pumped single frequency amplifier stage with 300-W output power,” IEEE Photonics Technol. Lett. 24(20), 1864–1867 (2012).
[Crossref]

Nilsson, J.

Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, L. M. B. Hickey, and P. W. Turner, “Power scaling of single-frequency ytterbium-doped fiber master-oscillator power-amplifier sources up to 500 W,” IEEE J. Sel. Top. Quantum Electron. 13(3), 546–551 (2007).
[Crossref]

Pax, P. H.

Payne, D. N.

Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, L. M. B. Hickey, and P. W. Turner, “Power scaling of single-frequency ytterbium-doped fiber master-oscillator power-amplifier sources up to 500 W,” IEEE J. Sel. Top. Quantum Electron. 13(3), 546–551 (2007).
[Crossref]

Penninckx, D.

Petersen, E.

Q. Fang, W. Shi, E. Petersen, K. Khanh, A. Chavez-Pirson, and N. Peyghambarian, “Half-mJ all-fiber-based single-frequency nanosecond pulsed fiber laser at 2-um,” IEEE Photonics Technol. Lett. 24(5), 353–355 (2012).
[Crossref]

Q. Fang, W. Shi, K. Kieu, E. Petersen, A. C. Pirson, and N. Peyghambarian, “High power and high energy monolithic single frequency 2 µm nanosecond pulsed fiber laser by using large core Tm-doped germanate fibers: experiment and modeling,” Opt. Express 20(15), 16410–16420 (2012).
[Crossref]

Peyghambarian, N.

Pirson, A. C.

Ruffin, A. B.

Rzaewski, K.

R. W. Boyd, K. Rzaewski, and P. Narum, “Noise initiation of stimulated Brillouin scattering,” Phys. Rev. A 42(9), 5514–5521 (1990).
[Crossref] [PubMed]

Sahu, J. K.

Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, L. M. B. Hickey, and P. W. Turner, “Power scaling of single-frequency ytterbium-doped fiber master-oscillator power-amplifier sources up to 500 W,” IEEE J. Sel. Top. Quantum Electron. 13(3), 546–551 (2007).
[Crossref]

Sayinc, H.

T. Theeg, H. Sayinc, J. Neumann, and D. Kracht, “All-fiber counter-propagation pumped single frequency amplifier stage with 300-W output power,” IEEE Photonics Technol. Lett. 24(20), 1864–1867 (2012).
[Crossref]

Shi, W.

Shverdin, M. Y.

Siders, C. W.

Smith, J.

Sridharan, A. K.

Stappaerts, E. A.

Theeg, T.

T. Theeg, H. Sayinc, J. Neumann, and D. Kracht, “All-fiber counter-propagation pumped single frequency amplifier stage with 300-W output power,” IEEE Photonics Technol. Lett. 24(20), 1864–1867 (2012).
[Crossref]

Turner, P. W.

Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, L. M. B. Hickey, and P. W. Turner, “Power scaling of single-frequency ytterbium-doped fiber master-oscillator power-amplifier sources up to 500 W,” IEEE J. Sel. Top. Quantum Electron. 13(3), 546–551 (2007).
[Crossref]

Walton, D. T.

Wang, J.

Wang, Q.

Weber, M.

Zenteno, L. A.

Zhang, L.

Zhou, J.

Zong, J.

Appl. Opt. (1)

Chin. Opt. Lett. (1)

IEEE J. Sel. Top. Quantum Electron. (1)

Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, L. M. B. Hickey, and P. W. Turner, “Power scaling of single-frequency ytterbium-doped fiber master-oscillator power-amplifier sources up to 500 W,” IEEE J. Sel. Top. Quantum Electron. 13(3), 546–551 (2007).
[Crossref]

IEEE Photonics Technol. Lett. (2)

T. Theeg, H. Sayinc, J. Neumann, and D. Kracht, “All-fiber counter-propagation pumped single frequency amplifier stage with 300-W output power,” IEEE Photonics Technol. Lett. 24(20), 1864–1867 (2012).
[Crossref]

Q. Fang, W. Shi, E. Petersen, K. Khanh, A. Chavez-Pirson, and N. Peyghambarian, “Half-mJ all-fiber-based single-frequency nanosecond pulsed fiber laser at 2-um,” IEEE Photonics Technol. Lett. 24(5), 353–355 (2012).
[Crossref]

Opt. Express (6)

C. Brooks and F. Di Teodoro, “1-mJ energy, 1-MW peak-power, 10-W average-power, spectrally narrow, diffraction-limited pulses from a photonic-crystal fiber amplifier,” Opt. Express 13(22), 8999–9002 (2005).
[Crossref] [PubMed]

M. J. Li, X. Chen, J. Wang, S. Gray, A. Liu, J. A. Demeritt, A. B. Ruffin, A. M. Crowley, D. T. Walton, and L. A. Zenteno, “Al/Ge co-doped large mode area fiber with high SBS threshold,” Opt. Express 15(13), 8290–8299 (2007).
[Crossref] [PubMed]

