Abstract

We experimentally develop a sausage-like microresonator (SLM) by making two microtapers on a single-mode fiber, and study whispering-gallery modes (WGMs) in SLMs with different lengths. The transmission spectra from 1530 nm to 1550 nm of several SLMs are presented and SLMs with different lengths are shown to have different transmission features. The maximal Q factor observed in the SLMs is 3.8 * 107. For comparison, the transmission spectrum of a fiber cylinder microresonator is given and the maximal Q factor achieved in the fiber microcylinder resonator is 1.7 * 107. The strain tuning of the SLM is also demonstrated.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Spectral cleaning and output modal transformations in whispering-gallery-mode microresonators

Mohd Narizee Mohd Nasir, G. Senthil Murugan, and Michalis N. Zervas
J. Opt. Soc. Am. B 33(9) 1963-1970 (2016)

Selective excitation of whispering gallery modes in a novel bottle microresonator

Ganapathy Senthil Murugan, James S. Wilkinson, and Michalis N. Zervas
Opt. Express 17(14) 11916-11925 (2009)

Hollow-bottle optical microresonators

G. Senthil Murugan, M. N. Petrovich, Y. Jung, J. S. Wilkinson, and M. N. Zervas
Opt. Express 19(21) 20773-20784 (2011)

References

  • View by:
  • |
  • |
  • |

  1. B. Peng, Ş. K. Özdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, “Parity-time-symmetric whispering-gallery microcavities,” Nat. Phys. 10, 394–398 (2014).
    [Crossref]
  2. L. Chang, X. Jiang, S. Hua, C. Yang, J. Wen, L. Jiang, G. Li, G. Wang, and M. Xiao, “Parity-time symmetry and variable optical isolation in active-passive-coupled microresonators,” Nat. Photon. 8, 524–529 (2014).
    [Crossref]
  3. C. Dong, V. Fiore, M. C. Kuzyk, and H. Wang, “Optomechanical dark mode,” Science 338, 1609–1613 (2012).
    [Crossref] [PubMed]
  4. Y. S. Park, A. K. Cook, and H. Wang, “Cavity qed with diamond nanocrystals and silica microspheres,” Nano Lett. 6(9), 2075–2079 (2006).
    [Crossref] [PubMed]
  5. C.-H. Dong, Z. Shen, C.-L. Zou, Y.-L. Zhang, W. Fu, and G.-C. Guo, “Brillouin-scattering induced transparency and non-reciprocal light storage,” Nat. Commun. 6, 6193 (2015).
    [Crossref]
  6. M. Cai, O. Painter, K. J. Vahala, and P. C. Sercel, “Fiber-coupled microsphere laser,” Opt. Lett. 25, 1430–1432 (2000).
    [Crossref]
  7. Y.-Z. Huang, K.-J. Che, Y.-D. Yang, S.-J. Wang, Y. Du, and Z.-C. Fan, “Directional emission InP/GaInAsP square-resonator microlasers,” Opt. Lett. 33(19), 2710–2712 (2008).
    [Crossref]
  8. L. Shao, X. F. Jiang, X. C. Yu, B. B. Li, W. R. Clements, F. Vollmer, W. Wang, Y. F. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25, 5616–5620 (2013).
    [Crossref] [PubMed]
  9. J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-q microresonator,” Nat. Photon. 4, 46–49 (2010).
    [Crossref]
  10. F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Meth. 5, 591–596 (2008).
    [Crossref]
  11. B.-B. Li, W. R. Clements, X.-C. Yu, K. Shi, Q. Gong, and Y.-F. Xiao, “Single nanoparticle detection using split-mode microcavity Raman lasers,” Proc. Natl. Acad. Sci. USA 111(41), 14657–14662 (2014).
    [Crossref] [PubMed]
  12. M. Sumetsky, “Mode localization and the Q-factor of a cylindrical microresonator,” Opt. Lett. 35(14), 2385–2387 (2010).
    [Crossref] [PubMed]
  13. M. Sumetsky and Y. Dulashko, “Radius variation of optical fibers with angstrom accuracy”, Opt. Lett. 35(23), 4006–4008 (2010).
    [Crossref] [PubMed]
  14. X. Zhang, Z. Ma, H. Yu, X. Guo, Y. Ma, and L. Tong, “Plasmonic resonance of whispering gallery modes in an Au cylinder,” Opt. Express 19(5), 3902–3907 (2011).
    [Crossref] [PubMed]
  15. M. L. Gorodetsky, A. A. Savchenkov, and V. S. Ilchenko, “Ultimate Q of optical microsphere resonators,” Opt. Lett. 21(7), 453–455 (1996).
    [Crossref] [PubMed]
  16. T. J. Kippenberg, S. M. Spillane, D. K. Armani, and K. J. Vahala, “Fabrication and coupling to planar high-Q silica disk microcavities,” Appl. Phys. Lett. 83(4), 797–799 (2003).
    [Crossref]
  17. F. Bo, S. H. Huang, Ş. K. Özdemir, G. Zhang, J. Xu, and L. Yang, “Inverted-wedge silica resonators for controlled and stable coupling,” Opt. Lett. 39, 1841–1844 (2014).
    [Crossref] [PubMed]
  18. J. Lin, Y. Xu, Z. Fang, M. Wang, J. Song, N. Wang, L. Qiao, W. Fang, and Y. Cheng, “Fabrication of high-Q lithium niobate microresonators using femtosecond laser micromachining,” Sci. Rep. 5, 8072 (2015).
    [Crossref] [PubMed]
  19. D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-q toroid microcavity on a chip,” Nature 421, 925–928 (2003).
    [Crossref] [PubMed]
  20. X. F. Jiang, Y. F. Xiao, C. L. Zou, L. He, C. H. Dong, B. B. Li, Y. Li, F. W. Sun, L. Yang, and Q. Gong, “Highly unidirectional emission and ultralow-threshold lasing from on-chip ultrahigh-Q microcavities,” Adv. Mater. 24, OP260–OP264 (2012).
    [Crossref] [PubMed]
  21. M. Pöllinger, D. O’Shea, F. Warken, and A. Rauschenbeutel, “Ultrahigh-q tunable whispering-gallery-mode microresonator,” Phys. Rev. Lett. 103(5), 053901 (2009).
    [Crossref] [PubMed]
  22. M. Ding, G. S. Murugan, G. Brambilla, and M. N. Zervas, “Whispering gallery mode selection in optical bottle microresonators,” Appl. Phys. Lett. 100(8), 081108 (2012).
    [Crossref]
  23. G. Gu, C. Guo, Z. Cai, H. Xu, L. Chen, H. Fu, K. Che, M. Hong, S. Sun, and F. Li, “Fabrication of ultraviolet-curable adhesive bottle-like microresonators by wetting and photocuring,” Appl. Opt. 53, 7819–7824 (2014).
    [Crossref] [PubMed]
  24. A. Lee, T. Mills, and Y. Xu, “Nanoscale welding aerosol sensing based on whispering gallery modes in a cylindrical silica resonator,” Opt. Express 23(6), 7351–7365 (2015).
    [Crossref] [PubMed]
  25. V. Zamora, A. Díez, M. V. Andrés, and B. Gimeno, “Interrogation of whispering-gallery modes resonances in cylindrical microcavities by backreflection detection,” Opt. Lett. 34(7), 1039–1041 (2009).
    [Crossref] [PubMed]
  26. T. A. Birks, J. C. Knight, and T. E. Dimmick, “High-resolution measurement of the fiber diameter variations using whispering gallery modes and no optical alignment,” IEEE Photon. Technol. Lett. 12(2), 182–183 (2000).
    [Crossref]
  27. A. W. Poon, R. K. Chang, and J. A. Lock, “Spiral morphology-dependent resonances in an optical fiber: effects of fiber tilt and focused Gaussian beam illumination,” Opt. Lett. 23(14), 1105–1107 (1998).
    [Crossref]
  28. C. Yin, J. Gu, M. Li, and Y. Song, “Tunable high-Q tapered silica microcylinder filter,” Chin. Opt. Lett. 11(8), 082302 (2013).
    [Crossref]
  29. V. Kavungal, L. Bo, Q. Wu, M. Teng, C. Yu, G. Farrell, and Y. Semenova, “Study of whispering gallery modes in a cylindrical microresonator excited by a tilted fiber taper,” Proc. SPIE 9157, 91578N (2014).
    [Crossref]
  30. F. Luan, E. Magi, T. Gong, I. Kabakova, and B. J. Eggleton, “Photoinduced whispering gallery mode microcavity resonator in a chalcogenide microfiber,” Opt. Lett. 36(24), 4761–4763 (2011).
    [Crossref] [PubMed]
  31. M. Sumetsky and J. M. Fini, “Surface nanoscale axial photonics,” Opt. Express,  19(27), 26470–26485 (2011).
    [Crossref]
  32. H. Zhu, I. M. White, J. D. Suter, M. Zourob, and X. Fan, “Integrated refractive index optical ring resonator detector for capillary electrophoresis,” Anal. Chem. 79(3), 930–937 (2007).
    [Crossref] [PubMed]
  33. Y. Dong, X. Jin, and K. Wang, “Packaged and robust microcavity device based on a microcylinder-taper coupling system,” Appl. Opt. 54(13), 4016–4022 (2015).
    [Crossref]
  34. G. S. Murugan, M. N. Petrovich, Y. Jung, J. S. Wilkinson, and M. N. Zervas, “Hollow-bottle optical microresonators,” Opt. Express 19(21), 20773–20784 (2011).
    [Crossref]

