Abstract

We present new lenses – waveplate lenses created in liquid crystal and liquid crystal polymer materials. Using an electrically-switchable liquid-crystal half-wave retarder we realized switching between focused and defocused beams by the waveplate lens. A combination of two such lenses allowed the collimation of a laser beam as well as the change of focal length of optical system.

© 2015 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Born and E. Wolf, Principles of Optics (Pergamon Press, Oxford, 1975).
  2. H. Sarkissian, B. Park, N. Tabirian, and B. Zeldovich, “Periodically aligned liquid crystal: potential application for projection displays,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 451(1), 1–19 (2006).
    [Crossref]
  3. M. Katz, Introduction to Geometrical Optics (World Scientific Publishing Co. Pte. Ltd., 2002).
  4. L. Nikolova and S. Ramanujam, Polarization Holography (Cambridge University, 2009).
  5. S. Sato, “Liquid-crystal lens-cells with variable focal length,” Jpn. J. Appl. Phys. 18(9), 1679–1684 (1979).
    [Crossref]
  6. S. Suyama, M. Date, and H. Takada, “Three-dimensional display system with dual-frequency liquid-crystal varied focal lens,” Jpn. J. Appl. Phys. 39(2R), 480–484 (2000).
  7. T. L. Kelly, A. F. Naumov, M. Yu. Loktev, M. A. Rakhmatulin, and O. A. Zayakin, “Focusing of astigmatic laser diode beam by combination of adaptive liquid crystal lenses,” Opt. Commun. 181(4-6), 295–301 (2000).
    [Crossref]
  8. M. Hain, R. Glockner, S. Bhattacharya, D. Dias, S. Stankovic, and T. Tschudi, “Fast switching liquid crystal lenses for a dual focus digital versatile disc pickup,” Opt. Commun. 188(5-6), 291–299 (2001).
    [Crossref]
  9. D. E. Lucchetta, R. Karapinar, A. Manni, and F. Simoni, “Phase-only modulation by nanosized polymer-dispersed liquid crystals,” J. Appl. Phys. 91(9), 6060–6065 (2002).
    [Crossref]
  10. H. Ren and S. T. Wu, “Inhomogeneous nanoscale polymer-dispersed liquid crystals with gradient refractive index,” Appl. Phys. Lett. 81(19), 3537–3539 (2002).
    [Crossref]
  11. B. Wang, M. Ye, M. Honma, T. Nose, and S. Sato, “Liquid crystal lens with spherical electrode,” Jpn. J. Appl. Phys. 41(2), L1232–L1233 (2002).
    [Crossref]
  12. H. Ren, Y. H. Fan, and S. T. Wu, “Tunable Fresnel lens using nanoscale polymer-dispersed liquid crystals,” Appl. Phys. Lett. 83(8), 1515–1517 (2003).
    [Crossref]
  13. H. Ren, Y. H. Fan, S. Gauza, and S. T. Wu, “Tunable-focus flat liquid crystal spherical lens,” Appl. Phys. Lett. 84(23), 4789–4791 (2004).
    [Crossref]
  14. B. Wang, M. Ye, and S. Sato, “Lens of electrically controllable focal length made by a glass lens and liquid-crystal layers,” Appl. Opt. 43(17), 3420–3425 (2004).
    [Crossref] [PubMed]
  15. H. Ren and S. T. Wu, “Adaptive liquid crystal lens with large focal length tunability,” Opt. Express 14(23), 11292–11298 (2006).
    [Crossref] [PubMed]
  16. B. Wang, M. Ye, and S. Sato, “Liquid crystal lens with focal length variable from negative to positive values,” IEEE Photonics Technol. Lett. 18(1), 79–81 (2006).
    [Crossref]
  17. H. Sarkissian, S. V. Serak, N. V. Tabiryan, L. B. Glebov, V. Rotar, and B. Ya. Zeldovich, “Polarization-controlled switching between diffraction orders in transverse-periodically aligned nematic liquid crystals,” Opt. Lett. 31(15), 2248–2250 (2006).
    [Crossref] [PubMed]
  18. S. Serak, N. Tabiryan, and B. Zeldovich, “High efficiency 1.5 μm-thick optical axis grating and its use for laser beam combining,” Opt. Lett. 32(2), 169–171 (2007).
    [Crossref] [PubMed]
  19. S. R. Nersisyan, N. V. Tabiryan, L. Hoke, D. M. Steeves, and B. R. Kimball, “Polarization insensitive imaging through polarization gratings,” Opt. Express 17(3), 1817–1830 (2009).
    [Crossref] [PubMed]
  20. U. Hrozhyk, S. Nersisyan, S. Serak, N. Tabiryan, L. Hoke, D. M. Steeves, and B. R. Kimball, “Optical switching of liquid-crystal polarization gratings with nanosecond pulses,” Opt. Lett. 34(17), 2554–2556 (2009).
    [Crossref] [PubMed]
  21. N. V. Tabiryan, S. R. Nersisyan, D. M. Steeves, and B. R. Kimball, “The promise of diffractive waveplates,” Opt. Photonics News 21(3), 41–45 (2010).
  22. N. V. Tabiryan, S. R. Nersisyan, T. J. White, T. J. Bunning, D. M. Steeves, and B. R. Kimball, “Transparent thin film polarizing and optical control systems,” AIP Adv. 1(2), 022153 (2011).
    [Crossref]
  23. S. V. Serak, R. S. Hakobyan, S. R. Nersisyan, N. V. Tabiryan, T. J. White, T. J. Bunning, D. M. Steeves, and B. R. Kimball, “All-optical diffractive/transmissive switch based on coupled cycloidal diffractive waveplates,” Opt. Express 20(5), 5460–5469 (2012).
    [Crossref] [PubMed]
  24. E. Karimi, S. Slussarenko, B. Piccirillo, L. Marrucci, and E. Santamato, “Polarization-controlled evolution of light transverse modes and associated Pancharatnam geometric phase in orbital angular momentum,” Phys. Rev. A 81(5), 053813 (2010).
    [Crossref]
  25. G. P. Crawford, J. N. Eakin, M. D. Radcliffe, A. Callan-Jones, and R. A. Pelcovits, “Liquid-crystal diffraction gratings using polarization holography alignment techniques,” J. Appl. Phys. 98(12), 123102 (2005).
    [Crossref]
  26. C. Oh and M. J. Escuti, “Achromatic diffraction from polarization gratings with high efficiency,” Opt. Lett. 33(20), 2287–2289 (2008).
    [Crossref] [PubMed]

