Abstract

Software-defined transceivers can be reconfigured based on demand and existing channel impairments, and as such, monitoring of both signal and channel parameters is necessary. We demonstrate a novel joint estimation method suitable for spectrally efficient Nyquist wavelength-division multiplexing (WDM), based on the cyclostationary property of linearly modulated signals, exploited both in the frequency and time domains. Using a Nyquist superchannel composed of three 10 GBaud channels, we experimentally demonstrate the simultaneous monitoring of symbol-rate with 100% accuracy, roll-off, frequency offset (FO), chromatic dispersion (CD) and optical signal-to-noise ratio (OSNR) with root-mean-square errors (RMSE) of 20%, 4 MHz, 200 ps/nm and 1.5 dB respectively, when the roll-off factor is larger than 0.06 for DP-QPSK and 0.3 for DP-16QAM.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Sub-symbol-rate sampling for PDM-QPSK signals in super-Nyquist WDM systems using quadrature poly-binary shaping

Cheng Xu, Guanjun Gao, Sai Chen, Jie Zhang, Ming Luo, Rong Hu, and Qi Yang
Opt. Express 24(23) 26678-26686 (2016)

Phase noise tolerant inter-carrier-interference cancellation for WDM superchannels with sub-Nyquist channel spacing

Shuchang Yao, Songnian Fu, Jianqiang Li, Ming Tang, Perry Shum, and Deming Liu
Opt. Express 21(18) 21569-21578 (2013)

Fast and robust chromatic dispersion estimation based on temporal auto-correlation after digital spectrum superposition

Shuchang Yao, Tobias A. Eriksson, Songnian Fu, Pontus Johannisson, Magnus Karlsson, Peter A. Andrekson, Tang Ming, and Deming Liu
Opt. Express 23(12) 15418-15430 (2015)

References

  • View by:
  • |
  • |
  • |

  1. X. Liu and S. Chandrasekhar, “Superchannel for next-generation optical networks,” in Proceedings of IEEE Optical Fiber Communication Conference and Exposition (IEEE, 2014), pp. 1–33.
  2. T. B. Anderson, A. Kowalczyk, K. Clarke, S. D. Dods, D. Hewitt, and J. C. Li, “Multi-impairment monitoring for optical networks,” J. Lightwave Technol. 27(16), 3729–3736 (2009).
    [Crossref]
  3. F. N. Khan, Y. Zhou, Q. Sui, and A. P. T. Lau, “Non-data-aided joint bit-rate and modulation format identification for next-generation heterogeneous optical networks,” Opt. Fiber Tech. 20(2), 68–74 (2014).
    [Crossref]
  4. L. Baker-Meflah, B. C. Thomsen, J. E. Mitchell, and P. Bayvel, “Multi-impairment WDM optical performance monitoring for burst switched networks,” J. Lightwave Technol. 28(23), 3417–3426 (2010).
  5. H. Wen, L. Cheng, X. Zheng, H. Zhang, Y. Guo, and B. Zhou, “Simultaneous clock recovery and dispersion, OSNR monitoring for 112 Gbit/s NRZ-QPSK using frequency down-conversion electro-optical phase-locked loop,” in Proceedings of IEEE European Conference on Optical Communication (IEEE, 2011), pp. 1–3.
  6. M. C. Tan, F.N. Khan, W. H. Al-Arashi, Y. Zhou, and A. P. T. Lau, “Simultaneous optical performance monitoring and modulation format/bit-rate identification using principal component analysis,” J. Opt. Commun. Netw. 6(5), 441–448 (2014).
    [Crossref]
  7. F. N. Hauske, M. Kuschnerov, B. Spinnler, and B. Lankl, “Optical performance monitoring in digital coherent receivers,” J. Lightwave Technol. 27(16), 3623–3631 (2009).
    [Crossref]
  8. D. Ives, B. C. Thomsen, R. Maher, and S. J. Savory, “Estimating OSNR of equalised QPSK signals,” Opt. Express 19(26), B661–B666 (2011).
    [Crossref]
  9. W. Grupp, “In-band OSNR measurement based on spectral correlation,” in Proceedings of the ITG Symposium on Photonic Networks, May 3–4 (2010), pp 1–4.
  10. W. A. Gardner, “The spectral correlation theory of cyclostationary time-series,” Signal Process. 11(1), 13–36 (1986).
    [Crossref]
  11. W. A. Gardner, Statistical Spectral Analysis: a Non-Probabilistic Theory (Prentice-Hall, 1987).
  12. W. A. Gardner, “Measurement of spectral correlation,” IEEE Trans. Acoust. Speech Signal Process. 34(5), 1111–1123 (1986).
    [Crossref]
  13. R. Maher, D. S. Millar, S. J. Savory, and B. C. Thomsen, “Fast switching burst mode receiver in a 24-channel 112 Gb/s DP-QPSK WDM system with 240 km transmission,” in Proceedings of IEEE Optical Fiber Communication Conference and Exposition (IEEE, 2012), pp. 1–3.
  14. L. Mazet and P. Loubaton, “Cyclic correlation based symbol rate estimation,” in Proceedings of the Thrity-Third Asilomar Conference on Signals, Systems and Computers, October 24–27 (1999), pp. 1008–1012.
    [Crossref]
  15. H. Yang, L. Zhu, and T. Wu, “The effects of mismatched roll-off factor on the receiving performance of QAM signals,” in Proceedings of IEEE International Conference on Communications, Circuits and Systems (IEEE, 2009), pp. 86–90.
  16. M. V. Ionescu, M. Sato, and B. C. Thomsen, “In-band OSNR estimation for Nyquist WDM superchannels,” in Proceedings of IEEE European Conference on Optical Communication (IEEE, 2014), pp. 1–3.

