Abstract

Here we report enhanced confocal Raman detection with large-area and ultra-long working distance by capping dielectric microsphere array. Microspheres have been found to provide three channels for Raman scattering enhancement, including localized photonic nanojets, directional antenna effects, and whispering-gallery modes. The maximum enhancement ratio of Raman intensity is up to 14.6 using 4.94-μm-diameter polystyrene (PS) microspheres. Investigation on the directional antenna effect of microsphere reveals that the microsphere array confines electromagnetic (EM) waves to a narrow distribution with small divergent angles, by which the signal-to-noise ratio is retained and the offset of focal plane position from sample surface can be up to ± 7.5 mm. The present work reduces the requirement of focusing in confocal Raman detection and hence makes the large-area detection possible via rapid mapping. It opens up a simple approach for high-sensitivity Raman detection of 3D-structured surface.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Parametric study on photoluminescence enhancement of high-quality zinc oxide single-crystal capping with dielectric microsphere array

Yinzhou Yan, Jinwen Liu, Cheng Xing, Qiang Wang, Yong Zeng, Yan Zhao, and Yijian Jiang
Appl. Opt. 57(27) 7740-7749 (2018)

Sandwich-structure-modulated photoluminescence enhancement of wide bandgap semiconductors capping with dielectric microsphere arrays

Lixue Yang, Yinzhou Yan, Qiang Wang, Yong Zeng, Feifei Liu, Lin Li, Yan Zhao, and Yijian Jiang
Opt. Express 25(6) 6000-6014 (2017)

Ten-fold enhancement of ZnO thin film ultraviolet-luminescence by dielectric microsphere arrays

Yinzhou Yan, Yong Zeng, Yan Wu, Yan Zhao, Lingfei Ji, Yijian Jiang, and Lin Li
Opt. Express 22(19) 23552-23564 (2014)

References

  • View by:
  • |
  • |
  • |

  1. Z. Chen, A. Taflove, and V. Backman, “Photonic nanojet enhancement of backscattering of light by nanoparticles: a potential novel visible-light ultramicroscopy technique,” Opt. Express 12(7), 1214–1220 (2004).
    [Crossref] [PubMed]
  2. X. Li, Z. Chen, A. Taflove, and V. Backman, “Optical analysis of nanoparticles via enhanced backscattering facilitated by 3-D photonic nanojets,” Opt. Express 13(2), 526–533 (2005).
    [Crossref] [PubMed]
  3. Z. Chen, A. Taflove, X. Li, and V. Backman, “Superenhanced backscattering of light by nanoparticles,” Opt. Lett. 31(2), 196–198 (2006).
    [Crossref] [PubMed]
  4. A. Heifetz, K. Huang, A. Sahakian, X. Li, A. Taflove, and V. Backman, “Experimental confirmation of backscattering enhancement induced by a photonic jet,” Appl. Phys. Lett. 89(22), 221118 (2006).
    [Crossref]
  5. S. Yang, A. Taflove, and V. Backman, “Experimental confirmation at visible light wavelengths of the backscattering enhancement phenomenon of the photonic nanojet,” Opt. Express 19(8), 7084–7093 (2011).
    [Crossref] [PubMed]
  6. C. G. B. Garrett, W. Kaiser, and W. L. Bond, “Stimulated emission into optical whispering modes of spheres,” Phys. Rev. 124(6), 1807–1809 (1961).
    [Crossref]
  7. A. Devilez, B. Stout, and N. Bonod, “Compact metallo-dielectric optical antenna for ultra directional and enhanced radiative emission,” ACS Nano 4(6), 3390–3396 (2010).
    [Crossref] [PubMed]
  8. S. C. Hill, V. Boutou, J. Yu, S. Ramstein, J. P. Wolf, Y. Pan, S. Holler, and R. K. Chang, “Enhanced backward-directed multiphoton-excited fluorescence from dielectric microcavities,” Phys. Rev. Lett. 85(1), 54–57 (2000).
    [Crossref] [PubMed]
  9. S. Lecler, S. Haacke, N. Lecong, O. Crégut, J. L. Rehspringer, and C. Hirlimann, “Photonic jet driven non-linear optics: example of two-photon fluorescence enhancement by dielectric microspheres,” Opt. Express 15(8), 4935–4942 (2007).
    [Crossref] [PubMed]
  10. C. Pérez-Rodríguez, M. H. Imanieh, L. L. Martin, S. Rios, I. R. Martin, and B. E. Yekta, “Study of the focusing effect of silica microspheres on the upconversion of Er3+-Yb3+ codoped glass ceramics,” J. Alloys Compd. 576, 363–368 (2013).
    [Crossref]
  11. Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2, 218 (2011).
    [Crossref] [PubMed]
  12. X. Hao, C. Kuang, X. Liu, H. Zhang, and Y. Li, “Microsphere based microscope with optical super-resolution capability,” Appl. Phys. Lett. 99(20), 203102 (2011).
    [Crossref]
  13. Y. Yan, L. Li, C. Feng, W. Guo, S. Lee, and M. Hong, “Microsphere-coupled scanning laser confocal nanoscope for sub-diffraction-limited imaging at 25 nm lateral resolution in the visible spectrum,” ACS Nano 8(2), 1809–1816 (2014).
    [Crossref] [PubMed]
  14. S. Lee and L. Li, “Rapid super-resolution imaging of sub-surface nanostructures beyond diffraction limit by high refractive index microsphere optical nanoscopy,” Opt. Commun. 334, 253–257 (2015).
    [Crossref]
  15. W. Wu, A. Katsnelson, O. G. Memis, and H. Mohseni, “A deep sub-wavelength process for the formation of highly uniform arrays of nanoholes and nanopillars,” Nanotechnology 18(48), 485302 (2007).
    [Crossref]
  16. E. McLeod and C. B. Arnold, “Subwavelength direct-write nanopatterning using optically trapped microspheres,” Nat. Nanotechnol. 3(7), 413–417 (2008).
    [Crossref] [PubMed]
  17. Z. Wang, N. Joseph, L. Li, and B. Lukyanchuk, “A review of optical near-fields in particle/tip-assisted laser nanofabrication,” P. I. Mech. Eng. C.- J. Mec. 224, 1113–1127 (2010).
  18. V. B. Braginsky, M. L. Gorodetsky, and V. S. Ilchenko, “Quality-factor and nonlinear properties of optical whispering-gallery modes,” Phys. Lett. A 137(7-8), 393–397 (1989).
    [Crossref]
  19. K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
    [Crossref] [PubMed]
  20. F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5(7), 591–596 (2008).
    [Crossref] [PubMed]
  21. M. D. Baaske, M. R. Foreman, and F. Vollmer, “Single-molecule nucleic acid interactions monitored on a label-free microcavity biosensor platform,” Nat. Nanotechnol. 9(11), 933–939 (2014).
    [Crossref] [PubMed]
  22. L. Shao, X. F. Jiang, X. C. Yu, B. B. Li, W. R. Clements, F. Vollmer, W. Wang, Y. F. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25(39), 5616–5620 (2013).
    [Crossref] [PubMed]
  23. B. B. Li, W. R. Clements, X. C. Yu, K. Shi, Q. Gong, and Y. F. Xiao, “Single nanoparticle detection using split-mode microcavity Raman lasers,” Proc. Natl. Acad. Sci. U.S.A. 111(41), 14657–14662 (2014).
    [Crossref] [PubMed]
  24. J. Wenger, D. Gérard, H. Aouani, and H. Rigneault, “Disposable microscope objective lenses for fluorescence correlation spectroscopy using Latex microspheres,” Anal. Chem. 80(17), 6800–6804 (2008).
    [Crossref] [PubMed]
  25. D. Gérard, J. Wenger, A. Devilez, D. Gachet, B. Stout, N. Bonod, E. Popov, and H. Rigneault, “Strong electromagnetic confinement near dielectric microspheres to enhance single-molecule fluorescence,” Opt. Express 16(19), 15297–15303 (2008).
    [Crossref] [PubMed]
  26. D. Gérard, A. Devilez, H. Aouani, B. Stout, N. Bonod, J. Wenger, E. Popov, and H. Rigneault, “Efficient excitation and collection of single-molecule fluorescence close to a dielectric microsphere,” J. Opt. Soc. Am. B 26(7), 1473–1478 (2009).
    [Crossref]
  27. Y. Yan, Y. Zeng, Y. Wu, Y. Zhao, L. Ji, Y. Jiang, and L. Li, “Ten-fold enhancement of ZnO thin film ultraviolet-luminescence by dielectric microsphere arrays,” Opt. Express 22(19), 23552–23564 (2014).
    [Crossref] [PubMed]
  28. K. J. Yi, H. Wang, Y. F. Lu, and Z. Y. Yang, “Enhanced Raman scattering by self-assembled silica spherical microparticles,” J. Appl. Phys. 101(6), 063528 (2007).
    [Crossref]
  29. C. H. Camp and M. T. Cicerone, “Chemically sensitive bioimaging with coherent Raman scattering,” Nat. Photonics 9(5), 295–305 (2015).
    [Crossref]
  30. C. L. Du, J. Kasim, Y. M. You, D. N. Shi, and Z. X. Shen, “Enhancement of Raman scattering by individual dielectric microspheres,” J. Raman Spectrosc. 42(2), 145–148 (2011).
    [Crossref]
  31. V. R. Dantham, P. B. Bisht, and C. K. R. Namboodiri, “Enhancement of Raman scattering by two orders of magnitude using photonic nanojet of a microsphere,” J. Appl. Phys. 109(10), 103103 (2011).
    [Crossref]
  32. J. Kasim, Y. Ting, Y. Y. Meng, L. J. Ping, A. See, L. L. Jong, and S. Z. Xiang, “Near-field Raman imaging using optically trapped dielectric microsphere,” Opt. Express 16(11), 7976–7984 (2008).
    [Crossref] [PubMed]
  33. J. F. Cardenas, “Raman scattering enhancement by dielectric spheres,” J. Raman Spectrosc. 44(4), 540–543 (2013).
    [Crossref]
  34. I. Alessandri, N. Bontempi, and L. E. Depero, “Colloidal lenses as universal Raman scattering enhancers,” RSC Advances 4(72), 38152–38158 (2014).
    [Crossref]
  35. D. Christie, J. Lombardi, and I. Kretzschmar, “Two-dimensional array of silica particles as a SERS substrate,” J. Phys. Chem. C 118(17), 9114–9118 (2014).
    [Crossref]
  36. X. Huang, X. N. He, W. Xiong, Y. Gao, L. J. Jiang, L. Liu, Y. S. Zhou, L. Jiang, J. F. Silvain, and Y. F. Lu, “Contrast enhancement using silica microspheres in coherent anti-Stokes Raman spectroscopic imaging,” Opt. Express 22(3), 2889–2896 (2014).
    [Crossref] [PubMed]
  37. N. Gaponik, Y. P. Rakovich, M. Gerlach, J. F. Donegan, D. Savateeva, and A. L. Rogach, “Whispering gallery modes in photoluminescence and Raman spectra of a spherical microcavity with CdTe quantum dots: anti-Stokes emission and interferences effects,” Nanoscale Res. Lett. 1(1), 68–73 (2006).
    [Crossref]
  38. L. K. Ausman and G. C. Schatz, “Whispering-gallery mode resonators: surface enhanced Raman scattering without plasmons,” J. Chem. Phys. 129(5), 054704 (2008).
    [Crossref] [PubMed]
  39. V. R. Dantham, P. B. Bisht, and P. S. Dobal, “Whispering gallery modes and effect of coating on Raman spectra of single microspheres,” J. Raman Spectrosc. 42(6), 1373–1378 (2011).
    [Crossref]
  40. E. C. Le Ru and P. G. Etchegoin, “Rigorous justification of the |E|4 enhancement factor in surface enhanced Raman spectroscopy,” Chem. Phys. Lett. 423(1-3), 63–66 (2006).
    [Crossref]
  41. A. Chiasera, Y. Dumeige, P. Féron, M. Ferrari, Y. Jestin, G. Nunzi Conti, S. Pelli, S. Soria, and G. C. Righini, “Spherical whispering-gallery-mode microresonators,” Laser Photonics Rev. 4(3), 457–482 (2010).
    [Crossref]
  42. M. V. Artemyev, U. Woggon, R. Wannemacher, H. Jaschinski, and W. Langbein, “Light trapped in a photonic dot: microspheres act as a cavity for quantum dot emission,” Nano Lett. 1(6), 309–314 (2001).
    [Crossref]
  43. K. Srinivasan, M. Borselli, O. Painter, A. Stintz, and S. Krishna, “Cavity Q, mode volume, and lasing threshold in small diameter AlGaAs microdisks with embedded quantum dots,” Opt. Express 14(3), 1094–1105 (2006).
    [Crossref] [PubMed]