2012 (1)

2011 (1)

N. V. Tabiryan, S. R. Nersisyan, T. J. White, T. J. Bunning, D. M. Steeves, and B. R. Kimball, “Transparent thin film polarizing and optical control systems,” AIP Adv. 1(2), 022153 (2011).
[Crossref]

2010 (2)

E. Karimi, S. Slussarenko, B. Piccirillo, L. Marrucci, and E. Santamato, “Polarization-controlled evolution of light transverse modes and associated Pancharatnam geometric phase in orbital angular momentum,” Phys. Rev. A 81(5), 053813 (2010).
[Crossref]

N. V. Tabiryan, S. R. Nersisyan, D. M. Steeves, and B. R. Kimball, “The promise of diffractive waveplates,” Opt. Photonics News 21(3), 41–45 (2010).

2009 (2)

2008 (1)

2007 (1)

2006 (4)

H. Ren and S. T. Wu, “Adaptive liquid crystal lens with large focal length tunability,” Opt. Express 14(23), 11292–11298 (2006).
[Crossref] [PubMed]

B. Wang, M. Ye, and S. Sato, “Liquid crystal lens with focal length variable from negative to positive values,” IEEE Photonics Technol. Lett. 18(1), 79–81 (2006).
[Crossref]

H. Sarkissian, S. V. Serak, N. V. Tabiryan, L. B. Glebov, V. Rotar, and B. Ya. Zeldovich, “Polarization-controlled switching between diffraction orders in transverse-periodically aligned nematic liquid crystals,” Opt. Lett. 31(15), 2248–2250 (2006).
[Crossref] [PubMed]

H. Sarkissian, B. Park, N. Tabirian, and B. Zeldovich, “Periodically aligned liquid crystal: potential application for projection displays,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 451(1), 1–19 (2006).
[Crossref]

2005 (1)

G. P. Crawford, J. N. Eakin, M. D. Radcliffe, A. Callan-Jones, and R. A. Pelcovits, “Liquid-crystal diffraction gratings using polarization holography alignment techniques,” J. Appl. Phys. 98(12), 123102 (2005).
[Crossref]

2004 (2)

H. Ren, Y. H. Fan, S. Gauza, and S. T. Wu, “Tunable-focus flat liquid crystal spherical lens,” Appl. Phys. Lett. 84(23), 4789–4791 (2004).
[Crossref]

B. Wang, M. Ye, and S. Sato, “Lens of electrically controllable focal length made by a glass lens and liquid-crystal layers,” Appl. Opt. 43(17), 3420–3425 (2004).
[Crossref] [PubMed]

2003 (1)

H. Ren, Y. H. Fan, and S. T. Wu, “Tunable Fresnel lens using nanoscale polymer-dispersed liquid crystals,” Appl. Phys. Lett. 83(8), 1515–1517 (2003).
[Crossref]