2015 (4)

C.-H. Dong, Z. Shen, C.-L. Zou, Y.-L. Zhang, W. Fu, and G.-C. Guo, “Brillouin-scattering induced transparency and non-reciprocal light storage,” Nat. Commun. 6, 6193 (2015).
[Crossref]

J. Lin, Y. Xu, Z. Fang, M. Wang, J. Song, N. Wang, L. Qiao, W. Fang, and Y. Cheng, “Fabrication of high-Q lithium niobate microresonators using femtosecond laser micromachining,” Sci. Rep. 5, 8072 (2015).
[Crossref] [PubMed]

A. Lee, T. Mills, and Y. Xu, “Nanoscale welding aerosol sensing based on whispering gallery modes in a cylindrical silica resonator,” Opt. Express 23(6), 7351–7365 (2015).
[Crossref] [PubMed]

Y. Dong, X. Jin, and K. Wang, “Packaged and robust microcavity device based on a microcylinder-taper coupling system,” Appl. Opt. 54(13), 4016–4022 (2015).
[Crossref]

2014 (6)

G. Gu, C. Guo, Z. Cai, H. Xu, L. Chen, H. Fu, K. Che, M. Hong, S. Sun, and F. Li, “Fabrication of ultraviolet-curable adhesive bottle-like microresonators by wetting and photocuring,” Appl. Opt. 53, 7819–7824 (2014).
[Crossref] [PubMed]

V. Kavungal, L. Bo, Q. Wu, M. Teng, C. Yu, G. Farrell, and Y. Semenova, “Study of whispering gallery modes in a cylindrical microresonator excited by a tilted fiber taper,” Proc. SPIE 9157, 91578N (2014).
[Crossref]

F. Bo, S. H. Huang, Ş. K. Özdemir, G. Zhang, J. Xu, and L. Yang, “Inverted-wedge silica resonators for controlled and stable coupling,” Opt. Lett. 39, 1841–1844 (2014).
[Crossref] [PubMed]

B.-B. Li, W. R. Clements, X.-C. Yu, K. Shi, Q. Gong, and Y.-F. Xiao, “Single nanoparticle detection using split-mode microcavity Raman lasers,” Proc. Natl. Acad. Sci. USA 111(41), 14657–14662 (2014).
[Crossref] [PubMed]

B. Peng, Ş. K. Özdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, “Parity-time-symmetric whispering-gallery microcavities,” Nat. Phys. 10, 394–398 (2014).
[Crossref]

L. Chang, X. Jiang, S. Hua, C. Yang, J. Wen, L. Jiang, G. Li, G. Wang, and M. Xiao, “Parity-time symmetry and variable optical isolation in active-passive-coupled microresonators,” Nat. Photon. 8, 524–529 (2014).
[Crossref]

2013 (2)

L. Shao, X. F. Jiang, X. C. Yu, B. B. Li, W. R. Clements, F. Vollmer, W. Wang, Y. F. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25, 5616–5620 (2013).
[Crossref] [PubMed]

C. Yin, J. Gu, M. Li, and Y. Song, “Tunable high-Q tapered silica microcylinder filter,” Chin. Opt. Lett. 11(8), 082302 (2013).
[Crossref]

2012 (3)

M. Ding, G. S. Murugan, G. Brambilla, and M. N. Zervas, “Whispering gallery mode selection in optical bottle microresonators,” Appl. Phys. Lett. 100(8), 081108 (2012).
[Crossref]

X. F. Jiang, Y. F. Xiao, C. L. Zou, L. He, C. H. Dong, B. B. Li, Y. Li, F. W. Sun, L. Yang, and Q. Gong, “Highly unidirectional emission and ultralow-threshold lasing from on-chip ultrahigh-Q microcavities,” Adv. Mater. 24, OP260–OP264 (2012).
[Crossref] [PubMed]

C. Dong, V. Fiore, M. C. Kuzyk, and H. Wang, “Optomechanical dark mode,” Science 338, 1609–1613 (2012).
[Crossref] [PubMed]

2011 (4)

2010 (3)