2015 (2)

S. Lee and L. Li, “Rapid super-resolution imaging of sub-surface nanostructures beyond diffraction limit by high refractive index microsphere optical nanoscopy,” Opt. Commun. 334, 253–257 (2015).
[Crossref]

C. H. Camp and M. T. Cicerone, “Chemically sensitive bioimaging with coherent Raman scattering,” Nat. Photonics 9(5), 295–305 (2015).
[Crossref]

2014 (7)

I. Alessandri, N. Bontempi, and L. E. Depero, “Colloidal lenses as universal Raman scattering enhancers,” RSC Advances 4(72), 38152–38158 (2014).
[Crossref]

D. Christie, J. Lombardi, and I. Kretzschmar, “Two-dimensional array of silica particles as a SERS substrate,” J. Phys. Chem. C 118(17), 9114–9118 (2014).
[Crossref]

X. Huang, X. N. He, W. Xiong, Y. Gao, L. J. Jiang, L. Liu, Y. S. Zhou, L. Jiang, J. F. Silvain, and Y. F. Lu, “Contrast enhancement using silica microspheres in coherent anti-Stokes Raman spectroscopic imaging,” Opt. Express 22(3), 2889–2896 (2014).
[Crossref] [PubMed]

M. D. Baaske, M. R. Foreman, and F. Vollmer, “Single-molecule nucleic acid interactions monitored on a label-free microcavity biosensor platform,” Nat. Nanotechnol. 9(11), 933–939 (2014).
[Crossref] [PubMed]

B. B. Li, W. R. Clements, X. C. Yu, K. Shi, Q. Gong, and Y. F. Xiao, “Single nanoparticle detection using split-mode microcavity Raman lasers,” Proc. Natl. Acad. Sci. U.S.A. 111(41), 14657–14662 (2014).
[Crossref] [PubMed]

Y. Yan, L. Li, C. Feng, W. Guo, S. Lee, and M. Hong, “Microsphere-coupled scanning laser confocal nanoscope for sub-diffraction-limited imaging at 25 nm lateral resolution in the visible spectrum,” ACS Nano 8(2), 1809–1816 (2014).
[Crossref] [PubMed]

Y. Yan, Y. Zeng, Y. Wu, Y. Zhao, L. Ji, Y. Jiang, and L. Li, “Ten-fold enhancement of ZnO thin film ultraviolet-luminescence by dielectric microsphere arrays,” Opt. Express 22(19), 23552–23564 (2014).
[Crossref] [PubMed]

2013 (3)

J. F. Cardenas, “Raman scattering enhancement by dielectric spheres,” J. Raman Spectrosc. 44(4), 540–543 (2013).
[Crossref]

C. Pérez-Rodríguez, M. H. Imanieh, L. L. Martin, S. Rios, I. R. Martin, and B. E. Yekta, “Study of the focusing effect of silica microspheres on the upconversion of Er3+-Yb3+ codoped glass ceramics,” J. Alloys Compd. 576, 363–368 (2013).
[Crossref]

L. Shao, X. F. Jiang, X. C. Yu, B. B. Li, W. R. Clements, F. Vollmer, W. Wang, Y. F. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25(39), 5616–5620 (2013).
[Crossref] [PubMed]

2011 (6)

C. L. Du, J. Kasim, Y. M. You, D. N. Shi, and Z. X. Shen, “Enhancement of Raman scattering by individual dielectric microspheres,” J. Raman Spectrosc. 42(2), 145–148 (2011).
[Crossref]

V. R. Dantham, P. B. Bisht, and C. K. R. Namboodiri, “Enhancement of Raman scattering by two orders of magnitude using photonic nanojet of a microsphere,” J. Appl. Phys. 109(10), 103103 (2011).
[Crossref]

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2, 218 (2011).
[Crossref] [PubMed]

X. Hao, C. Kuang, X. Liu, H. Zhang, and Y. Li, “Microsphere based microscope with optical super-resolution capability,” Appl. Phys. Lett. 99(20), 203102 (2011).
[Crossref]

S. Yang, A. Taflove, and V. Backman, “Experimental confirmation at visible light wavelengths of the backscattering enhancement phenomenon of the photonic nanojet,” Opt. Express 19(8), 7084–7093 (2011).
[Crossref] [PubMed]

V. R. Dantham, P. B. Bisht, and P. S. Dobal, “Whispering gallery modes and effect of coating on Raman spectra of single microspheres,” J. Raman Spectrosc. 42(6), 1373–1378 (2011).
[Crossref]

2010 (3)

A. Chiasera, Y. Dumeige, P. Féron, M. Ferrari, Y. Jestin, G. Nunzi Conti, S. Pelli, S. Soria, and G. C. Righini, “Spherical whispering-gallery-mode microresonators,” Laser Photonics Rev. 4(3), 457–482 (2010).
[Crossref]

A. Devilez, B. Stout, and N. Bonod, “Compact metallo-dielectric optical antenna for ultra directional and enhanced radiative emission,” ACS Nano 4(6), 3390–3396 (2010).
[Crossref] [PubMed]

Z. Wang, N. Joseph, L. Li, and B. Lukyanchuk, “A review of optical near-fields in particle/tip-assisted laser nanofabrication,” P. I. Mech. Eng. C.- J. Mec. 224, 1113–1127 (2010).