2002 (3)

D. E. Lucchetta, R. Karapinar, A. Manni, and F. Simoni, “Phase-only modulation by nanosized polymer-dispersed liquid crystals,” J. Appl. Phys. 91(9), 6060–6065 (2002).
[Crossref]

H. Ren and S. T. Wu, “Inhomogeneous nanoscale polymer-dispersed liquid crystals with gradient refractive index,” Appl. Phys. Lett. 81(19), 3537–3539 (2002).
[Crossref]

B. Wang, M. Ye, M. Honma, T. Nose, and S. Sato, “Liquid crystal lens with spherical electrode,” Jpn. J. Appl. Phys. 41(2), L1232–L1233 (2002).
[Crossref]

2001 (1)

M. Hain, R. Glockner, S. Bhattacharya, D. Dias, S. Stankovic, and T. Tschudi, “Fast switching liquid crystal lenses for a dual focus digital versatile disc pickup,” Opt. Commun. 188(5-6), 291–299 (2001).
[Crossref]

2000 (2)

S. Suyama, M. Date, and H. Takada, “Three-dimensional display system with dual-frequency liquid-crystal varied focal lens,” Jpn. J. Appl. Phys. 39(2R), 480–484 (2000).

T. L. Kelly, A. F. Naumov, M. Yu. Loktev, M. A. Rakhmatulin, and O. A. Zayakin, “Focusing of astigmatic laser diode beam by combination of adaptive liquid crystal lenses,” Opt. Commun. 181(4-6), 295–301 (2000).
[Crossref]

1979 (1)

S. Sato, “Liquid-crystal lens-cells with variable focal length,” Jpn. J. Appl. Phys. 18(9), 1679–1684 (1979).
[Crossref]

Bhattacharya, S.

M. Hain, R. Glockner, S. Bhattacharya, D. Dias, S. Stankovic, and T. Tschudi, “Fast switching liquid crystal lenses for a dual focus digital versatile disc pickup,” Opt. Commun. 188(5-6), 291–299 (2001).
[Crossref]

Bunning, T. J.

Callan-Jones, A.

G. P. Crawford, J. N. Eakin, M. D. Radcliffe, A. Callan-Jones, and R. A. Pelcovits, “Liquid-crystal diffraction gratings using polarization holography alignment techniques,” J. Appl. Phys. 98(12), 123102 (2005).
[Crossref]

Crawford, G. P.

G. P. Crawford, J. N. Eakin, M. D. Radcliffe, A. Callan-Jones, and R. A. Pelcovits, “Liquid-crystal diffraction gratings using polarization holography alignment techniques,” J. Appl. Phys. 98(12), 123102 (2005).
[Crossref]

Date, M.

S. Suyama, M. Date, and H. Takada, “Three-dimensional display system with dual-frequency liquid-crystal varied focal lens,” Jpn. J. Appl. Phys. 39(2R), 480–484 (2000).

Dias, D.

M. Hain, R. Glockner, S. Bhattacharya, D. Dias, S. Stankovic, and T. Tschudi, “Fast switching liquid crystal lenses for a dual focus digital versatile disc pickup,” Opt. Commun. 188(5-6), 291–299 (2001).
[Crossref]

Eakin, J. N.

G. P. Crawford, J. N. Eakin, M. D. Radcliffe, A. Callan-Jones, and R. A. Pelcovits, “Liquid-crystal diffraction gratings using polarization holography alignment techniques,” J. Appl. Phys. 98(12), 123102 (2005).
[Crossref]

Escuti, M. J.

Fan, Y. H.

H. Ren, Y. H. Fan, S. Gauza, and S. T. Wu, “Tunable-focus flat liquid crystal spherical lens,” Appl. Phys. Lett. 84(23), 4789–4791 (2004).
[Crossref]

H. Ren, Y. H. Fan, and S. T. Wu, “Tunable Fresnel lens using nanoscale polymer-dispersed liquid crystals,” Appl. Phys. Lett. 83(8), 1515–1517 (2003).
[Crossref]

Gauza, S.

H. Ren, Y. H. Fan, S. Gauza, and S. T. Wu, “Tunable-focus flat liquid crystal spherical lens,” Appl. Phys. Lett. 84(23), 4789–4791 (2004).
[Crossref]

Glebov, L. B.

Glockner, R.

M. Hain, R. Glockner, S. Bhattacharya, D. Dias, S. Stankovic, and T. Tschudi, “Fast switching liquid crystal lenses for a dual focus digital versatile disc pickup,” Opt. Commun. 188(5-6), 291–299 (2001).
[Crossref]

Hain, M.