S. Gray, A. Liu, D. T. Walton, J. Wang, M. J. Li, X. Chen, A. B. Ruffin, J. A. Demeritt, and L. A. Zenteno, “502 Watt, single transverse mode, narrow linewidth, bidirectionally pumped Yb-doped fiber amplifier,” Opt. Express 15(25), 17044–17050 (2007).
[Crossref] [PubMed]

J. W. Dawson, M. J. Messerly, R. J. Beach, M. Y. Shverdin, E. A. Stappaerts, A. K. Sridharan, P. H. Pax, J. E. Heebner, C. W. Siders, and C. P. Barty, “Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power,” Opt. Express 16(17), 13240–13266 (2008).
[Crossref] [PubMed]

Q. Fang, W. Shi, K. Kieu, E. Petersen, A. C. Pirson, and N. Peyghambarian, “High power and high energy monolithic single frequency 2 µm nanosecond pulsed fiber laser by using large core Tm-doped germanate fibers: experiment and modeling,” Opt. Express 20(15), 16410–16420 (2012).
[Crossref]

L. Zhang, S. Cui, C. Liu, J. Zhou, and Y. Feng, “170 W, single-frequency, single-mode, linearly-polarized, Yb-doped all-fiber amplifier,” Opt. Express 21(5), 5456–5462 (2013).
[Crossref] [PubMed]

Opt. Lett. (4)

Phys. Rev. A (1)

R. W. Boyd, K. Rzaewski, and P. Narum, “Noise initiation of stimulated Brillouin scattering,” Phys. Rev. A 42(9), 5514–5521 (1990).
[Crossref] [PubMed]

Other (3)

Nufern Product Brief. NuKW: Kilowatt laser amplifier platform.

G. P. Agrawal, Nonlinear Fiber Optics (Beijing World Publishing Corporation, 2005).

W. Shi, E. Petersen, Q. Fang, K. Kieu, A. Chavez-Pirson, N. Peyghambarian, and J. Yu, “mJ-level 2 μm transform-limited nanosecond pulses based on highly Tm-doped germanate fibers,” in Lasers, Sources, and Related Photonic Devices(Optical Society of America, San Diego, California, 2012), pp. h1A-h4A.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Experimental configuration of the 1064 nm narrow-linewidth YDF pulsed amplifier.
Fig. 2
Fig. 2 Fabry-Perot scanning spectra when intensity- and phase-modulated parameter are set to be (a) 10 MHz 4ns and 100 MHz 5 V (b) 10 MHz 4 ns and 200 MHz 5 V (c) 20 MHz 4ns and 100MHz 5 V (d) 20 MHz 4 ns and 200 MHz 5 V.
Fig. 3
Fig. 3 (a) Backward power as a function of output power under different modulation condition. (b) Average power of the pulse under different pump level at 20 MHz intensity repetition rate and 100 MHz phase repetition rate.
Fig. 4
Fig. 4 Simulated and measured backward power as a function of output power.
Fig. 5
Fig. 5 Simulated SBS threshold power as a function of the (a) phase modulation voltage and (b) intensity modulation pulse width.
Fig. 6
Fig. 6 Pulse shape of the amplified pulses with 20 MHz 4 ns intensity modulation and 100 MHz 5V phase modulation.
Fig. 7
Fig. 7 (a) Output spectrum of the amplified pulses and (b) The M2 factor of the amplifier chain at 293 W output power.

Tables (1)

Tables Icon

Table 1 SBS threshold simulation parameters

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

d P p dz + 1 v gp d P p dt = α p P p Γ p [ σ a p N( σ a p + σ e p ) N 2 ] P p
A s z + 1 v gs A s t = α s 2 A s + 1 2 [ ( σ a s + σ e s ) N 2 σ a s N ] A s +i γ s ( | A s | 2 +2 | A B | 2 ) A s +i κ 1s A B Q
A B z + 1 v gs A B t = α s 2 A B + 1 2 [ ( σ a s + σ e s ) N 2 σ a s N ] A B +i γ s ( | A B | 2 +2 | A s | 2 ) A B +i κ 1B A s Q *
Q t + ν A Q z =[ 1 2 Γ B +i( Ω B Ω) ]Q+ i κ 2 A eff_ao A p A s + f
N 2 t = N 2 τ + Γ s λ s hc A c [ σ a s N( σ a s + σ e s ) N 2 ]( P s + P B )+ Γ p λ p hc A c [ σ a p N( σ a p + σ e p ) N 2 ] P p
f(z,t) =0
f(z,t) f ( z , t ) = N Q δ(z z )δ(t t )
A s = m m P s exp[ 1 2 ( tmT ΔT ) 2 ]
A s = m m P s exp[ 1 2 ( tmT ΔT ) 2 ]exp[ iδsin( Δω(t t 0 ) ) ]
φ NL =( 2π /λ ) n 2 L eff I
L eff = L eff_YDF + L eff_passive
P peak =2 ln2/π P ave / t FWHM f RR

Metrics