2014 (2)

F. N. Khan, Y. Zhou, Q. Sui, and A. P. T. Lau, “Non-data-aided joint bit-rate and modulation format identification for next-generation heterogeneous optical networks,” Opt. Fiber Tech. 20(2), 68–74 (2014).
[Crossref]

M. C. Tan, F.N. Khan, W. H. Al-Arashi, Y. Zhou, and A. P. T. Lau, “Simultaneous optical performance monitoring and modulation format/bit-rate identification using principal component analysis,” J. Opt. Commun. Netw. 6(5), 441–448 (2014).
[Crossref]

2011 (1)

2010 (1)

2009 (2)

1986 (2)

W. A. Gardner, “The spectral correlation theory of cyclostationary time-series,” Signal Process. 11(1), 13–36 (1986).
[Crossref]

W. A. Gardner, “Measurement of spectral correlation,” IEEE Trans. Acoust. Speech Signal Process. 34(5), 1111–1123 (1986).
[Crossref]

Al-Arashi, W. H.

Anderson, T. B.

Baker-Meflah, L.

Bayvel, P.

Chandrasekhar, S.

X. Liu and S. Chandrasekhar, “Superchannel for next-generation optical networks,” in Proceedings of IEEE Optical Fiber Communication Conference and Exposition (IEEE, 2014), pp. 1–33.

Cheng, L.

H. Wen, L. Cheng, X. Zheng, H. Zhang, Y. Guo, and B. Zhou, “Simultaneous clock recovery and dispersion, OSNR monitoring for 112 Gbit/s NRZ-QPSK using frequency down-conversion electro-optical phase-locked loop,” in Proceedings of IEEE European Conference on Optical Communication (IEEE, 2011), pp. 1–3.

Clarke, K.

Dods, S. D.

Gardner, W. A.

W. A. Gardner, “Measurement of spectral correlation,” IEEE Trans. Acoust. Speech Signal Process. 34(5), 1111–1123 (1986).
[Crossref]

W. A. Gardner, “The spectral correlation theory of cyclostationary time-series,” Signal Process. 11(1), 13–36 (1986).
[Crossref]

W. A. Gardner, Statistical Spectral Analysis: a Non-Probabilistic Theory (Prentice-Hall, 1987).

Grupp, W.

W. Grupp, “In-band OSNR measurement based on spectral correlation,” in Proceedings of the ITG Symposium on Photonic Networks, May 3–4 (2010), pp 1–4.

Guo, Y.

H. Wen, L. Cheng, X. Zheng, H. Zhang, Y. Guo, and B. Zhou, “Simultaneous clock recovery and dispersion, OSNR monitoring for 112 Gbit/s NRZ-QPSK using frequency down-conversion electro-optical phase-locked loop,” in Proceedings of IEEE European Conference on Optical Communication (IEEE, 2011), pp. 1–3.

Hauske, F. N.

Hewitt, D.

Ionescu, M. V.

M. V. Ionescu, M. Sato, and B. C. Thomsen, “In-band OSNR estimation for Nyquist WDM superchannels,” in Proceedings of IEEE European Conference on Optical Communication (IEEE, 2014), pp. 1–3.

Ives, D.

Khan, F. N.

F. N. Khan, Y. Zhou, Q. Sui, and A. P. T. Lau, “Non-data-aided joint bit-rate and modulation format identification for next-generation heterogeneous optical networks,” Opt. Fiber Tech. 20(2), 68–74 (2014).
[Crossref]

Khan, F.N.

Kowalczyk, A.

Kuschnerov, M.

Lankl, B.

Lau, A. P. T.