M. Sumetsky, “Mode localization and the Q-factor of a cylindrical microresonator,” Opt. Lett. 35(14), 2385–2387 (2010).
[Crossref] [PubMed]

M. Sumetsky and Y. Dulashko, “Radius variation of optical fibers with angstrom accuracy”, Opt. Lett. 35(23), 4006–4008 (2010).
[Crossref] [PubMed]

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-q microresonator,” Nat. Photon. 4, 46–49 (2010).
[Crossref]

2009 (2)

M. Pöllinger, D. O’Shea, F. Warken, and A. Rauschenbeutel, “Ultrahigh-q tunable whispering-gallery-mode microresonator,” Phys. Rev. Lett. 103(5), 053901 (2009).
[Crossref] [PubMed]

V. Zamora, A. Díez, M. V. Andrés, and B. Gimeno, “Interrogation of whispering-gallery modes resonances in cylindrical microcavities by backreflection detection,” Opt. Lett. 34(7), 1039–1041 (2009).
[Crossref] [PubMed]

2008 (2)

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Meth. 5, 591–596 (2008).
[Crossref]

Y.-Z. Huang, K.-J. Che, Y.-D. Yang, S.-J. Wang, Y. Du, and Z.-C. Fan, “Directional emission InP/GaInAsP square-resonator microlasers,” Opt. Lett. 33(19), 2710–2712 (2008).
[Crossref]

2007 (1)

H. Zhu, I. M. White, J. D. Suter, M. Zourob, and X. Fan, “Integrated refractive index optical ring resonator detector for capillary electrophoresis,” Anal. Chem. 79(3), 930–937 (2007).
[Crossref] [PubMed]

2006 (1)

Y. S. Park, A. K. Cook, and H. Wang, “Cavity qed with diamond nanocrystals and silica microspheres,” Nano Lett. 6(9), 2075–2079 (2006).
[Crossref] [PubMed]

2003 (2)

T. J. Kippenberg, S. M. Spillane, D. K. Armani, and K. J. Vahala, “Fabrication and coupling to planar high-Q silica disk microcavities,” Appl. Phys. Lett. 83(4), 797–799 (2003).
[Crossref]

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-q toroid microcavity on a chip,” Nature 421, 925–928 (2003).
[Crossref] [PubMed]

2000 (2)

M. Cai, O. Painter, K. J. Vahala, and P. C. Sercel, “Fiber-coupled microsphere laser,” Opt. Lett. 25, 1430–1432 (2000).
[Crossref]

T. A. Birks, J. C. Knight, and T. E. Dimmick, “High-resolution measurement of the fiber diameter variations using whispering gallery modes and no optical alignment,” IEEE Photon. Technol. Lett. 12(2), 182–183 (2000).
[Crossref]

1998 (1)

1996 (1)

Andrés, M. V.

Armani, D. K.

T. J. Kippenberg, S. M. Spillane, D. K. Armani, and K. J. Vahala, “Fabrication and coupling to planar high-Q silica disk microcavities,” Appl. Phys. Lett. 83(4), 797–799 (2003).
[Crossref]

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-q toroid microcavity on a chip,” Nature 421, 925–928 (2003).
[Crossref] [PubMed]

Arnold, S.

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Meth. 5, 591–596 (2008).
[Crossref]

Bender, C. M.

B. Peng, Ş. K. Özdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, “Parity-time-symmetric whispering-gallery microcavities,” Nat. Phys. 10, 394–398 (2014).
[Crossref]

Birks, T. A.

T. A. Birks, J. C. Knight, and T. E. Dimmick, “High-resolution measurement of the fiber diameter variations using whispering gallery modes and no optical alignment,” IEEE Photon. Technol. Lett. 12(2), 182–183 (2000).
[Crossref]

Bo, F.

Bo, L.

V. Kavungal, L. Bo, Q. Wu, M. Teng, C. Yu, G. Farrell, and Y. Semenova, “Study of whispering gallery modes in a cylindrical microresonator excited by a tilted fiber taper,” Proc. SPIE 9157, 91578N (2014).
[Crossref]

Brambilla, G.

M. Ding, G. S. Murugan, G. Brambilla, and M. N. Zervas, “Whispering gallery mode selection in optical bottle microresonators,” Appl. Phys. Lett. 100(8), 081108 (2012).
[Crossref]

Cai, M.

Cai, Z.

Chang, L.

L. Chang, X. Jiang, S. Hua, C. Yang, J. Wen, L. Jiang, G. Li, G. Wang, and M. Xiao, “Parity-time symmetry and variable optical isolation in active-passive-coupled microresonators,” Nat. Photon. 8, 524–529 (2014).
[Crossref]

Chang, R. K.

Che, K.

Che, K.-J.

Chen, D.-R.

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-q microresonator,” Nat. Photon. 4, 46–49 (2010).
[Crossref]

Chen, L.

Cheng, Y.

J. Lin, Y. Xu, Z. Fang, M. Wang, J. Song, N. Wang, L. Qiao, W. Fang, and Y. Cheng, “Fabrication of high-Q lithium niobate microresonators using femtosecond laser micromachining,” Sci. Rep. 5, 8072 (2015).
[Crossref] [PubMed]

Clements, W. R.

B.-B. Li, W. R. Clements, X.-C. Yu, K. Shi, Q. Gong, and Y.-F. Xiao, “Single nanoparticle detection using split-mode microcavity Raman lasers,” Proc. Natl. Acad. Sci. USA 111(41), 14657–14662 (2014).
[Crossref] [PubMed]

L. Shao, X. F. Jiang, X. C. Yu, B. B. Li, W. R. Clements, F. Vollmer, W. Wang, Y. F. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25, 5616–5620 (2013).
[Crossref] [PubMed]

Cook, A. K.

Y. S. Park, A. K. Cook, and H. Wang, “Cavity qed with diamond nanocrystals and silica microspheres,” Nano Lett. 6(9), 2075–2079 (2006).
[Crossref] [PubMed]

Díez, A.

Dimmick, T. E.

T. A. Birks, J. C. Knight, and T. E. Dimmick, “High-resolution measurement of the fiber diameter variations using whispering gallery modes and no optical alignment,” IEEE Photon. Technol. Lett. 12(2), 182–183 (2000).
[Crossref]

Ding, M.

M. Ding, G. S. Murugan, G. Brambilla, and M. N. Zervas, “Whispering gallery mode selection in optical bottle microresonators,” Appl. Phys. Lett. 100(8), 081108 (2012).
[Crossref]

Dong, C.

C. Dong, V. Fiore, M. C. Kuzyk, and H. Wang, “Optomechanical dark mode,” Science 338, 1609–1613 (2012).
[Crossref] [PubMed]

Dong, C. H.