2009 (1)

2008 (6)

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5(7), 591–596 (2008).
[Crossref] [PubMed]

J. Wenger, D. Gérard, H. Aouani, and H. Rigneault, “Disposable microscope objective lenses for fluorescence correlation spectroscopy using Latex microspheres,” Anal. Chem. 80(17), 6800–6804 (2008).
[Crossref] [PubMed]

D. Gérard, J. Wenger, A. Devilez, D. Gachet, B. Stout, N. Bonod, E. Popov, and H. Rigneault, “Strong electromagnetic confinement near dielectric microspheres to enhance single-molecule fluorescence,” Opt. Express 16(19), 15297–15303 (2008).
[Crossref] [PubMed]

E. McLeod and C. B. Arnold, “Subwavelength direct-write nanopatterning using optically trapped microspheres,” Nat. Nanotechnol. 3(7), 413–417 (2008).
[Crossref] [PubMed]

J. Kasim, Y. Ting, Y. Y. Meng, L. J. Ping, A. See, L. L. Jong, and S. Z. Xiang, “Near-field Raman imaging using optically trapped dielectric microsphere,” Opt. Express 16(11), 7976–7984 (2008).
[Crossref] [PubMed]

L. K. Ausman and G. C. Schatz, “Whispering-gallery mode resonators: surface enhanced Raman scattering without plasmons,” J. Chem. Phys. 129(5), 054704 (2008).
[Crossref] [PubMed]

2007 (3)

K. J. Yi, H. Wang, Y. F. Lu, and Z. Y. Yang, “Enhanced Raman scattering by self-assembled silica spherical microparticles,” J. Appl. Phys. 101(6), 063528 (2007).
[Crossref]

W. Wu, A. Katsnelson, O. G. Memis, and H. Mohseni, “A deep sub-wavelength process for the formation of highly uniform arrays of nanoholes and nanopillars,” Nanotechnology 18(48), 485302 (2007).
[Crossref]

S. Lecler, S. Haacke, N. Lecong, O. Crégut, J. L. Rehspringer, and C. Hirlimann, “Photonic jet driven non-linear optics: example of two-photon fluorescence enhancement by dielectric microspheres,” Opt. Express 15(8), 4935–4942 (2007).
[Crossref] [PubMed]

2006 (5)

Z. Chen, A. Taflove, X. Li, and V. Backman, “Superenhanced backscattering of light by nanoparticles,” Opt. Lett. 31(2), 196–198 (2006).
[Crossref] [PubMed]

A. Heifetz, K. Huang, A. Sahakian, X. Li, A. Taflove, and V. Backman, “Experimental confirmation of backscattering enhancement induced by a photonic jet,” Appl. Phys. Lett. 89(22), 221118 (2006).
[Crossref]

N. Gaponik, Y. P. Rakovich, M. Gerlach, J. F. Donegan, D. Savateeva, and A. L. Rogach, “Whispering gallery modes in photoluminescence and Raman spectra of a spherical microcavity with CdTe quantum dots: anti-Stokes emission and interferences effects,” Nanoscale Res. Lett. 1(1), 68–73 (2006).
[Crossref]

E. C. Le Ru and P. G. Etchegoin, “Rigorous justification of the |E|4 enhancement factor in surface enhanced Raman spectroscopy,” Chem. Phys. Lett. 423(1-3), 63–66 (2006).
[Crossref]

K. Srinivasan, M. Borselli, O. Painter, A. Stintz, and S. Krishna, “Cavity Q, mode volume, and lasing threshold in small diameter AlGaAs microdisks with embedded quantum dots,” Opt. Express 14(3), 1094–1105 (2006).
[Crossref] [PubMed]

2005 (1)

2004 (1)

2003 (1)

K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
[Crossref] [PubMed]

2001 (1)

M. V. Artemyev, U. Woggon, R. Wannemacher, H. Jaschinski, and W. Langbein, “Light trapped in a photonic dot: microspheres act as a cavity for quantum dot emission,” Nano Lett. 1(6), 309–314 (2001).
[Crossref]

2000 (1)

S. C. Hill, V. Boutou, J. Yu, S. Ramstein, J. P. Wolf, Y. Pan, S. Holler, and R. K. Chang, “Enhanced backward-directed multiphoton-excited fluorescence from dielectric microcavities,” Phys. Rev. Lett. 85(1), 54–57 (2000).
[Crossref] [PubMed]

1989 (1)

V. B. Braginsky, M. L. Gorodetsky, and V. S. Ilchenko, “Quality-factor and nonlinear properties of optical whispering-gallery modes,” Phys. Lett. A 137(7-8), 393–397 (1989).
[Crossref]

1961 (1)

C. G. B. Garrett, W. Kaiser, and W. L. Bond, “Stimulated emission into optical whispering modes of spheres,” Phys. Rev. 124(6), 1807–1809 (1961).
[Crossref]

Alessandri, I.

I. Alessandri, N. Bontempi, and L. E. Depero, “Colloidal lenses as universal Raman scattering enhancers,” RSC Advances 4(72), 38152–38158 (2014).
[Crossref]

Aouani, H.

D. Gérard, A. Devilez, H. Aouani, B. Stout, N. Bonod, J. Wenger, E. Popov, and H. Rigneault, “Efficient excitation and collection of single-molecule fluorescence close to a dielectric microsphere,” J. Opt. Soc. Am. B 26(7), 1473–1478 (2009).
[Crossref]

J. Wenger, D. Gérard, H. Aouani, and H. Rigneault, “Disposable microscope objective lenses for fluorescence correlation spectroscopy using Latex microspheres,” Anal. Chem. 80(17), 6800–6804 (2008).
[Crossref] [PubMed]

Arnold, C. B.

E. McLeod and C. B. Arnold, “Subwavelength direct-write nanopatterning using optically trapped microspheres,” Nat. Nanotechnol. 3(7), 413–417 (2008).
[Crossref] [PubMed]

Arnold, S.

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5(7), 591–596 (2008).
[Crossref] [PubMed]

Artemyev, M. V.

M. V. Artemyev, U. Woggon, R. Wannemacher, H. Jaschinski, and W. Langbein, “Light trapped in a photonic dot: microspheres act as a cavity for quantum dot emission,” Nano Lett. 1(6), 309–314 (2001).
[Crossref]

Ausman, L. K.

L. K. Ausman and G. C. Schatz, “Whispering-gallery mode resonators: surface enhanced Raman scattering without plasmons,” J. Chem. Phys. 129(5), 054704 (2008).
[Crossref] [PubMed]

Baaske, M. D.

M. D. Baaske, M. R. Foreman, and F. Vollmer, “Single-molecule nucleic acid interactions monitored on a label-free microcavity biosensor platform,” Nat. Nanotechnol. 9(11), 933–939 (2014).
[Crossref] [PubMed]

Backman, V.

Bisht, P. B.

V. R. Dantham, P. B. Bisht, and P. S. Dobal, “Whispering gallery modes and effect of coating on Raman spectra of single microspheres,” J. Raman Spectrosc. 42(6), 1373–1378 (2011).
[Crossref]

V. R. Dantham, P. B. Bisht, and C. K. R. Namboodiri, “Enhancement of Raman scattering by two orders of magnitude using photonic nanojet of a microsphere,” J. Appl. Phys. 109(10), 103103 (2011).
[Crossref]

Bond, W. L.

C. G. B. Garrett, W. Kaiser, and W. L. Bond, “Stimulated emission into optical whispering modes of spheres,” Phys. Rev. 124(6), 1807–1809 (1961).
[Crossref]

Bonod, N.

Bontempi, N.

I. Alessandri, N. Bontempi, and L. E. Depero, “Colloidal lenses as universal Raman scattering enhancers,” RSC Advances 4(72), 38152–38158 (2014).
[Crossref]

Borselli, M.

Boutou, V.

S. C. Hill, V. Boutou, J. Yu, S. Ramstein, J. P. Wolf, Y. Pan, S. Holler, and R. K. Chang, “Enhanced backward-directed multiphoton-excited fluorescence from dielectric microcavities,” Phys. Rev. Lett. 85(1), 54–57 (2000).
[Crossref] [PubMed]

Braginsky, V. B.

V. B. Braginsky, M. L. Gorodetsky, and V. S. Ilchenko, “Quality-factor and nonlinear properties of optical whispering-gallery modes,” Phys. Lett. A 137(7-8), 393–397 (1989).
[Crossref]

Camp, C. H.

C. H. Camp and M. T. Cicerone, “Chemically sensitive bioimaging with coherent Raman scattering,” Nat. Photonics 9(5), 295–305 (2015).
[Crossref]

Cardenas, J. F.

J. F. Cardenas, “Raman scattering enhancement by dielectric spheres,” J. Raman Spectrosc. 44(4), 540–543 (2013).
[Crossref]

Chang, R. K.