M. Hain, R. Glockner, S. Bhattacharya, D. Dias, S. Stankovic, and T. Tschudi, “Fast switching liquid crystal lenses for a dual focus digital versatile disc pickup,” Opt. Commun. 188(5-6), 291–299 (2001).
[Crossref]

Hakobyan, R. S.

Hoke, L.

Honma, M.

B. Wang, M. Ye, M. Honma, T. Nose, and S. Sato, “Liquid crystal lens with spherical electrode,” Jpn. J. Appl. Phys. 41(2), L1232–L1233 (2002).
[Crossref]

Hrozhyk, U.

Karapinar, R.

D. E. Lucchetta, R. Karapinar, A. Manni, and F. Simoni, “Phase-only modulation by nanosized polymer-dispersed liquid crystals,” J. Appl. Phys. 91(9), 6060–6065 (2002).
[Crossref]

Karimi, E.

E. Karimi, S. Slussarenko, B. Piccirillo, L. Marrucci, and E. Santamato, “Polarization-controlled evolution of light transverse modes and associated Pancharatnam geometric phase in orbital angular momentum,” Phys. Rev. A 81(5), 053813 (2010).
[Crossref]

Kelly, T. L.

T. L. Kelly, A. F. Naumov, M. Yu. Loktev, M. A. Rakhmatulin, and O. A. Zayakin, “Focusing of astigmatic laser diode beam by combination of adaptive liquid crystal lenses,” Opt. Commun. 181(4-6), 295–301 (2000).
[Crossref]

Kimball, B. R.

Loktev, M. Yu.

T. L. Kelly, A. F. Naumov, M. Yu. Loktev, M. A. Rakhmatulin, and O. A. Zayakin, “Focusing of astigmatic laser diode beam by combination of adaptive liquid crystal lenses,” Opt. Commun. 181(4-6), 295–301 (2000).
[Crossref]

Lucchetta, D. E.

D. E. Lucchetta, R. Karapinar, A. Manni, and F. Simoni, “Phase-only modulation by nanosized polymer-dispersed liquid crystals,” J. Appl. Phys. 91(9), 6060–6065 (2002).
[Crossref]

Manni, A.

D. E. Lucchetta, R. Karapinar, A. Manni, and F. Simoni, “Phase-only modulation by nanosized polymer-dispersed liquid crystals,” J. Appl. Phys. 91(9), 6060–6065 (2002).
[Crossref]

Marrucci, L.

E. Karimi, S. Slussarenko, B. Piccirillo, L. Marrucci, and E. Santamato, “Polarization-controlled evolution of light transverse modes and associated Pancharatnam geometric phase in orbital angular momentum,” Phys. Rev. A 81(5), 053813 (2010).
[Crossref]

Naumov, A. F.

T. L. Kelly, A. F. Naumov, M. Yu. Loktev, M. A. Rakhmatulin, and O. A. Zayakin, “Focusing of astigmatic laser diode beam by combination of adaptive liquid crystal lenses,” Opt. Commun. 181(4-6), 295–301 (2000).
[Crossref]

Nersisyan, S.

Nersisyan, S. R.

S. V. Serak, R. S. Hakobyan, S. R. Nersisyan, N. V. Tabiryan, T. J. White, T. J. Bunning, D. M. Steeves, and B. R. Kimball, “All-optical diffractive/transmissive switch based on coupled cycloidal diffractive waveplates,” Opt. Express 20(5), 5460–5469 (2012).
[Crossref] [PubMed]

N. V. Tabiryan, S. R. Nersisyan, T. J. White, T. J. Bunning, D. M. Steeves, and B. R. Kimball, “Transparent thin film polarizing and optical control systems,” AIP Adv. 1(2), 022153 (2011).
[Crossref]

N. V. Tabiryan, S. R. Nersisyan, D. M. Steeves, and B. R. Kimball, “The promise of diffractive waveplates,” Opt. Photonics News 21(3), 41–45 (2010).

S. R. Nersisyan, N. V. Tabiryan, L. Hoke, D. M. Steeves, and B. R. Kimball, “Polarization insensitive imaging through polarization gratings,” Opt. Express 17(3), 1817–1830 (2009).
[Crossref] [PubMed]

Nose, T.

B. Wang, M. Ye, M. Honma, T. Nose, and S. Sato, “Liquid crystal lens with spherical electrode,” Jpn. J. Appl. Phys. 41(2), L1232–L1233 (2002).
[Crossref]

Oh, C.

Park, B.

H. Sarkissian, B. Park, N. Tabirian, and B. Zeldovich, “Periodically aligned liquid crystal: potential application for projection displays,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 451(1), 1–19 (2006).
[Crossref]

Pelcovits, R. A.