X. F. Jiang, Y. F. Xiao, C. L. Zou, L. He, C. H. Dong, B. B. Li, Y. Li, F. W. Sun, L. Yang, and Q. Gong, “Highly unidirectional emission and ultralow-threshold lasing from on-chip ultrahigh-Q microcavities,” Adv. Mater. 24, OP260–OP264 (2012).
[Crossref] [PubMed]

Dong, C.-H.

C.-H. Dong, Z. Shen, C.-L. Zou, Y.-L. Zhang, W. Fu, and G.-C. Guo, “Brillouin-scattering induced transparency and non-reciprocal light storage,” Nat. Commun. 6, 6193 (2015).
[Crossref]

Dong, Y.

Du, Y.

Dulashko, Y.

Eggleton, B. J.

Fan, S.

B. Peng, Ş. K. Özdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, “Parity-time-symmetric whispering-gallery microcavities,” Nat. Phys. 10, 394–398 (2014).
[Crossref]

Fan, X.

H. Zhu, I. M. White, J. D. Suter, M. Zourob, and X. Fan, “Integrated refractive index optical ring resonator detector for capillary electrophoresis,” Anal. Chem. 79(3), 930–937 (2007).
[Crossref] [PubMed]

Fan, Z.-C.

Fang, W.

J. Lin, Y. Xu, Z. Fang, M. Wang, J. Song, N. Wang, L. Qiao, W. Fang, and Y. Cheng, “Fabrication of high-Q lithium niobate microresonators using femtosecond laser micromachining,” Sci. Rep. 5, 8072 (2015).
[Crossref] [PubMed]

Fang, Z.

J. Lin, Y. Xu, Z. Fang, M. Wang, J. Song, N. Wang, L. Qiao, W. Fang, and Y. Cheng, “Fabrication of high-Q lithium niobate microresonators using femtosecond laser micromachining,” Sci. Rep. 5, 8072 (2015).
[Crossref] [PubMed]

Farrell, G.

V. Kavungal, L. Bo, Q. Wu, M. Teng, C. Yu, G. Farrell, and Y. Semenova, “Study of whispering gallery modes in a cylindrical microresonator excited by a tilted fiber taper,” Proc. SPIE 9157, 91578N (2014).
[Crossref]

Fini, J. M.

Fiore, V.

C. Dong, V. Fiore, M. C. Kuzyk, and H. Wang, “Optomechanical dark mode,” Science 338, 1609–1613 (2012).
[Crossref] [PubMed]

Fu, H.

Fu, W.

C.-H. Dong, Z. Shen, C.-L. Zou, Y.-L. Zhang, W. Fu, and G.-C. Guo, “Brillouin-scattering induced transparency and non-reciprocal light storage,” Nat. Commun. 6, 6193 (2015).
[Crossref]

Gianfreda, M.

B. Peng, Ş. K. Özdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, “Parity-time-symmetric whispering-gallery microcavities,” Nat. Phys. 10, 394–398 (2014).
[Crossref]

Gimeno, B.

Gong, Q.

B.-B. Li, W. R. Clements, X.-C. Yu, K. Shi, Q. Gong, and Y.-F. Xiao, “Single nanoparticle detection using split-mode microcavity Raman lasers,” Proc. Natl. Acad. Sci. USA 111(41), 14657–14662 (2014).
[Crossref] [PubMed]

L. Shao, X. F. Jiang, X. C. Yu, B. B. Li, W. R. Clements, F. Vollmer, W. Wang, Y. F. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25, 5616–5620 (2013).
[Crossref] [PubMed]

X. F. Jiang, Y. F. Xiao, C. L. Zou, L. He, C. H. Dong, B. B. Li, Y. Li, F. W. Sun, L. Yang, and Q. Gong, “Highly unidirectional emission and ultralow-threshold lasing from on-chip ultrahigh-Q microcavities,” Adv. Mater. 24, OP260–OP264 (2012).
[Crossref] [PubMed]

Gong, T.

Gorodetsky, M. L.

Gu, G.

Gu, J.

Guo, C.

Guo, G.-C.

C.-H. Dong, Z. Shen, C.-L. Zou, Y.-L. Zhang, W. Fu, and G.-C. Guo, “Brillouin-scattering induced transparency and non-reciprocal light storage,” Nat. Commun. 6, 6193 (2015).
[Crossref]

Guo, X.

He, L.

X. F. Jiang, Y. F. Xiao, C. L. Zou, L. He, C. H. Dong, B. B. Li, Y. Li, F. W. Sun, L. Yang, and Q. Gong, “Highly unidirectional emission and ultralow-threshold lasing from on-chip ultrahigh-Q microcavities,” Adv. Mater. 24, OP260–OP264 (2012).
[Crossref] [PubMed]

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-q microresonator,” Nat. Photon. 4, 46–49 (2010).
[Crossref]

Hong, M.

Hua, S.

L. Chang, X. Jiang, S. Hua, C. Yang, J. Wen, L. Jiang, G. Li, G. Wang, and M. Xiao, “Parity-time symmetry and variable optical isolation in active-passive-coupled microresonators,” Nat. Photon. 8, 524–529 (2014).
[Crossref]

Huang, S. H.

Huang, Y.-Z.

Ilchenko, V. S.

Jiang, L.

L. Chang, X. Jiang, S. Hua, C. Yang, J. Wen, L. Jiang, G. Li, G. Wang, and M. Xiao, “Parity-time symmetry and variable optical isolation in active-passive-coupled microresonators,” Nat. Photon. 8, 524–529 (2014).
[Crossref]

Jiang, X.

L. Chang, X. Jiang, S. Hua, C. Yang, J. Wen, L. Jiang, G. Li, G. Wang, and M. Xiao, “Parity-time symmetry and variable optical isolation in active-passive-coupled microresonators,” Nat. Photon. 8, 524–529 (2014).
[Crossref]

Jiang, X. F.

L. Shao, X. F. Jiang, X. C. Yu, B. B. Li, W. R. Clements, F. Vollmer, W. Wang, Y. F. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25, 5616–5620 (2013).
[Crossref] [PubMed]

X. F. Jiang, Y. F. Xiao, C. L. Zou, L. He, C. H. Dong, B. B. Li, Y. Li, F. W. Sun, L. Yang, and Q. Gong, “Highly unidirectional emission and ultralow-threshold lasing from on-chip ultrahigh-Q microcavities,” Adv. Mater. 24, OP260–OP264 (2012).
[Crossref] [PubMed]

Jin, X.

Jung, Y.

Kabakova, I.

Kavungal, V.

V. Kavungal, L. Bo, Q. Wu, M. Teng, C. Yu, G. Farrell, and Y. Semenova, “Study of whispering gallery modes in a cylindrical microresonator excited by a tilted fiber taper,” Proc. SPIE 9157, 91578N (2014).
[Crossref]

Kippenberg, T. J.