S. C. Hill, V. Boutou, J. Yu, S. Ramstein, J. P. Wolf, Y. Pan, S. Holler, and R. K. Chang, “Enhanced backward-directed multiphoton-excited fluorescence from dielectric microcavities,” Phys. Rev. Lett. 85(1), 54–57 (2000).
[Crossref] [PubMed]

Chen, Z.

Chiasera, A.

A. Chiasera, Y. Dumeige, P. Féron, M. Ferrari, Y. Jestin, G. Nunzi Conti, S. Pelli, S. Soria, and G. C. Righini, “Spherical whispering-gallery-mode microresonators,” Laser Photonics Rev. 4(3), 457–482 (2010).
[Crossref]

Christie, D.

D. Christie, J. Lombardi, and I. Kretzschmar, “Two-dimensional array of silica particles as a SERS substrate,” J. Phys. Chem. C 118(17), 9114–9118 (2014).
[Crossref]

Cicerone, M. T.

C. H. Camp and M. T. Cicerone, “Chemically sensitive bioimaging with coherent Raman scattering,” Nat. Photonics 9(5), 295–305 (2015).
[Crossref]

Clements, W. R.

B. B. Li, W. R. Clements, X. C. Yu, K. Shi, Q. Gong, and Y. F. Xiao, “Single nanoparticle detection using split-mode microcavity Raman lasers,” Proc. Natl. Acad. Sci. U.S.A. 111(41), 14657–14662 (2014).
[Crossref] [PubMed]

L. Shao, X. F. Jiang, X. C. Yu, B. B. Li, W. R. Clements, F. Vollmer, W. Wang, Y. F. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25(39), 5616–5620 (2013).
[Crossref] [PubMed]

Crégut, O.

Dantham, V. R.

V. R. Dantham, P. B. Bisht, and C. K. R. Namboodiri, “Enhancement of Raman scattering by two orders of magnitude using photonic nanojet of a microsphere,” J. Appl. Phys. 109(10), 103103 (2011).
[Crossref]

V. R. Dantham, P. B. Bisht, and P. S. Dobal, “Whispering gallery modes and effect of coating on Raman spectra of single microspheres,” J. Raman Spectrosc. 42(6), 1373–1378 (2011).
[Crossref]

Depero, L. E.

I. Alessandri, N. Bontempi, and L. E. Depero, “Colloidal lenses as universal Raman scattering enhancers,” RSC Advances 4(72), 38152–38158 (2014).
[Crossref]

Devilez, A.

Dobal, P. S.

V. R. Dantham, P. B. Bisht, and P. S. Dobal, “Whispering gallery modes and effect of coating on Raman spectra of single microspheres,” J. Raman Spectrosc. 42(6), 1373–1378 (2011).
[Crossref]

Donegan, J. F.

N. Gaponik, Y. P. Rakovich, M. Gerlach, J. F. Donegan, D. Savateeva, and A. L. Rogach, “Whispering gallery modes in photoluminescence and Raman spectra of a spherical microcavity with CdTe quantum dots: anti-Stokes emission and interferences effects,” Nanoscale Res. Lett. 1(1), 68–73 (2006).
[Crossref]

Du, C. L.

C. L. Du, J. Kasim, Y. M. You, D. N. Shi, and Z. X. Shen, “Enhancement of Raman scattering by individual dielectric microspheres,” J. Raman Spectrosc. 42(2), 145–148 (2011).
[Crossref]

Dumeige, Y.

A. Chiasera, Y. Dumeige, P. Féron, M. Ferrari, Y. Jestin, G. Nunzi Conti, S. Pelli, S. Soria, and G. C. Righini, “Spherical whispering-gallery-mode microresonators,” Laser Photonics Rev. 4(3), 457–482 (2010).
[Crossref]

Etchegoin, P. G.

E. C. Le Ru and P. G. Etchegoin, “Rigorous justification of the |E|4 enhancement factor in surface enhanced Raman spectroscopy,” Chem. Phys. Lett. 423(1-3), 63–66 (2006).
[Crossref]

Feng, C.

Y. Yan, L. Li, C. Feng, W. Guo, S. Lee, and M. Hong, “Microsphere-coupled scanning laser confocal nanoscope for sub-diffraction-limited imaging at 25 nm lateral resolution in the visible spectrum,” ACS Nano 8(2), 1809–1816 (2014).
[Crossref] [PubMed]

Féron, P.

A. Chiasera, Y. Dumeige, P. Féron, M. Ferrari, Y. Jestin, G. Nunzi Conti, S. Pelli, S. Soria, and G. C. Righini, “Spherical whispering-gallery-mode microresonators,” Laser Photonics Rev. 4(3), 457–482 (2010).
[Crossref]

Ferrari, M.

A. Chiasera, Y. Dumeige, P. Féron, M. Ferrari, Y. Jestin, G. Nunzi Conti, S. Pelli, S. Soria, and G. C. Righini, “Spherical whispering-gallery-mode microresonators,” Laser Photonics Rev. 4(3), 457–482 (2010).
[Crossref]

Foreman, M. R.

M. D. Baaske, M. R. Foreman, and F. Vollmer, “Single-molecule nucleic acid interactions monitored on a label-free microcavity biosensor platform,” Nat. Nanotechnol. 9(11), 933–939 (2014).
[Crossref] [PubMed]

Gachet, D.

Gao, Y.

Gaponik, N.

N. Gaponik, Y. P. Rakovich, M. Gerlach, J. F. Donegan, D. Savateeva, and A. L. Rogach, “Whispering gallery modes in photoluminescence and Raman spectra of a spherical microcavity with CdTe quantum dots: anti-Stokes emission and interferences effects,” Nanoscale Res. Lett. 1(1), 68–73 (2006).
[Crossref]

Garrett, C. G. B.

C. G. B. Garrett, W. Kaiser, and W. L. Bond, “Stimulated emission into optical whispering modes of spheres,” Phys. Rev. 124(6), 1807–1809 (1961).
[Crossref]

Gérard, D.

Gerlach, M.

N. Gaponik, Y. P. Rakovich, M. Gerlach, J. F. Donegan, D. Savateeva, and A. L. Rogach, “Whispering gallery modes in photoluminescence and Raman spectra of a spherical microcavity with CdTe quantum dots: anti-Stokes emission and interferences effects,” Nanoscale Res. Lett. 1(1), 68–73 (2006).
[Crossref]

Gong, Q.

B. B. Li, W. R. Clements, X. C. Yu, K. Shi, Q. Gong, and Y. F. Xiao, “Single nanoparticle detection using split-mode microcavity Raman lasers,” Proc. Natl. Acad. Sci. U.S.A. 111(41), 14657–14662 (2014).
[Crossref] [PubMed]

L. Shao, X. F. Jiang, X. C. Yu, B. B. Li, W. R. Clements, F. Vollmer, W. Wang, Y. F. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25(39), 5616–5620 (2013).
[Crossref] [PubMed]

Gorodetsky, M. L.

V. B. Braginsky, M. L. Gorodetsky, and V. S. Ilchenko, “Quality-factor and nonlinear properties of optical whispering-gallery modes,” Phys. Lett. A 137(7-8), 393–397 (1989).
[Crossref]

Guo, W.

Y. Yan, L. Li, C. Feng, W. Guo, S. Lee, and M. Hong, “Microsphere-coupled scanning laser confocal nanoscope for sub-diffraction-limited imaging at 25 nm lateral resolution in the visible spectrum,” ACS Nano 8(2), 1809–1816 (2014).
[Crossref] [PubMed]

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2, 218 (2011).
[Crossref] [PubMed]

Haacke, S.

Hao, X.

X. Hao, C. Kuang, X. Liu, H. Zhang, and Y. Li, “Microsphere based microscope with optical super-resolution capability,” Appl. Phys. Lett. 99(20), 203102 (2011).
[Crossref]

He, X. N.

Heifetz, A.

A. Heifetz, K. Huang, A. Sahakian, X. Li, A. Taflove, and V. Backman, “Experimental confirmation of backscattering enhancement induced by a photonic jet,” Appl. Phys. Lett. 89(22), 221118 (2006).
[Crossref]

Hill, S. C.

S. C. Hill, V. Boutou, J. Yu, S. Ramstein, J. P. Wolf, Y. Pan, S. Holler, and R. K. Chang, “Enhanced backward-directed multiphoton-excited fluorescence from dielectric microcavities,” Phys. Rev. Lett. 85(1), 54–57 (2000).
[Crossref] [PubMed]

Hirlimann, C.

Holler, S.

S. C. Hill, V. Boutou, J. Yu, S. Ramstein, J. P. Wolf, Y. Pan, S. Holler, and R. K. Chang, “Enhanced backward-directed multiphoton-excited fluorescence from dielectric microcavities,” Phys. Rev. Lett. 85(1), 54–57 (2000).
[Crossref] [PubMed]

Hong, M.

Y. Yan, L. Li, C. Feng, W. Guo, S. Lee, and M. Hong, “Microsphere-coupled scanning laser confocal nanoscope for sub-diffraction-limited imaging at 25 nm lateral resolution in the visible spectrum,” ACS Nano 8(2), 1809–1816 (2014).
[Crossref] [PubMed]

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2, 218 (2011).
[Crossref] [PubMed]

Huang, K.