G. P. Crawford, J. N. Eakin, M. D. Radcliffe, A. Callan-Jones, and R. A. Pelcovits, “Liquid-crystal diffraction gratings using polarization holography alignment techniques,” J. Appl. Phys. 98(12), 123102 (2005).
[Crossref]

Piccirillo, B.

E. Karimi, S. Slussarenko, B. Piccirillo, L. Marrucci, and E. Santamato, “Polarization-controlled evolution of light transverse modes and associated Pancharatnam geometric phase in orbital angular momentum,” Phys. Rev. A 81(5), 053813 (2010).
[Crossref]

Radcliffe, M. D.

G. P. Crawford, J. N. Eakin, M. D. Radcliffe, A. Callan-Jones, and R. A. Pelcovits, “Liquid-crystal diffraction gratings using polarization holography alignment techniques,” J. Appl. Phys. 98(12), 123102 (2005).
[Crossref]

Rakhmatulin, M. A.

T. L. Kelly, A. F. Naumov, M. Yu. Loktev, M. A. Rakhmatulin, and O. A. Zayakin, “Focusing of astigmatic laser diode beam by combination of adaptive liquid crystal lenses,” Opt. Commun. 181(4-6), 295–301 (2000).
[Crossref]

Ren, H.

H. Ren and S. T. Wu, “Adaptive liquid crystal lens with large focal length tunability,” Opt. Express 14(23), 11292–11298 (2006).
[Crossref] [PubMed]

H. Ren, Y. H. Fan, S. Gauza, and S. T. Wu, “Tunable-focus flat liquid crystal spherical lens,” Appl. Phys. Lett. 84(23), 4789–4791 (2004).
[Crossref]

H. Ren, Y. H. Fan, and S. T. Wu, “Tunable Fresnel lens using nanoscale polymer-dispersed liquid crystals,” Appl. Phys. Lett. 83(8), 1515–1517 (2003).
[Crossref]

H. Ren and S. T. Wu, “Inhomogeneous nanoscale polymer-dispersed liquid crystals with gradient refractive index,” Appl. Phys. Lett. 81(19), 3537–3539 (2002).
[Crossref]

Rotar, V.

Santamato, E.

E. Karimi, S. Slussarenko, B. Piccirillo, L. Marrucci, and E. Santamato, “Polarization-controlled evolution of light transverse modes and associated Pancharatnam geometric phase in orbital angular momentum,” Phys. Rev. A 81(5), 053813 (2010).
[Crossref]

Sarkissian, H.

H. Sarkissian, S. V. Serak, N. V. Tabiryan, L. B. Glebov, V. Rotar, and B. Ya. Zeldovich, “Polarization-controlled switching between diffraction orders in transverse-periodically aligned nematic liquid crystals,” Opt. Lett. 31(15), 2248–2250 (2006).
[Crossref] [PubMed]

H. Sarkissian, B. Park, N. Tabirian, and B. Zeldovich, “Periodically aligned liquid crystal: potential application for projection displays,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 451(1), 1–19 (2006).
[Crossref]

Sato, S.

B. Wang, M. Ye, and S. Sato, “Liquid crystal lens with focal length variable from negative to positive values,” IEEE Photonics Technol. Lett. 18(1), 79–81 (2006).
[Crossref]

B. Wang, M. Ye, and S. Sato, “Lens of electrically controllable focal length made by a glass lens and liquid-crystal layers,” Appl. Opt. 43(17), 3420–3425 (2004).
[Crossref] [PubMed]

B. Wang, M. Ye, M. Honma, T. Nose, and S. Sato, “Liquid crystal lens with spherical electrode,” Jpn. J. Appl. Phys. 41(2), L1232–L1233 (2002).
[Crossref]

S. Sato, “Liquid-crystal lens-cells with variable focal length,” Jpn. J. Appl. Phys. 18(9), 1679–1684 (1979).
[Crossref]

Serak, S.

Serak, S. V.

Simoni, F.

D. E. Lucchetta, R. Karapinar, A. Manni, and F. Simoni, “Phase-only modulation by nanosized polymer-dispersed liquid crystals,” J. Appl. Phys. 91(9), 6060–6065 (2002).
[Crossref]

Slussarenko, S.

E. Karimi, S. Slussarenko, B. Piccirillo, L. Marrucci, and E. Santamato, “Polarization-controlled evolution of light transverse modes and associated Pancharatnam geometric phase in orbital angular momentum,” Phys. Rev. A 81(5), 053813 (2010).
[Crossref]

Stankovic, S.