T. J. Kippenberg, S. M. Spillane, D. K. Armani, and K. J. Vahala, “Fabrication and coupling to planar high-Q silica disk microcavities,” Appl. Phys. Lett. 83(4), 797–799 (2003).
[Crossref]

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-q toroid microcavity on a chip,” Nature 421, 925–928 (2003).
[Crossref] [PubMed]

Knight, J. C.

T. A. Birks, J. C. Knight, and T. E. Dimmick, “High-resolution measurement of the fiber diameter variations using whispering gallery modes and no optical alignment,” IEEE Photon. Technol. Lett. 12(2), 182–183 (2000).
[Crossref]

Kuzyk, M. C.

C. Dong, V. Fiore, M. C. Kuzyk, and H. Wang, “Optomechanical dark mode,” Science 338, 1609–1613 (2012).
[Crossref] [PubMed]

Lee, A.

Lei, F.

B. Peng, Ş. K. Özdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, “Parity-time-symmetric whispering-gallery microcavities,” Nat. Phys. 10, 394–398 (2014).
[Crossref]

Li, B. B.

L. Shao, X. F. Jiang, X. C. Yu, B. B. Li, W. R. Clements, F. Vollmer, W. Wang, Y. F. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25, 5616–5620 (2013).
[Crossref] [PubMed]

X. F. Jiang, Y. F. Xiao, C. L. Zou, L. He, C. H. Dong, B. B. Li, Y. Li, F. W. Sun, L. Yang, and Q. Gong, “Highly unidirectional emission and ultralow-threshold lasing from on-chip ultrahigh-Q microcavities,” Adv. Mater. 24, OP260–OP264 (2012).
[Crossref] [PubMed]

Li, B.-B.

B.-B. Li, W. R. Clements, X.-C. Yu, K. Shi, Q. Gong, and Y.-F. Xiao, “Single nanoparticle detection using split-mode microcavity Raman lasers,” Proc. Natl. Acad. Sci. USA 111(41), 14657–14662 (2014).
[Crossref] [PubMed]

Li, F.

Li, G.

L. Chang, X. Jiang, S. Hua, C. Yang, J. Wen, L. Jiang, G. Li, G. Wang, and M. Xiao, “Parity-time symmetry and variable optical isolation in active-passive-coupled microresonators,” Nat. Photon. 8, 524–529 (2014).
[Crossref]

Li, L.

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-q microresonator,” Nat. Photon. 4, 46–49 (2010).
[Crossref]

Li, M.

Li, Y.

X. F. Jiang, Y. F. Xiao, C. L. Zou, L. He, C. H. Dong, B. B. Li, Y. Li, F. W. Sun, L. Yang, and Q. Gong, “Highly unidirectional emission and ultralow-threshold lasing from on-chip ultrahigh-Q microcavities,” Adv. Mater. 24, OP260–OP264 (2012).
[Crossref] [PubMed]

Lin, J.

J. Lin, Y. Xu, Z. Fang, M. Wang, J. Song, N. Wang, L. Qiao, W. Fang, and Y. Cheng, “Fabrication of high-Q lithium niobate microresonators using femtosecond laser micromachining,” Sci. Rep. 5, 8072 (2015).
[Crossref] [PubMed]

Lock, J. A.

Long, G. L.

B. Peng, Ş. K. Özdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, “Parity-time-symmetric whispering-gallery microcavities,” Nat. Phys. 10, 394–398 (2014).
[Crossref]

Luan, F.

Ma, Y.

Ma, Z.

Magi, E.

Mills, T.

Monifi, F.

B. Peng, Ş. K. Özdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, “Parity-time-symmetric whispering-gallery microcavities,” Nat. Phys. 10, 394–398 (2014).
[Crossref]

Murugan, G. S.

M. Ding, G. S. Murugan, G. Brambilla, and M. N. Zervas, “Whispering gallery mode selection in optical bottle microresonators,” Appl. Phys. Lett. 100(8), 081108 (2012).
[Crossref]

G. S. Murugan, M. N. Petrovich, Y. Jung, J. S. Wilkinson, and M. N. Zervas, “Hollow-bottle optical microresonators,” Opt. Express 19(21), 20773–20784 (2011).
[Crossref]

Nori, F.

B. Peng, Ş. K. Özdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, “Parity-time-symmetric whispering-gallery microcavities,” Nat. Phys. 10, 394–398 (2014).
[Crossref]

O’Shea, D.

M. Pöllinger, D. O’Shea, F. Warken, and A. Rauschenbeutel, “Ultrahigh-q tunable whispering-gallery-mode microresonator,” Phys. Rev. Lett. 103(5), 053901 (2009).
[Crossref] [PubMed]

Ozdemir, S. K.

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-q microresonator,” Nat. Photon. 4, 46–49 (2010).
[Crossref]

Özdemir, S. K.

B. Peng, Ş. K. Özdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, “Parity-time-symmetric whispering-gallery microcavities,” Nat. Phys. 10, 394–398 (2014).
[Crossref]

F. Bo, S. H. Huang, Ş. K. Özdemir, G. Zhang, J. Xu, and L. Yang, “Inverted-wedge silica resonators for controlled and stable coupling,” Opt. Lett. 39, 1841–1844 (2014).
[Crossref] [PubMed]

Painter, O.

Park, Y. S.

Y. S. Park, A. K. Cook, and H. Wang, “Cavity qed with diamond nanocrystals and silica microspheres,” Nano Lett. 6(9), 2075–2079 (2006).
[Crossref] [PubMed]

Peng, B.

B. Peng, Ş. K. Özdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, “Parity-time-symmetric whispering-gallery microcavities,” Nat. Phys. 10, 394–398 (2014).
[Crossref]

Petrovich, M. N.

Pöllinger, M.

M. Pöllinger, D. O’Shea, F. Warken, and A. Rauschenbeutel, “Ultrahigh-q tunable whispering-gallery-mode microresonator,” Phys. Rev. Lett. 103(5), 053901 (2009).
[Crossref] [PubMed]

Poon, A. W.

Qiao, L.

J. Lin, Y. Xu, Z. Fang, M. Wang, J. Song, N. Wang, L. Qiao, W. Fang, and Y. Cheng, “Fabrication of high-Q lithium niobate microresonators using femtosecond laser micromachining,” Sci. Rep. 5, 8072 (2015).
[Crossref] [PubMed]

Rauschenbeutel, A.

M. Pöllinger, D. O’Shea, F. Warken, and A. Rauschenbeutel, “Ultrahigh-q tunable whispering-gallery-mode microresonator,” Phys. Rev. Lett. 103(5), 053901 (2009).
[Crossref] [PubMed]

Savchenkov, A. A.

Semenova, Y.

V. Kavungal, L. Bo, Q. Wu, M. Teng, C. Yu, G. Farrell, and Y. Semenova, “Study of whispering gallery modes in a cylindrical microresonator excited by a tilted fiber taper,” Proc. SPIE 9157, 91578N (2014).
[Crossref]

Sercel, P. C.