A. Heifetz, K. Huang, A. Sahakian, X. Li, A. Taflove, and V. Backman, “Experimental confirmation of backscattering enhancement induced by a photonic jet,” Appl. Phys. Lett. 89(22), 221118 (2006).
[Crossref]

Huang, X.

Ilchenko, V. S.

V. B. Braginsky, M. L. Gorodetsky, and V. S. Ilchenko, “Quality-factor and nonlinear properties of optical whispering-gallery modes,” Phys. Lett. A 137(7-8), 393–397 (1989).
[Crossref]

Imanieh, M. H.

C. Pérez-Rodríguez, M. H. Imanieh, L. L. Martin, S. Rios, I. R. Martin, and B. E. Yekta, “Study of the focusing effect of silica microspheres on the upconversion of Er3+-Yb3+ codoped glass ceramics,” J. Alloys Compd. 576, 363–368 (2013).
[Crossref]

Jaschinski, H.

M. V. Artemyev, U. Woggon, R. Wannemacher, H. Jaschinski, and W. Langbein, “Light trapped in a photonic dot: microspheres act as a cavity for quantum dot emission,” Nano Lett. 1(6), 309–314 (2001).
[Crossref]

Jestin, Y.

A. Chiasera, Y. Dumeige, P. Féron, M. Ferrari, Y. Jestin, G. Nunzi Conti, S. Pelli, S. Soria, and G. C. Righini, “Spherical whispering-gallery-mode microresonators,” Laser Photonics Rev. 4(3), 457–482 (2010).
[Crossref]

Ji, L.

Jiang, L.

Jiang, L. J.

Jiang, X. F.

L. Shao, X. F. Jiang, X. C. Yu, B. B. Li, W. R. Clements, F. Vollmer, W. Wang, Y. F. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25(39), 5616–5620 (2013).
[Crossref] [PubMed]

Jiang, Y.

Jong, L. L.

Joseph, N.

Z. Wang, N. Joseph, L. Li, and B. Lukyanchuk, “A review of optical near-fields in particle/tip-assisted laser nanofabrication,” P. I. Mech. Eng. C.- J. Mec. 224, 1113–1127 (2010).

Kaiser, W.

C. G. B. Garrett, W. Kaiser, and W. L. Bond, “Stimulated emission into optical whispering modes of spheres,” Phys. Rev. 124(6), 1807–1809 (1961).
[Crossref]

Kasim, J.

C. L. Du, J. Kasim, Y. M. You, D. N. Shi, and Z. X. Shen, “Enhancement of Raman scattering by individual dielectric microspheres,” J. Raman Spectrosc. 42(2), 145–148 (2011).
[Crossref]

J. Kasim, Y. Ting, Y. Y. Meng, L. J. Ping, A. See, L. L. Jong, and S. Z. Xiang, “Near-field Raman imaging using optically trapped dielectric microsphere,” Opt. Express 16(11), 7976–7984 (2008).
[Crossref] [PubMed]

Katsnelson, A.

W. Wu, A. Katsnelson, O. G. Memis, and H. Mohseni, “A deep sub-wavelength process for the formation of highly uniform arrays of nanoholes and nanopillars,” Nanotechnology 18(48), 485302 (2007).
[Crossref]

Khan, A.

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2, 218 (2011).
[Crossref] [PubMed]

Kretzschmar, I.

D. Christie, J. Lombardi, and I. Kretzschmar, “Two-dimensional array of silica particles as a SERS substrate,” J. Phys. Chem. C 118(17), 9114–9118 (2014).
[Crossref]

Krishna, S.

Kuang, C.

X. Hao, C. Kuang, X. Liu, H. Zhang, and Y. Li, “Microsphere based microscope with optical super-resolution capability,” Appl. Phys. Lett. 99(20), 203102 (2011).
[Crossref]

Langbein, W.

M. V. Artemyev, U. Woggon, R. Wannemacher, H. Jaschinski, and W. Langbein, “Light trapped in a photonic dot: microspheres act as a cavity for quantum dot emission,” Nano Lett. 1(6), 309–314 (2001).
[Crossref]

Le Ru, E. C.

E. C. Le Ru and P. G. Etchegoin, “Rigorous justification of the |E|4 enhancement factor in surface enhanced Raman spectroscopy,” Chem. Phys. Lett. 423(1-3), 63–66 (2006).
[Crossref]

Lecler, S.

Lecong, N.

Lee, S.

S. Lee and L. Li, “Rapid super-resolution imaging of sub-surface nanostructures beyond diffraction limit by high refractive index microsphere optical nanoscopy,” Opt. Commun. 334, 253–257 (2015).
[Crossref]

Y. Yan, L. Li, C. Feng, W. Guo, S. Lee, and M. Hong, “Microsphere-coupled scanning laser confocal nanoscope for sub-diffraction-limited imaging at 25 nm lateral resolution in the visible spectrum,” ACS Nano 8(2), 1809–1816 (2014).
[Crossref] [PubMed]

Li, B. B.

B. B. Li, W. R. Clements, X. C. Yu, K. Shi, Q. Gong, and Y. F. Xiao, “Single nanoparticle detection using split-mode microcavity Raman lasers,” Proc. Natl. Acad. Sci. U.S.A. 111(41), 14657–14662 (2014).
[Crossref] [PubMed]

L. Shao, X. F. Jiang, X. C. Yu, B. B. Li, W. R. Clements, F. Vollmer, W. Wang, Y. F. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25(39), 5616–5620 (2013).
[Crossref] [PubMed]

Li, L.

S. Lee and L. Li, “Rapid super-resolution imaging of sub-surface nanostructures beyond diffraction limit by high refractive index microsphere optical nanoscopy,” Opt. Commun. 334, 253–257 (2015).
[Crossref]

Y. Yan, L. Li, C. Feng, W. Guo, S. Lee, and M. Hong, “Microsphere-coupled scanning laser confocal nanoscope for sub-diffraction-limited imaging at 25 nm lateral resolution in the visible spectrum,” ACS Nano 8(2), 1809–1816 (2014).
[Crossref] [PubMed]

Y. Yan, Y. Zeng, Y. Wu, Y. Zhao, L. Ji, Y. Jiang, and L. Li, “Ten-fold enhancement of ZnO thin film ultraviolet-luminescence by dielectric microsphere arrays,” Opt. Express 22(19), 23552–23564 (2014).
[Crossref] [PubMed]

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2, 218 (2011).
[Crossref] [PubMed]

Z. Wang, N. Joseph, L. Li, and B. Lukyanchuk, “A review of optical near-fields in particle/tip-assisted laser nanofabrication,” P. I. Mech. Eng. C.- J. Mec. 224, 1113–1127 (2010).

Li, X.

Li, Y.

X. Hao, C. Kuang, X. Liu, H. Zhang, and Y. Li, “Microsphere based microscope with optical super-resolution capability,” Appl. Phys. Lett. 99(20), 203102 (2011).
[Crossref]

Liu, L.

Liu, X.

X. Hao, C. Kuang, X. Liu, H. Zhang, and Y. Li, “Microsphere based microscope with optical super-resolution capability,” Appl. Phys. Lett. 99(20), 203102 (2011).
[Crossref]

Liu, Z.

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2, 218 (2011).
[Crossref] [PubMed]

Lombardi, J.

D. Christie, J. Lombardi, and I. Kretzschmar, “Two-dimensional array of silica particles as a SERS substrate,” J. Phys. Chem. C 118(17), 9114–9118 (2014).
[Crossref]

Lu, Y. F.

Luk’yanchuk, B.

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2, 218 (2011).
[Crossref] [PubMed]

Lukyanchuk, B.

Z. Wang, N. Joseph, L. Li, and B. Lukyanchuk, “A review of optical near-fields in particle/tip-assisted laser nanofabrication,” P. I. Mech. Eng. C.- J. Mec. 224, 1113–1127 (2010).

Martin, I. R.

C. Pérez-Rodríguez, M. H. Imanieh, L. L. Martin, S. Rios, I. R. Martin, and B. E. Yekta, “Study of the focusing effect of silica microspheres on the upconversion of Er3+-Yb3+ codoped glass ceramics,” J. Alloys Compd. 576, 363–368 (2013).
[Crossref]

Martin, L. L.

C. Pérez-Rodríguez, M. H. Imanieh, L. L. Martin, S. Rios, I. R. Martin, and B. E. Yekta, “Study of the focusing effect of silica microspheres on the upconversion of Er3+-Yb3+ codoped glass ceramics,” J. Alloys Compd. 576, 363–368 (2013).
[Crossref]

McLeod, E.

E. McLeod and C. B. Arnold, “Subwavelength direct-write nanopatterning using optically trapped microspheres,” Nat. Nanotechnol. 3(7), 413–417 (2008).
[Crossref] [PubMed]

Memis, O. G.

W. Wu, A. Katsnelson, O. G. Memis, and H. Mohseni, “A deep sub-wavelength process for the formation of highly uniform arrays of nanoholes and nanopillars,” Nanotechnology 18(48), 485302 (2007).
[Crossref]

Meng, Y. Y.