M. Hain, R. Glockner, S. Bhattacharya, D. Dias, S. Stankovic, and T. Tschudi, “Fast switching liquid crystal lenses for a dual focus digital versatile disc pickup,” Opt. Commun. 188(5-6), 291–299 (2001).
[Crossref]

Steeves, D. M.

Suyama, S.

S. Suyama, M. Date, and H. Takada, “Three-dimensional display system with dual-frequency liquid-crystal varied focal lens,” Jpn. J. Appl. Phys. 39(2R), 480–484 (2000).

Tabirian, N.

H. Sarkissian, B. Park, N. Tabirian, and B. Zeldovich, “Periodically aligned liquid crystal: potential application for projection displays,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 451(1), 1–19 (2006).
[Crossref]

Tabiryan, N.

Tabiryan, N. V.

Takada, H.

S. Suyama, M. Date, and H. Takada, “Three-dimensional display system with dual-frequency liquid-crystal varied focal lens,” Jpn. J. Appl. Phys. 39(2R), 480–484 (2000).

Tschudi, T.

M. Hain, R. Glockner, S. Bhattacharya, D. Dias, S. Stankovic, and T. Tschudi, “Fast switching liquid crystal lenses for a dual focus digital versatile disc pickup,” Opt. Commun. 188(5-6), 291–299 (2001).
[Crossref]

Wang, B.

B. Wang, M. Ye, and S. Sato, “Liquid crystal lens with focal length variable from negative to positive values,” IEEE Photonics Technol. Lett. 18(1), 79–81 (2006).
[Crossref]

B. Wang, M. Ye, and S. Sato, “Lens of electrically controllable focal length made by a glass lens and liquid-crystal layers,” Appl. Opt. 43(17), 3420–3425 (2004).
[Crossref] [PubMed]

B. Wang, M. Ye, M. Honma, T. Nose, and S. Sato, “Liquid crystal lens with spherical electrode,” Jpn. J. Appl. Phys. 41(2), L1232–L1233 (2002).
[Crossref]

White, T. J.

Wu, S. T.

H. Ren and S. T. Wu, “Adaptive liquid crystal lens with large focal length tunability,” Opt. Express 14(23), 11292–11298 (2006).
[Crossref] [PubMed]

H. Ren, Y. H. Fan, S. Gauza, and S. T. Wu, “Tunable-focus flat liquid crystal spherical lens,” Appl. Phys. Lett. 84(23), 4789–4791 (2004).
[Crossref]

H. Ren, Y. H. Fan, and S. T. Wu, “Tunable Fresnel lens using nanoscale polymer-dispersed liquid crystals,” Appl. Phys. Lett. 83(8), 1515–1517 (2003).
[Crossref]

H. Ren and S. T. Wu, “Inhomogeneous nanoscale polymer-dispersed liquid crystals with gradient refractive index,” Appl. Phys. Lett. 81(19), 3537–3539 (2002).
[Crossref]

Ye, M.

B. Wang, M. Ye, and S. Sato, “Liquid crystal lens with focal length variable from negative to positive values,” IEEE Photonics Technol. Lett. 18(1), 79–81 (2006).
[Crossref]

B. Wang, M. Ye, and S. Sato, “Lens of electrically controllable focal length made by a glass lens and liquid-crystal layers,” Appl. Opt. 43(17), 3420–3425 (2004).
[Crossref] [PubMed]

B. Wang, M. Ye, M. Honma, T. Nose, and S. Sato, “Liquid crystal lens with spherical electrode,” Jpn. J. Appl. Phys. 41(2), L1232–L1233 (2002).
[Crossref]

Zayakin, O. A.

T. L. Kelly, A. F. Naumov, M. Yu. Loktev, M. A. Rakhmatulin, and O. A. Zayakin, “Focusing of astigmatic laser diode beam by combination of adaptive liquid crystal lenses,” Opt. Commun. 181(4-6), 295–301 (2000).
[Crossref]

Zeldovich, B.

S. Serak, N. Tabiryan, and B. Zeldovich, “High efficiency 1.5 μm-thick optical axis grating and its use for laser beam combining,” Opt. Lett. 32(2), 169–171 (2007).
[Crossref] [PubMed]

H. Sarkissian, B. Park, N. Tabirian, and B. Zeldovich, “Periodically aligned liquid crystal: potential application for projection displays,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 451(1), 1–19 (2006).
[Crossref]

Zeldovich, B. Ya.