Shao, L.

L. Shao, X. F. Jiang, X. C. Yu, B. B. Li, W. R. Clements, F. Vollmer, W. Wang, Y. F. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25, 5616–5620 (2013).
[Crossref] [PubMed]

Shen, Z.

C.-H. Dong, Z. Shen, C.-L. Zou, Y.-L. Zhang, W. Fu, and G.-C. Guo, “Brillouin-scattering induced transparency and non-reciprocal light storage,” Nat. Commun. 6, 6193 (2015).
[Crossref]

Shi, K.

B.-B. Li, W. R. Clements, X.-C. Yu, K. Shi, Q. Gong, and Y.-F. Xiao, “Single nanoparticle detection using split-mode microcavity Raman lasers,” Proc. Natl. Acad. Sci. USA 111(41), 14657–14662 (2014).
[Crossref] [PubMed]

Song, J.

J. Lin, Y. Xu, Z. Fang, M. Wang, J. Song, N. Wang, L. Qiao, W. Fang, and Y. Cheng, “Fabrication of high-Q lithium niobate microresonators using femtosecond laser micromachining,” Sci. Rep. 5, 8072 (2015).
[Crossref] [PubMed]

Song, Y.

Spillane, S. M.

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-q toroid microcavity on a chip,” Nature 421, 925–928 (2003).
[Crossref] [PubMed]

T. J. Kippenberg, S. M. Spillane, D. K. Armani, and K. J. Vahala, “Fabrication and coupling to planar high-Q silica disk microcavities,” Appl. Phys. Lett. 83(4), 797–799 (2003).
[Crossref]

Sumetsky, M.

Sun, F. W.

X. F. Jiang, Y. F. Xiao, C. L. Zou, L. He, C. H. Dong, B. B. Li, Y. Li, F. W. Sun, L. Yang, and Q. Gong, “Highly unidirectional emission and ultralow-threshold lasing from on-chip ultrahigh-Q microcavities,” Adv. Mater. 24, OP260–OP264 (2012).
[Crossref] [PubMed]

Sun, S.

Suter, J. D.

H. Zhu, I. M. White, J. D. Suter, M. Zourob, and X. Fan, “Integrated refractive index optical ring resonator detector for capillary electrophoresis,” Anal. Chem. 79(3), 930–937 (2007).
[Crossref] [PubMed]

Teng, M.

V. Kavungal, L. Bo, Q. Wu, M. Teng, C. Yu, G. Farrell, and Y. Semenova, “Study of whispering gallery modes in a cylindrical microresonator excited by a tilted fiber taper,” Proc. SPIE 9157, 91578N (2014).
[Crossref]

Tong, L.

Vahala, K. J.

T. J. Kippenberg, S. M. Spillane, D. K. Armani, and K. J. Vahala, “Fabrication and coupling to planar high-Q silica disk microcavities,” Appl. Phys. Lett. 83(4), 797–799 (2003).
[Crossref]

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-q toroid microcavity on a chip,” Nature 421, 925–928 (2003).
[Crossref] [PubMed]

M. Cai, O. Painter, K. J. Vahala, and P. C. Sercel, “Fiber-coupled microsphere laser,” Opt. Lett. 25, 1430–1432 (2000).
[Crossref]

Vollmer, F.

L. Shao, X. F. Jiang, X. C. Yu, B. B. Li, W. R. Clements, F. Vollmer, W. Wang, Y. F. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25, 5616–5620 (2013).
[Crossref] [PubMed]

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Meth. 5, 591–596 (2008).
[Crossref]

Wang, G.

L. Chang, X. Jiang, S. Hua, C. Yang, J. Wen, L. Jiang, G. Li, G. Wang, and M. Xiao, “Parity-time symmetry and variable optical isolation in active-passive-coupled microresonators,” Nat. Photon. 8, 524–529 (2014).
[Crossref]

Wang, H.

C. Dong, V. Fiore, M. C. Kuzyk, and H. Wang, “Optomechanical dark mode,” Science 338, 1609–1613 (2012).
[Crossref] [PubMed]

Y. S. Park, A. K. Cook, and H. Wang, “Cavity qed with diamond nanocrystals and silica microspheres,” Nano Lett. 6(9), 2075–2079 (2006).
[Crossref] [PubMed]

Wang, K.

Wang, M.

J. Lin, Y. Xu, Z. Fang, M. Wang, J. Song, N. Wang, L. Qiao, W. Fang, and Y. Cheng, “Fabrication of high-Q lithium niobate microresonators using femtosecond laser micromachining,” Sci. Rep. 5, 8072 (2015).
[Crossref] [PubMed]

Wang, N.

J. Lin, Y. Xu, Z. Fang, M. Wang, J. Song, N. Wang, L. Qiao, W. Fang, and Y. Cheng, “Fabrication of high-Q lithium niobate microresonators using femtosecond laser micromachining,” Sci. Rep. 5, 8072 (2015).
[Crossref] [PubMed]

Wang, S.-J.

Wang, W.

L. Shao, X. F. Jiang, X. C. Yu, B. B. Li, W. R. Clements, F. Vollmer, W. Wang, Y. F. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25, 5616–5620 (2013).
[Crossref] [PubMed]

Warken, F.

M. Pöllinger, D. O’Shea, F. Warken, and A. Rauschenbeutel, “Ultrahigh-q tunable whispering-gallery-mode microresonator,” Phys. Rev. Lett. 103(5), 053901 (2009).
[Crossref] [PubMed]

Wen, J.

L. Chang, X. Jiang, S. Hua, C. Yang, J. Wen, L. Jiang, G. Li, G. Wang, and M. Xiao, “Parity-time symmetry and variable optical isolation in active-passive-coupled microresonators,” Nat. Photon. 8, 524–529 (2014).
[Crossref]

White, I. M.

H. Zhu, I. M. White, J. D. Suter, M. Zourob, and X. Fan, “Integrated refractive index optical ring resonator detector for capillary electrophoresis,” Anal. Chem. 79(3), 930–937 (2007).
[Crossref] [PubMed]

Wilkinson, J. S.

Wu, Q.

V. Kavungal, L. Bo, Q. Wu, M. Teng, C. Yu, G. Farrell, and Y. Semenova, “Study of whispering gallery modes in a cylindrical microresonator excited by a tilted fiber taper,” Proc. SPIE 9157, 91578N (2014).
[Crossref]

Xiao, M.

L. Chang, X. Jiang, S. Hua, C. Yang, J. Wen, L. Jiang, G. Li, G. Wang, and M. Xiao, “Parity-time symmetry and variable optical isolation in active-passive-coupled microresonators,” Nat. Photon. 8, 524–529 (2014).
[Crossref]

Xiao, Y. F.