Mohseni, H.

W. Wu, A. Katsnelson, O. G. Memis, and H. Mohseni, “A deep sub-wavelength process for the formation of highly uniform arrays of nanoholes and nanopillars,” Nanotechnology 18(48), 485302 (2007).
[Crossref]

Namboodiri, C. K. R.

V. R. Dantham, P. B. Bisht, and C. K. R. Namboodiri, “Enhancement of Raman scattering by two orders of magnitude using photonic nanojet of a microsphere,” J. Appl. Phys. 109(10), 103103 (2011).
[Crossref]

Nunzi Conti, G.

A. Chiasera, Y. Dumeige, P. Féron, M. Ferrari, Y. Jestin, G. Nunzi Conti, S. Pelli, S. Soria, and G. C. Righini, “Spherical whispering-gallery-mode microresonators,” Laser Photonics Rev. 4(3), 457–482 (2010).
[Crossref]

Painter, O.

Pan, Y.

S. C. Hill, V. Boutou, J. Yu, S. Ramstein, J. P. Wolf, Y. Pan, S. Holler, and R. K. Chang, “Enhanced backward-directed multiphoton-excited fluorescence from dielectric microcavities,” Phys. Rev. Lett. 85(1), 54–57 (2000).
[Crossref] [PubMed]

Pelli, S.

A. Chiasera, Y. Dumeige, P. Féron, M. Ferrari, Y. Jestin, G. Nunzi Conti, S. Pelli, S. Soria, and G. C. Righini, “Spherical whispering-gallery-mode microresonators,” Laser Photonics Rev. 4(3), 457–482 (2010).
[Crossref]

Pérez-Rodríguez, C.

C. Pérez-Rodríguez, M. H. Imanieh, L. L. Martin, S. Rios, I. R. Martin, and B. E. Yekta, “Study of the focusing effect of silica microspheres on the upconversion of Er3+-Yb3+ codoped glass ceramics,” J. Alloys Compd. 576, 363–368 (2013).
[Crossref]

Ping, L. J.

Popov, E.

Rakovich, Y. P.

N. Gaponik, Y. P. Rakovich, M. Gerlach, J. F. Donegan, D. Savateeva, and A. L. Rogach, “Whispering gallery modes in photoluminescence and Raman spectra of a spherical microcavity with CdTe quantum dots: anti-Stokes emission and interferences effects,” Nanoscale Res. Lett. 1(1), 68–73 (2006).
[Crossref]

Ramstein, S.

S. C. Hill, V. Boutou, J. Yu, S. Ramstein, J. P. Wolf, Y. Pan, S. Holler, and R. K. Chang, “Enhanced backward-directed multiphoton-excited fluorescence from dielectric microcavities,” Phys. Rev. Lett. 85(1), 54–57 (2000).
[Crossref] [PubMed]

Rehspringer, J. L.

Righini, G. C.

A. Chiasera, Y. Dumeige, P. Féron, M. Ferrari, Y. Jestin, G. Nunzi Conti, S. Pelli, S. Soria, and G. C. Righini, “Spherical whispering-gallery-mode microresonators,” Laser Photonics Rev. 4(3), 457–482 (2010).
[Crossref]

Rigneault, H.

Rios, S.

C. Pérez-Rodríguez, M. H. Imanieh, L. L. Martin, S. Rios, I. R. Martin, and B. E. Yekta, “Study of the focusing effect of silica microspheres on the upconversion of Er3+-Yb3+ codoped glass ceramics,” J. Alloys Compd. 576, 363–368 (2013).
[Crossref]

Rogach, A. L.

N. Gaponik, Y. P. Rakovich, M. Gerlach, J. F. Donegan, D. Savateeva, and A. L. Rogach, “Whispering gallery modes in photoluminescence and Raman spectra of a spherical microcavity with CdTe quantum dots: anti-Stokes emission and interferences effects,” Nanoscale Res. Lett. 1(1), 68–73 (2006).
[Crossref]

Sahakian, A.

A. Heifetz, K. Huang, A. Sahakian, X. Li, A. Taflove, and V. Backman, “Experimental confirmation of backscattering enhancement induced by a photonic jet,” Appl. Phys. Lett. 89(22), 221118 (2006).
[Crossref]

Savateeva, D.

N. Gaponik, Y. P. Rakovich, M. Gerlach, J. F. Donegan, D. Savateeva, and A. L. Rogach, “Whispering gallery modes in photoluminescence and Raman spectra of a spherical microcavity with CdTe quantum dots: anti-Stokes emission and interferences effects,” Nanoscale Res. Lett. 1(1), 68–73 (2006).
[Crossref]

Schatz, G. C.

L. K. Ausman and G. C. Schatz, “Whispering-gallery mode resonators: surface enhanced Raman scattering without plasmons,” J. Chem. Phys. 129(5), 054704 (2008).
[Crossref] [PubMed]

See, A.

Shao, L.

L. Shao, X. F. Jiang, X. C. Yu, B. B. Li, W. R. Clements, F. Vollmer, W. Wang, Y. F. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25(39), 5616–5620 (2013).
[Crossref] [PubMed]

Shen, Z. X.

C. L. Du, J. Kasim, Y. M. You, D. N. Shi, and Z. X. Shen, “Enhancement of Raman scattering by individual dielectric microspheres,” J. Raman Spectrosc. 42(2), 145–148 (2011).
[Crossref]

Shi, D. N.

C. L. Du, J. Kasim, Y. M. You, D. N. Shi, and Z. X. Shen, “Enhancement of Raman scattering by individual dielectric microspheres,” J. Raman Spectrosc. 42(2), 145–148 (2011).
[Crossref]

Shi, K.

B. B. Li, W. R. Clements, X. C. Yu, K. Shi, Q. Gong, and Y. F. Xiao, “Single nanoparticle detection using split-mode microcavity Raman lasers,” Proc. Natl. Acad. Sci. U.S.A. 111(41), 14657–14662 (2014).
[Crossref] [PubMed]

Silvain, J. F.

Soria, S.

A. Chiasera, Y. Dumeige, P. Féron, M. Ferrari, Y. Jestin, G. Nunzi Conti, S. Pelli, S. Soria, and G. C. Righini, “Spherical whispering-gallery-mode microresonators,” Laser Photonics Rev. 4(3), 457–482 (2010).
[Crossref]

Srinivasan, K.

Stintz, A.

Stout, B.

Taflove, A.

Ting, Y.

Vahala, K. J.

K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
[Crossref] [PubMed]

Vollmer, F.

M. D. Baaske, M. R. Foreman, and F. Vollmer, “Single-molecule nucleic acid interactions monitored on a label-free microcavity biosensor platform,” Nat. Nanotechnol. 9(11), 933–939 (2014).
[Crossref] [PubMed]

L. Shao, X. F. Jiang, X. C. Yu, B. B. Li, W. R. Clements, F. Vollmer, W. Wang, Y. F. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25(39), 5616–5620 (2013).
[Crossref] [PubMed]

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5(7), 591–596 (2008).
[Crossref] [PubMed]

Wang, H.

K. J. Yi, H. Wang, Y. F. Lu, and Z. Y. Yang, “Enhanced Raman scattering by self-assembled silica spherical microparticles,” J. Appl. Phys. 101(6), 063528 (2007).
[Crossref]

Wang, W.

L. Shao, X. F. Jiang, X. C. Yu, B. B. Li, W. R. Clements, F. Vollmer, W. Wang, Y. F. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25(39), 5616–5620 (2013).
[Crossref] [PubMed]

Wang, Z.

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2, 218 (2011).
[Crossref] [PubMed]

Z. Wang, N. Joseph, L. Li, and B. Lukyanchuk, “A review of optical near-fields in particle/tip-assisted laser nanofabrication,” P. I. Mech. Eng. C.- J. Mec. 224, 1113–1127 (2010).

Wannemacher, R.

M. V. Artemyev, U. Woggon, R. Wannemacher, H. Jaschinski, and W. Langbein, “Light trapped in a photonic dot: microspheres act as a cavity for quantum dot emission,” Nano Lett. 1(6), 309–314 (2001).
[Crossref]

Wenger, J.

Woggon, U.

M. V. Artemyev, U. Woggon, R. Wannemacher, H. Jaschinski, and W. Langbein, “Light trapped in a photonic dot: microspheres act as a cavity for quantum dot emission,” Nano Lett. 1(6), 309–314 (2001).
[Crossref]

Wolf, J. P.

S. C. Hill, V. Boutou, J. Yu, S. Ramstein, J. P. Wolf, Y. Pan, S. Holler, and R. K. Chang, “Enhanced backward-directed multiphoton-excited fluorescence from dielectric microcavities,” Phys. Rev. Lett. 85(1), 54–57 (2000).
[Crossref] [PubMed]

Wu, W.

W. Wu, A. Katsnelson, O. G. Memis, and H. Mohseni, “A deep sub-wavelength process for the formation of highly uniform arrays of nanoholes and nanopillars,” Nanotechnology 18(48), 485302 (2007).
[Crossref]

Wu, Y.