AIP Adv. (1)

N. V. Tabiryan, S. R. Nersisyan, T. J. White, T. J. Bunning, D. M. Steeves, and B. R. Kimball, “Transparent thin film polarizing and optical control systems,” AIP Adv. 1(2), 022153 (2011).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (3)

H. Ren and S. T. Wu, “Inhomogeneous nanoscale polymer-dispersed liquid crystals with gradient refractive index,” Appl. Phys. Lett. 81(19), 3537–3539 (2002).
[Crossref]

H. Ren, Y. H. Fan, and S. T. Wu, “Tunable Fresnel lens using nanoscale polymer-dispersed liquid crystals,” Appl. Phys. Lett. 83(8), 1515–1517 (2003).
[Crossref]

H. Ren, Y. H. Fan, S. Gauza, and S. T. Wu, “Tunable-focus flat liquid crystal spherical lens,” Appl. Phys. Lett. 84(23), 4789–4791 (2004).
[Crossref]

IEEE Photonics Technol. Lett. (1)

B. Wang, M. Ye, and S. Sato, “Liquid crystal lens with focal length variable from negative to positive values,” IEEE Photonics Technol. Lett. 18(1), 79–81 (2006).
[Crossref]

J. Appl. Phys. (2)

D. E. Lucchetta, R. Karapinar, A. Manni, and F. Simoni, “Phase-only modulation by nanosized polymer-dispersed liquid crystals,” J. Appl. Phys. 91(9), 6060–6065 (2002).
[Crossref]

G. P. Crawford, J. N. Eakin, M. D. Radcliffe, A. Callan-Jones, and R. A. Pelcovits, “Liquid-crystal diffraction gratings using polarization holography alignment techniques,” J. Appl. Phys. 98(12), 123102 (2005).
[Crossref]

Jpn. J. Appl. Phys. (3)

S. Sato, “Liquid-crystal lens-cells with variable focal length,” Jpn. J. Appl. Phys. 18(9), 1679–1684 (1979).
[Crossref]

S. Suyama, M. Date, and H. Takada, “Three-dimensional display system with dual-frequency liquid-crystal varied focal lens,” Jpn. J. Appl. Phys. 39(2R), 480–484 (2000).

B. Wang, M. Ye, M. Honma, T. Nose, and S. Sato, “Liquid crystal lens with spherical electrode,” Jpn. J. Appl. Phys. 41(2), L1232–L1233 (2002).
[Crossref]

Mol. Cryst. Liq. Cryst. (Phila. Pa.) (1)

H. Sarkissian, B. Park, N. Tabirian, and B. Zeldovich, “Periodically aligned liquid crystal: potential application for projection displays,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 451(1), 1–19 (2006).
[Crossref]

Opt. Commun. (2)

T. L. Kelly, A. F. Naumov, M. Yu. Loktev, M. A. Rakhmatulin, and O. A. Zayakin, “Focusing of astigmatic laser diode beam by combination of adaptive liquid crystal lenses,” Opt. Commun. 181(4-6), 295–301 (2000).
[Crossref]

M. Hain, R. Glockner, S. Bhattacharya, D. Dias, S. Stankovic, and T. Tschudi, “Fast switching liquid crystal lenses for a dual focus digital versatile disc pickup,” Opt. Commun. 188(5-6), 291–299 (2001).
[Crossref]

Opt. Express (3)

Opt. Lett. (4)

Opt. Photonics News (1)

N. V. Tabiryan, S. R. Nersisyan, D. M. Steeves, and B. R. Kimball, “The promise of diffractive waveplates,” Opt. Photonics News 21(3), 41–45 (2010).

Phys. Rev. A (1)

E. Karimi, S. Slussarenko, B. Piccirillo, L. Marrucci, and E. Santamato, “Polarization-controlled evolution of light transverse modes and associated Pancharatnam geometric phase in orbital angular momentum,” Phys. Rev. A 81(5), 053813 (2010).
[Crossref]

Other (3)