L. Shao, X. F. Jiang, X. C. Yu, B. B. Li, W. R. Clements, F. Vollmer, W. Wang, Y. F. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25, 5616–5620 (2013).
[Crossref] [PubMed]

X. F. Jiang, Y. F. Xiao, C. L. Zou, L. He, C. H. Dong, B. B. Li, Y. Li, F. W. Sun, L. Yang, and Q. Gong, “Highly unidirectional emission and ultralow-threshold lasing from on-chip ultrahigh-Q microcavities,” Adv. Mater. 24, OP260–OP264 (2012).
[Crossref] [PubMed]

Xiao, Y.-F.

B.-B. Li, W. R. Clements, X.-C. Yu, K. Shi, Q. Gong, and Y.-F. Xiao, “Single nanoparticle detection using split-mode microcavity Raman lasers,” Proc. Natl. Acad. Sci. USA 111(41), 14657–14662 (2014).
[Crossref] [PubMed]

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-q microresonator,” Nat. Photon. 4, 46–49 (2010).
[Crossref]

Xu, H.

Xu, J.

Xu, Y.

J. Lin, Y. Xu, Z. Fang, M. Wang, J. Song, N. Wang, L. Qiao, W. Fang, and Y. Cheng, “Fabrication of high-Q lithium niobate microresonators using femtosecond laser micromachining,” Sci. Rep. 5, 8072 (2015).
[Crossref] [PubMed]

A. Lee, T. Mills, and Y. Xu, “Nanoscale welding aerosol sensing based on whispering gallery modes in a cylindrical silica resonator,” Opt. Express 23(6), 7351–7365 (2015).
[Crossref] [PubMed]

Yang, C.

L. Chang, X. Jiang, S. Hua, C. Yang, J. Wen, L. Jiang, G. Li, G. Wang, and M. Xiao, “Parity-time symmetry and variable optical isolation in active-passive-coupled microresonators,” Nat. Photon. 8, 524–529 (2014).
[Crossref]

Yang, L.

B. Peng, Ş. K. Özdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, “Parity-time-symmetric whispering-gallery microcavities,” Nat. Phys. 10, 394–398 (2014).
[Crossref]

F. Bo, S. H. Huang, Ş. K. Özdemir, G. Zhang, J. Xu, and L. Yang, “Inverted-wedge silica resonators for controlled and stable coupling,” Opt. Lett. 39, 1841–1844 (2014).
[Crossref] [PubMed]

X. F. Jiang, Y. F. Xiao, C. L. Zou, L. He, C. H. Dong, B. B. Li, Y. Li, F. W. Sun, L. Yang, and Q. Gong, “Highly unidirectional emission and ultralow-threshold lasing from on-chip ultrahigh-Q microcavities,” Adv. Mater. 24, OP260–OP264 (2012).
[Crossref] [PubMed]

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-q microresonator,” Nat. Photon. 4, 46–49 (2010).
[Crossref]

Yang, Y.-D.

Yin, C.

Yu, C.

V. Kavungal, L. Bo, Q. Wu, M. Teng, C. Yu, G. Farrell, and Y. Semenova, “Study of whispering gallery modes in a cylindrical microresonator excited by a tilted fiber taper,” Proc. SPIE 9157, 91578N (2014).
[Crossref]

Yu, H.

Yu, X. C.

L. Shao, X. F. Jiang, X. C. Yu, B. B. Li, W. R. Clements, F. Vollmer, W. Wang, Y. F. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25, 5616–5620 (2013).
[Crossref] [PubMed]

Yu, X.-C.

B.-B. Li, W. R. Clements, X.-C. Yu, K. Shi, Q. Gong, and Y.-F. Xiao, “Single nanoparticle detection using split-mode microcavity Raman lasers,” Proc. Natl. Acad. Sci. USA 111(41), 14657–14662 (2014).
[Crossref] [PubMed]

Zamora, V.

Zervas, M. N.

M. Ding, G. S. Murugan, G. Brambilla, and M. N. Zervas, “Whispering gallery mode selection in optical bottle microresonators,” Appl. Phys. Lett. 100(8), 081108 (2012).
[Crossref]

G. S. Murugan, M. N. Petrovich, Y. Jung, J. S. Wilkinson, and M. N. Zervas, “Hollow-bottle optical microresonators,” Opt. Express 19(21), 20773–20784 (2011).
[Crossref]

Zhang, G.

Zhang, X.

Zhang, Y.-L.

C.-H. Dong, Z. Shen, C.-L. Zou, Y.-L. Zhang, W. Fu, and G.-C. Guo, “Brillouin-scattering induced transparency and non-reciprocal light storage,” Nat. Commun. 6, 6193 (2015).
[Crossref]

Zhu, H.

H. Zhu, I. M. White, J. D. Suter, M. Zourob, and X. Fan, “Integrated refractive index optical ring resonator detector for capillary electrophoresis,” Anal. Chem. 79(3), 930–937 (2007).
[Crossref] [PubMed]

Zhu, J.

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-q microresonator,” Nat. Photon. 4, 46–49 (2010).
[Crossref]

Zou, C. L.

X. F. Jiang, Y. F. Xiao, C. L. Zou, L. He, C. H. Dong, B. B. Li, Y. Li, F. W. Sun, L. Yang, and Q. Gong, “Highly unidirectional emission and ultralow-threshold lasing from on-chip ultrahigh-Q microcavities,” Adv. Mater. 24, OP260–OP264 (2012).
[Crossref] [PubMed]

Zou, C.-L.

C.-H. Dong, Z. Shen, C.-L. Zou, Y.-L. Zhang, W. Fu, and G.-C. Guo, “Brillouin-scattering induced transparency and non-reciprocal light storage,” Nat. Commun. 6, 6193 (2015).
[Crossref]

Zourob, M.

H. Zhu, I. M. White, J. D. Suter, M. Zourob, and X. Fan, “Integrated refractive index optical ring resonator detector for capillary electrophoresis,” Anal. Chem. 79(3), 930–937 (2007).
[Crossref] [PubMed]

Adv. Mater. (2)

L. Shao, X. F. Jiang, X. C. Yu, B. B. Li, W. R. Clements, F. Vollmer, W. Wang, Y. F. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25, 5616–5620 (2013).
[Crossref] [PubMed]

X. F. Jiang, Y. F. Xiao, C. L. Zou, L. He, C. H. Dong, B. B. Li, Y. Li, F. W. Sun, L. Yang, and Q. Gong, “Highly unidirectional emission and ultralow-threshold lasing from on-chip ultrahigh-Q microcavities,” Adv. Mater. 24, OP260–OP264 (2012).
[Crossref] [PubMed]

Anal. Chem. (1)

H. Zhu, I. M. White, J. D. Suter, M. Zourob, and X. Fan, “Integrated refractive index optical ring resonator detector for capillary electrophoresis,” Anal. Chem. 79(3), 930–937 (2007).
[Crossref] [PubMed]

Appl. Opt. (2)

Appl. Phys. Lett. (2)