Xiang, S. Z.

Xiao, Y. F.

B. B. Li, W. R. Clements, X. C. Yu, K. Shi, Q. Gong, and Y. F. Xiao, “Single nanoparticle detection using split-mode microcavity Raman lasers,” Proc. Natl. Acad. Sci. U.S.A. 111(41), 14657–14662 (2014).
[Crossref] [PubMed]

L. Shao, X. F. Jiang, X. C. Yu, B. B. Li, W. R. Clements, F. Vollmer, W. Wang, Y. F. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25(39), 5616–5620 (2013).
[Crossref] [PubMed]

Xiong, W.

Yan, Y.

Y. Yan, Y. Zeng, Y. Wu, Y. Zhao, L. Ji, Y. Jiang, and L. Li, “Ten-fold enhancement of ZnO thin film ultraviolet-luminescence by dielectric microsphere arrays,” Opt. Express 22(19), 23552–23564 (2014).
[Crossref] [PubMed]

Y. Yan, L. Li, C. Feng, W. Guo, S. Lee, and M. Hong, “Microsphere-coupled scanning laser confocal nanoscope for sub-diffraction-limited imaging at 25 nm lateral resolution in the visible spectrum,” ACS Nano 8(2), 1809–1816 (2014).
[Crossref] [PubMed]

Yang, S.

Yang, Z. Y.

K. J. Yi, H. Wang, Y. F. Lu, and Z. Y. Yang, “Enhanced Raman scattering by self-assembled silica spherical microparticles,” J. Appl. Phys. 101(6), 063528 (2007).
[Crossref]

Yekta, B. E.

C. Pérez-Rodríguez, M. H. Imanieh, L. L. Martin, S. Rios, I. R. Martin, and B. E. Yekta, “Study of the focusing effect of silica microspheres on the upconversion of Er3+-Yb3+ codoped glass ceramics,” J. Alloys Compd. 576, 363–368 (2013).
[Crossref]

Yi, K. J.

K. J. Yi, H. Wang, Y. F. Lu, and Z. Y. Yang, “Enhanced Raman scattering by self-assembled silica spherical microparticles,” J. Appl. Phys. 101(6), 063528 (2007).
[Crossref]

You, Y. M.

C. L. Du, J. Kasim, Y. M. You, D. N. Shi, and Z. X. Shen, “Enhancement of Raman scattering by individual dielectric microspheres,” J. Raman Spectrosc. 42(2), 145–148 (2011).
[Crossref]

Yu, J.

S. C. Hill, V. Boutou, J. Yu, S. Ramstein, J. P. Wolf, Y. Pan, S. Holler, and R. K. Chang, “Enhanced backward-directed multiphoton-excited fluorescence from dielectric microcavities,” Phys. Rev. Lett. 85(1), 54–57 (2000).
[Crossref] [PubMed]

Yu, X. C.

B. B. Li, W. R. Clements, X. C. Yu, K. Shi, Q. Gong, and Y. F. Xiao, “Single nanoparticle detection using split-mode microcavity Raman lasers,” Proc. Natl. Acad. Sci. U.S.A. 111(41), 14657–14662 (2014).
[Crossref] [PubMed]

L. Shao, X. F. Jiang, X. C. Yu, B. B. Li, W. R. Clements, F. Vollmer, W. Wang, Y. F. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25(39), 5616–5620 (2013).
[Crossref] [PubMed]

Zeng, Y.

Zhang, H.

X. Hao, C. Kuang, X. Liu, H. Zhang, and Y. Li, “Microsphere based microscope with optical super-resolution capability,” Appl. Phys. Lett. 99(20), 203102 (2011).
[Crossref]

Zhao, Y.

Zhou, Y. S.

ACS Nano (2)

A. Devilez, B. Stout, and N. Bonod, “Compact metallo-dielectric optical antenna for ultra directional and enhanced radiative emission,” ACS Nano 4(6), 3390–3396 (2010).
[Crossref] [PubMed]

Y. Yan, L. Li, C. Feng, W. Guo, S. Lee, and M. Hong, “Microsphere-coupled scanning laser confocal nanoscope for sub-diffraction-limited imaging at 25 nm lateral resolution in the visible spectrum,” ACS Nano 8(2), 1809–1816 (2014).
[Crossref] [PubMed]

Adv. Mater. (1)

L. Shao, X. F. Jiang, X. C. Yu, B. B. Li, W. R. Clements, F. Vollmer, W. Wang, Y. F. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25(39), 5616–5620 (2013).
[Crossref] [PubMed]

Anal. Chem. (1)

J. Wenger, D. Gérard, H. Aouani, and H. Rigneault, “Disposable microscope objective lenses for fluorescence correlation spectroscopy using Latex microspheres,” Anal. Chem. 80(17), 6800–6804 (2008).
[Crossref] [PubMed]

Appl. Phys. Lett. (2)

X. Hao, C. Kuang, X. Liu, H. Zhang, and Y. Li, “Microsphere based microscope with optical super-resolution capability,” Appl. Phys. Lett. 99(20), 203102 (2011).
[Crossref]

A. Heifetz, K. Huang, A. Sahakian, X. Li, A. Taflove, and V. Backman, “Experimental confirmation of backscattering enhancement induced by a photonic jet,” Appl. Phys. Lett. 89(22), 221118 (2006).
[Crossref]

Chem. Phys. Lett. (1)

E. C. Le Ru and P. G. Etchegoin, “Rigorous justification of the |E|4 enhancement factor in surface enhanced Raman spectroscopy,” Chem. Phys. Lett. 423(1-3), 63–66 (2006).
[Crossref]

J. Alloys Compd. (1)

C. Pérez-Rodríguez, M. H. Imanieh, L. L. Martin, S. Rios, I. R. Martin, and B. E. Yekta, “Study of the focusing effect of silica microspheres on the upconversion of Er3+-Yb3+ codoped glass ceramics,” J. Alloys Compd. 576, 363–368 (2013).
[Crossref]

J. Appl. Phys. (2)

K. J. Yi, H. Wang, Y. F. Lu, and Z. Y. Yang, “Enhanced Raman scattering by self-assembled silica spherical microparticles,” J. Appl. Phys. 101(6), 063528 (2007).
[Crossref]

V. R. Dantham, P. B. Bisht, and C. K. R. Namboodiri, “Enhancement of Raman scattering by two orders of magnitude using photonic nanojet of a microsphere,” J. Appl. Phys. 109(10), 103103 (2011).
[Crossref]

J. Chem. Phys. (1)

L. K. Ausman and G. C. Schatz, “Whispering-gallery mode resonators: surface enhanced Raman scattering without plasmons,” J. Chem. Phys. 129(5), 054704 (2008).
[Crossref] [PubMed]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. C (1)

D. Christie, J. Lombardi, and I. Kretzschmar, “Two-dimensional array of silica particles as a SERS substrate,” J. Phys. Chem. C 118(17), 9114–9118 (2014).
[Crossref]

J. Raman Spectrosc. (3)

V. R. Dantham, P. B. Bisht, and P. S. Dobal, “Whispering gallery modes and effect of coating on Raman spectra of single microspheres,” J. Raman Spectrosc. 42(6), 1373–1378 (2011).
[Crossref]

J. F. Cardenas, “Raman scattering enhancement by dielectric spheres,” J. Raman Spectrosc. 44(4), 540–543 (2013).
[Crossref]

C. L. Du, J. Kasim, Y. M. You, D. N. Shi, and Z. X. Shen, “Enhancement of Raman scattering by individual dielectric microspheres,” J. Raman Spectrosc. 42(2), 145–148 (2011).
[Crossref]

Laser Photonics Rev. (1)

A. Chiasera, Y. Dumeige, P. Féron, M. Ferrari, Y. Jestin, G. Nunzi Conti, S. Pelli, S. Soria, and G. C. Righini, “Spherical whispering-gallery-mode microresonators,” Laser Photonics Rev. 4(3), 457–482 (2010).
[Crossref]

Nano Lett. (1)

M. V. Artemyev, U. Woggon, R. Wannemacher, H. Jaschinski, and W. Langbein, “Light trapped in a photonic dot: microspheres act as a cavity for quantum dot emission,” Nano Lett. 1(6), 309–314 (2001).
[Crossref]

Nanoscale Res. Lett. (1)

N. Gaponik, Y. P. Rakovich, M. Gerlach, J. F. Donegan, D. Savateeva, and A. L. Rogach, “Whispering gallery modes in photoluminescence and Raman spectra of a spherical microcavity with CdTe quantum dots: anti-Stokes emission and interferences effects,” Nanoscale Res. Lett. 1(1), 68–73 (2006).
[Crossref]

Nanotechnology (1)

W. Wu, A. Katsnelson, O. G. Memis, and H. Mohseni, “A deep sub-wavelength process for the formation of highly uniform arrays of nanoholes and nanopillars,” Nanotechnology 18(48), 485302 (2007).
[Crossref]