M. Katz, Introduction to Geometrical Optics (World Scientific Publishing Co. Pte. Ltd., 2002).

L. Nikolova and S. Ramanujam, Polarization Holography (Cambridge University, 2009).

M. Born and E. Wolf, Principles of Optics (Pergamon Press, Oxford, 1975).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 (a) Example of axially symmetric spatial distribution of optical axis orientation in a birefringent film, with orientation angle proportional to the square of the radial coordinate. (b) Laser beam pattern received at the output of the optical recording system. (c) Waveplate lens equivalent to a refractor with spherical surfaces in nematic LC between polarizers.
Fig. 2
Fig. 2 (a) Photos of waveplate lens on substrate. (b, c) Photos of the lens taken with 10X Olympus microscope objective between crossed polarizers: (b) in the center, (c) on the edge. (g) Experimentally measured dependence of phase shift on distance from the center of the waveplate lens and its parabolic fit.
Fig. 3
Fig. 3 (a) Photo of lens array between crossed polarizers. (b) Image of He-Cd laser beam on a screen behind lens array.
Fig. 4
Fig. 4 (a) Experimental set-up. L1, focal length F = 10 mm; L2, F = 100 mm, QWP, quarter wave plate. Mask formed triangle beam with side length of 5 mm. (b) Photos of triangle image: (1-3) before focus (distance between screen and substrate d = 60 mm); (4-6) in the focus (d = 190 mm); (7-9) behind the focus (d = 490 mm). Laser beam polarization: (1, 4, 7) LP; (2, 5, 7) RHCP; (3, 6, 9) LHCP. (c, d) Switching of triangle image in far zone: (c) input substrate surface covered with cycloidal lens towards the beam, RHCP, beam was focused, (b) substrate was rotated on 180°, RHCP, beam was defocused.
Fig. 5
Fig. 5 Photos of eye test chart without WL (a) and with WL (b, c): (b) RHCP, (c) LHCP. Circular polarizer was set between photocamera and the lens.
Fig. 6
Fig. 6 Photos of images of (a-c) red laser beam, λ = 633 nm, and (d-f) Argon laser beam, λ = 457 nm, taken on a screen in focal plane of WL: (a, d) no WL in set-up; (b, e) RHCP, WL equivalent to convex refractive lens; (c, f) LHCP, waveplate lens equivalent to concave lens.
Fig. 7
Fig. 7 (a, b) Schematic drawing of two WLs. (c-1) Laser beam without lenses. (c-2) Single lens WL1 in set-up, input circular polarization adjusted such that the focal length of WL1 is positive. (c-3) Two lenses in set-up, waveplate patterns facing the same way, input beam polarization unchanged. Output beam is collimated. (c-4) Single lens WL1 in set-up. Input beam polarization is linear. (c-5) Two lenses in set-up. Beam is collimated for linear polarized input laser beam. (d-1) Single lens WL1 in set-up. Input circular polarization adjusted such that the focal length of WL1 is positive. (d-2) Both lens WL1 and WL2 in set-up. Distance between the lens and screen is 480 mm. (d-3) Both lenses in set-up. Distance between the lens pair and screen is 240 mm. (d-4) Single lens W1 in set-up. Input circular polarization adjusted such that the focal length of WL1 is negative. Distance between the lens and screen is 480 mm. (d-5) Both lenses in set-up. Distance between the lens and screen is 480 mm.
Fig. 8
Fig. 8 Schematic set-up for beam propagation through two lenses such that light of any polarization is focused at the same point.
Fig. 9
Fig. 9 (a-f) Beam images on a screen in the focal plane and in (g-h) in far zone. (a) no LC retarder, negative focal length; (b) LC retarder in set-up, no voltage, positive focal length; (c) LC retarder, U = 10 V, negative focal length. (d) no LC retarder, positive focal length; (e) LC retarder in set-up, no voltage, negative focal length; (f) LC retarder, U = 10 V, positive focal length. (g) 10-μm thick LC retarder in set-up. Positive focal length. Voltage is: 1.74; 2.39; 4.07 V. (h) 10-μm thick LC retarder in set-up. Negative focal length. Voltage is: 1.31; 2.05; 2.95; 10 V.
Fig. 10
Fig. 10 (a) Schematic drawing of optical system. (b-d) Switching between collimated and focused/defocused beams. (b) Two lenses collimated laser beam. Voltage was not applied. (c) LHCP. Focused beam at distance 240 mm. Voltage is 10 V. (e) RHCP. Defocused beam at distance 240 mm. Voltage is 10 V. (e-g) NLC cell with waveplate lens on the substrates. (e) LHCP. Voltage was not applied. Beam is focused. (f) RHCP. Voltage was not applied. Beam is defocused. (g) U = 10 V, LHCP; U = 10 V, RHCP, beam is collimated.
Fig. 11
Fig. 11 Images of laser beam on screen: (a) with original WL1 with positive focal length, laser beam RHCP; (b) with original WL1, focal length was negative because laser beam was LHCP; (c) with printed lens WL2, positive focal length because laser beam was RHCP; (d) with printed WL2, negative focal length, laser beam was LHCP. Distance between lenses and a screen was 320 mm.
Fig. 12
Fig. 12 (a, b) Photos of recorded parabolic patterns in PAAD layer: (a) Size of lens was 7 mm in diameter, focal length was 570 mm for red laser beam. (b) Smaller 0.385 mm cylindrical lens taken with 20X Olympus microscopic objective. F = 5 mm. (c-d) Beam image on a screen for wavelength 514 nm in focal plane: (c) RHCP; (d) LHCP.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

s=( F 1 2 F 1 F 2 );d= F 1 F 2 /s.

Metrics