M. Ding, G. S. Murugan, G. Brambilla, and M. N. Zervas, “Whispering gallery mode selection in optical bottle microresonators,” Appl. Phys. Lett. 100(8), 081108 (2012).
[Crossref]

T. J. Kippenberg, S. M. Spillane, D. K. Armani, and K. J. Vahala, “Fabrication and coupling to planar high-Q silica disk microcavities,” Appl. Phys. Lett. 83(4), 797–799 (2003).
[Crossref]

Chin. Opt. Lett. (1)

IEEE Photon. Technol. Lett. (1)

T. A. Birks, J. C. Knight, and T. E. Dimmick, “High-resolution measurement of the fiber diameter variations using whispering gallery modes and no optical alignment,” IEEE Photon. Technol. Lett. 12(2), 182–183 (2000).
[Crossref]

Nano Lett. (1)

Y. S. Park, A. K. Cook, and H. Wang, “Cavity qed with diamond nanocrystals and silica microspheres,” Nano Lett. 6(9), 2075–2079 (2006).
[Crossref] [PubMed]

Nat. Commun. (1)

C.-H. Dong, Z. Shen, C.-L. Zou, Y.-L. Zhang, W. Fu, and G.-C. Guo, “Brillouin-scattering induced transparency and non-reciprocal light storage,” Nat. Commun. 6, 6193 (2015).
[Crossref]

Nat. Meth. (1)

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Meth. 5, 591–596 (2008).
[Crossref]

Nat. Photon. (2)

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-q microresonator,” Nat. Photon. 4, 46–49 (2010).
[Crossref]

L. Chang, X. Jiang, S. Hua, C. Yang, J. Wen, L. Jiang, G. Li, G. Wang, and M. Xiao, “Parity-time symmetry and variable optical isolation in active-passive-coupled microresonators,” Nat. Photon. 8, 524–529 (2014).
[Crossref]

Nat. Phys. (1)

B. Peng, Ş. K. Özdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, “Parity-time-symmetric whispering-gallery microcavities,” Nat. Phys. 10, 394–398 (2014).
[Crossref]

Nature (1)

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-q toroid microcavity on a chip,” Nature 421, 925–928 (2003).
[Crossref] [PubMed]

Opt. Express (4)

Opt. Lett. (9)

M. L. Gorodetsky, A. A. Savchenkov, and V. S. Ilchenko, “Ultimate Q of optical microsphere resonators,” Opt. Lett. 21(7), 453–455 (1996).
[Crossref] [PubMed]

F. Bo, S. H. Huang, Ş. K. Özdemir, G. Zhang, J. Xu, and L. Yang, “Inverted-wedge silica resonators for controlled and stable coupling,” Opt. Lett. 39, 1841–1844 (2014).
[Crossref] [PubMed]

M. Sumetsky, “Mode localization and the Q-factor of a cylindrical microresonator,” Opt. Lett. 35(14), 2385–2387 (2010).
[Crossref] [PubMed]

M. Sumetsky and Y. Dulashko, “Radius variation of optical fibers with angstrom accuracy”, Opt. Lett. 35(23), 4006–4008 (2010).
[Crossref] [PubMed]

M. Cai, O. Painter, K. J. Vahala, and P. C. Sercel, “Fiber-coupled microsphere laser,” Opt. Lett. 25, 1430–1432 (2000).
[Crossref]

Y.-Z. Huang, K.-J. Che, Y.-D. Yang, S.-J. Wang, Y. Du, and Z.-C. Fan, “Directional emission InP/GaInAsP square-resonator microlasers,” Opt. Lett. 33(19), 2710–2712 (2008).
[Crossref]

F. Luan, E. Magi, T. Gong, I. Kabakova, and B. J. Eggleton, “Photoinduced whispering gallery mode microcavity resonator in a chalcogenide microfiber,” Opt. Lett. 36(24), 4761–4763 (2011).
[Crossref] [PubMed]

V. Zamora, A. Díez, M. V. Andrés, and B. Gimeno, “Interrogation of whispering-gallery modes resonances in cylindrical microcavities by backreflection detection,” Opt. Lett. 34(7), 1039–1041 (2009).
[Crossref] [PubMed]

A. W. Poon, R. K. Chang, and J. A. Lock, “Spiral morphology-dependent resonances in an optical fiber: effects of fiber tilt and focused Gaussian beam illumination,” Opt. Lett. 23(14), 1105–1107 (1998).
[Crossref]

Phys. Rev. Lett. (1)

M. Pöllinger, D. O’Shea, F. Warken, and A. Rauschenbeutel, “Ultrahigh-q tunable whispering-gallery-mode microresonator,” Phys. Rev. Lett. 103(5), 053901 (2009).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. USA (1)

B.-B. Li, W. R. Clements, X.-C. Yu, K. Shi, Q. Gong, and Y.-F. Xiao, “Single nanoparticle detection using split-mode microcavity Raman lasers,” Proc. Natl. Acad. Sci. USA 111(41), 14657–14662 (2014).
[Crossref] [PubMed]

Proc. SPIE (1)

V. Kavungal, L. Bo, Q. Wu, M. Teng, C. Yu, G. Farrell, and Y. Semenova, “Study of whispering gallery modes in a cylindrical microresonator excited by a tilted fiber taper,” Proc. SPIE 9157, 91578N (2014).
[Crossref]

Sci. Rep. (1)

J. Lin, Y. Xu, Z. Fang, M. Wang, J. Song, N. Wang, L. Qiao, W. Fang, and Y. Cheng, “Fabrication of high-Q lithium niobate microresonators using femtosecond laser micromachining,” Sci. Rep. 5, 8072 (2015).
[Crossref] [PubMed]

Science (1)

C. Dong, V. Fiore, M. C. Kuzyk, and H. Wang, “Optomechanical dark mode,” Science 338, 1609–1613 (2012).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 A sausage-like microresonator (SLM). The picture is taken from a monitoring CCD camera. The arrow is used to point out the position of the fiber taper, which is perpendicular to the microresonator. The letter L represents the length of the smooth part in the SLM.
Fig. 2
Fig. 2 (a) Transmission spectrum of a fiber microcylinder. (b) An amplification of mode A.
Fig. 3
Fig. 3 (a) Transmission spectrum of a SLM with its length L=7.5 mm. (b) An amplification of mode A.
Fig. 4
Fig. 4 Transmission spectra of a SLM with its length L=200 μm. In the insets on the right, arrows are used to point out the positions of the fiber taper.
Fig. 5
Fig. 5 (a) Transmission spectrum of a SLM with its length L=83 μm and (b) measurement of Q factors at different positions along the SLM. The red lines are Lorentz fittings. In the insets, arrows are used to show the positions of the fiber taper.
Fig. 6
Fig. 6 Experimental result on the strain tuning of a SLM with the length L=178 μm.

Metrics