Nat. Commun. (1)

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2, 218 (2011).
[Crossref] [PubMed]

Nat. Methods (1)

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5(7), 591–596 (2008).
[Crossref] [PubMed]

Nat. Nanotechnol. (2)

M. D. Baaske, M. R. Foreman, and F. Vollmer, “Single-molecule nucleic acid interactions monitored on a label-free microcavity biosensor platform,” Nat. Nanotechnol. 9(11), 933–939 (2014).
[Crossref] [PubMed]

E. McLeod and C. B. Arnold, “Subwavelength direct-write nanopatterning using optically trapped microspheres,” Nat. Nanotechnol. 3(7), 413–417 (2008).
[Crossref] [PubMed]

Nat. Photonics (1)

C. H. Camp and M. T. Cicerone, “Chemically sensitive bioimaging with coherent Raman scattering,” Nat. Photonics 9(5), 295–305 (2015).
[Crossref]

Nature (1)

K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
[Crossref] [PubMed]

Opt. Commun. (1)

S. Lee and L. Li, “Rapid super-resolution imaging of sub-surface nanostructures beyond diffraction limit by high refractive index microsphere optical nanoscopy,” Opt. Commun. 334, 253–257 (2015).
[Crossref]

Opt. Express (9)

S. Lecler, S. Haacke, N. Lecong, O. Crégut, J. L. Rehspringer, and C. Hirlimann, “Photonic jet driven non-linear optics: example of two-photon fluorescence enhancement by dielectric microspheres,” Opt. Express 15(8), 4935–4942 (2007).
[Crossref] [PubMed]

S. Yang, A. Taflove, and V. Backman, “Experimental confirmation at visible light wavelengths of the backscattering enhancement phenomenon of the photonic nanojet,” Opt. Express 19(8), 7084–7093 (2011).
[Crossref] [PubMed]

Z. Chen, A. Taflove, and V. Backman, “Photonic nanojet enhancement of backscattering of light by nanoparticles: a potential novel visible-light ultramicroscopy technique,” Opt. Express 12(7), 1214–1220 (2004).
[Crossref] [PubMed]

X. Li, Z. Chen, A. Taflove, and V. Backman, “Optical analysis of nanoparticles via enhanced backscattering facilitated by 3-D photonic nanojets,” Opt. Express 13(2), 526–533 (2005).
[Crossref] [PubMed]

J. Kasim, Y. Ting, Y. Y. Meng, L. J. Ping, A. See, L. L. Jong, and S. Z. Xiang, “Near-field Raman imaging using optically trapped dielectric microsphere,” Opt. Express 16(11), 7976–7984 (2008).
[Crossref] [PubMed]

Y. Yan, Y. Zeng, Y. Wu, Y. Zhao, L. Ji, Y. Jiang, and L. Li, “Ten-fold enhancement of ZnO thin film ultraviolet-luminescence by dielectric microsphere arrays,” Opt. Express 22(19), 23552–23564 (2014).
[Crossref] [PubMed]

D. Gérard, J. Wenger, A. Devilez, D. Gachet, B. Stout, N. Bonod, E. Popov, and H. Rigneault, “Strong electromagnetic confinement near dielectric microspheres to enhance single-molecule fluorescence,” Opt. Express 16(19), 15297–15303 (2008).
[Crossref] [PubMed]

K. Srinivasan, M. Borselli, O. Painter, A. Stintz, and S. Krishna, “Cavity Q, mode volume, and lasing threshold in small diameter AlGaAs microdisks with embedded quantum dots,” Opt. Express 14(3), 1094–1105 (2006).
[Crossref] [PubMed]

X. Huang, X. N. He, W. Xiong, Y. Gao, L. J. Jiang, L. Liu, Y. S. Zhou, L. Jiang, J. F. Silvain, and Y. F. Lu, “Contrast enhancement using silica microspheres in coherent anti-Stokes Raman spectroscopic imaging,” Opt. Express 22(3), 2889–2896 (2014).
[Crossref] [PubMed]

Opt. Lett. (1)

P. I. Mech. Eng. C.- J. Mec. (1)

Z. Wang, N. Joseph, L. Li, and B. Lukyanchuk, “A review of optical near-fields in particle/tip-assisted laser nanofabrication,” P. I. Mech. Eng. C.- J. Mec. 224, 1113–1127 (2010).

Phys. Lett. A (1)

V. B. Braginsky, M. L. Gorodetsky, and V. S. Ilchenko, “Quality-factor and nonlinear properties of optical whispering-gallery modes,” Phys. Lett. A 137(7-8), 393–397 (1989).
[Crossref]

Phys. Rev. (1)

C. G. B. Garrett, W. Kaiser, and W. L. Bond, “Stimulated emission into optical whispering modes of spheres,” Phys. Rev. 124(6), 1807–1809 (1961).
[Crossref]

Phys. Rev. Lett. (1)

S. C. Hill, V. Boutou, J. Yu, S. Ramstein, J. P. Wolf, Y. Pan, S. Holler, and R. K. Chang, “Enhanced backward-directed multiphoton-excited fluorescence from dielectric microcavities,” Phys. Rev. Lett. 85(1), 54–57 (2000).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

B. B. Li, W. R. Clements, X. C. Yu, K. Shi, Q. Gong, and Y. F. Xiao, “Single nanoparticle detection using split-mode microcavity Raman lasers,” Proc. Natl. Acad. Sci. U.S.A. 111(41), 14657–14662 (2014).
[Crossref] [PubMed]

RSC Advances (1)

I. Alessandri, N. Bontempi, and L. E. Depero, “Colloidal lenses as universal Raman scattering enhancers,” RSC Advances 4(72), 38152–38158 (2014).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Experimental setup of microsphere array-enhanced Raman scattering. (a) Schematic of Raman spectrometer. (b)-(g) Surface morphologies of Si wafer capped with close-packed FS microspheres of (b) 1.49 μm, (c) 2.51 μm, (d) 5.04 μm, and (e) 7.27 μm diameters, as well as (f) 4.93-μm-diameter PS microspheres and (g) 5.50-μm-diameter PMMA microspheres.
Fig. 2
Fig. 2 Enhancement of Raman scattering by microsphere arrays. (a) Raman spectra of bare and microsphere-capped Si wafers. (b) ERI for various microsphere arrays.
Fig. 3
Fig. 3 Numerical simulation of excitation laser focused by various microspheres and the corresponding ERI. The periodic boundaries were applied in order to simulate close-packed microsphere arrays. (a)-(f) The profiles of |E|4 at the shadow sides of (a) 1.49-μm-diameter, (b) 2.51-μm -diameter, (c) 5.04-μm-diameter and (d) 7.27-μm-diameter FS microspheres, as well as (e) 4.93-μm-diameter PS and 5.50-μm-diameter PMMA microspheres. The distributions of light intensities inside and in the vicinity of microspheres are demonstrated in the insets.
Fig. 4
Fig. 4 Microsphere-supported WGMs excited by excitation laser scattering. (a) Schematic of WGMs excitation in a microsphere. (b) A typical FDTD simulation of WGMs excited by a dipole scatterer in free space near the bottom of a 4.93-μm-diameter PS microsphere. (c) Comparison of theoretically calculated ERI with experimental results.
Fig. 5
Fig. 5 Ultra-long working distance Raman scattering detection by microspheres. (a) Microsphere-enhanced Raman scattering intensities for various microspheres and fpps. (b) The effect of integration time on maximum Δfpp for detection. (c) Schematic of confocal configuration and scattered light collection under different fpps. (d) The electric field intensity and angular distribution of EM waves emitted from a dipole in free space. (e)-(j) The electric field intensities and angular distributions of EM waves emitted from a dipole close to (e) 1.49-μm-diameter FS, (f) 2.51-μm-diameter FS, (g) 5.04-μm-diameter FS, (h) 7.27-μm-diameter FS, (i) 4.93-μm-diameter PS, and (j) 5.50-μm-diameter PMMA microspheres. The blue dash lines indicate the angle of the maximum cone of light that can be collected by the objective.
Fig. 6
Fig. 6 The effect of substrate tilting angle on Raman scattering intensity. (a) The effect of tilting angle on Raman scattering intensity for various microspheres. (b) The collection of EM waves under various tilting angles. (c) An application of microsphere-based large-area and ultra-long WD confocal Raman detection of 3D-structured surface.

Tables (1)

Tables Icon

Table 1 The Nominal diameters and WGM-supported diameters of microspheres

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

ER I sphere ~ 0 2π 0 r s | E s ( r ) | 4 rdrdθ π r s 2 × | E 0 | 4 = 2× 0 r s | E s ( r ) | 4 rdr r s 2 × | E 0 | 4
r s lλ 2πn
E f = 3 4 π 2 ( λ n ) 3 ( Q V )
{ Q= Re( k ) 2Im( k ) V= V Q ε( r ) | E( r ) | 2 d 3 r max[ ε( r ) | E( r ) | 2 ]
ERI=ER I sphere +( 1β )× E f
α sin 1 ( NA n 0 )

Metrics