F. N. Khan, Y. Zhou, Q. Sui, and A. P. T. Lau, “Non-data-aided joint bit-rate and modulation format identification for next-generation heterogeneous optical networks,” Opt. Fiber Tech. 20(2), 68–74 (2014).
[Crossref]

M. C. Tan, F.N. Khan, W. H. Al-Arashi, Y. Zhou, and A. P. T. Lau, “Simultaneous optical performance monitoring and modulation format/bit-rate identification using principal component analysis,” J. Opt. Commun. Netw. 6(5), 441–448 (2014).
[Crossref]

Li, J. C.

Liu, X.

X. Liu and S. Chandrasekhar, “Superchannel for next-generation optical networks,” in Proceedings of IEEE Optical Fiber Communication Conference and Exposition (IEEE, 2014), pp. 1–33.

Loubaton, P.

L. Mazet and P. Loubaton, “Cyclic correlation based symbol rate estimation,” in Proceedings of the Thrity-Third Asilomar Conference on Signals, Systems and Computers, October 24–27 (1999), pp. 1008–1012.
[Crossref]

Maher, R.

D. Ives, B. C. Thomsen, R. Maher, and S. J. Savory, “Estimating OSNR of equalised QPSK signals,” Opt. Express 19(26), B661–B666 (2011).
[Crossref]

R. Maher, D. S. Millar, S. J. Savory, and B. C. Thomsen, “Fast switching burst mode receiver in a 24-channel 112 Gb/s DP-QPSK WDM system with 240 km transmission,” in Proceedings of IEEE Optical Fiber Communication Conference and Exposition (IEEE, 2012), pp. 1–3.

Mazet, L.

L. Mazet and P. Loubaton, “Cyclic correlation based symbol rate estimation,” in Proceedings of the Thrity-Third Asilomar Conference on Signals, Systems and Computers, October 24–27 (1999), pp. 1008–1012.
[Crossref]

Millar, D. S.

R. Maher, D. S. Millar, S. J. Savory, and B. C. Thomsen, “Fast switching burst mode receiver in a 24-channel 112 Gb/s DP-QPSK WDM system with 240 km transmission,” in Proceedings of IEEE Optical Fiber Communication Conference and Exposition (IEEE, 2012), pp. 1–3.

Mitchell, J. E.

Sato, M.

M. V. Ionescu, M. Sato, and B. C. Thomsen, “In-band OSNR estimation for Nyquist WDM superchannels,” in Proceedings of IEEE European Conference on Optical Communication (IEEE, 2014), pp. 1–3.

Savory, S. J.

D. Ives, B. C. Thomsen, R. Maher, and S. J. Savory, “Estimating OSNR of equalised QPSK signals,” Opt. Express 19(26), B661–B666 (2011).
[Crossref]

R. Maher, D. S. Millar, S. J. Savory, and B. C. Thomsen, “Fast switching burst mode receiver in a 24-channel 112 Gb/s DP-QPSK WDM system with 240 km transmission,” in Proceedings of IEEE Optical Fiber Communication Conference and Exposition (IEEE, 2012), pp. 1–3.

Spinnler, B.

Sui, Q.

F. N. Khan, Y. Zhou, Q. Sui, and A. P. T. Lau, “Non-data-aided joint bit-rate and modulation format identification for next-generation heterogeneous optical networks,” Opt. Fiber Tech. 20(2), 68–74 (2014).
[Crossref]

Tan, M. C.

Thomsen, B. C.

D. Ives, B. C. Thomsen, R. Maher, and S. J. Savory, “Estimating OSNR of equalised QPSK signals,” Opt. Express 19(26), B661–B666 (2011).
[Crossref]

L. Baker-Meflah, B. C. Thomsen, J. E. Mitchell, and P. Bayvel, “Multi-impairment WDM optical performance monitoring for burst switched networks,” J. Lightwave Technol. 28(23), 3417–3426 (2010).

R. Maher, D. S. Millar, S. J. Savory, and B. C. Thomsen, “Fast switching burst mode receiver in a 24-channel 112 Gb/s DP-QPSK WDM system with 240 km transmission,” in Proceedings of IEEE Optical Fiber Communication Conference and Exposition (IEEE, 2012), pp. 1–3.

M. V. Ionescu, M. Sato, and B. C. Thomsen, “In-band OSNR estimation for Nyquist WDM superchannels,” in Proceedings of IEEE European Conference on Optical Communication (IEEE, 2014), pp. 1–3.

Wen, H.

H. Wen, L. Cheng, X. Zheng, H. Zhang, Y. Guo, and B. Zhou, “Simultaneous clock recovery and dispersion, OSNR monitoring for 112 Gbit/s NRZ-QPSK using frequency down-conversion electro-optical phase-locked loop,” in Proceedings of IEEE European Conference on Optical Communication (IEEE, 2011), pp. 1–3.

Wu, T.

H. Yang, L. Zhu, and T. Wu, “The effects of mismatched roll-off factor on the receiving performance of QAM signals,” in Proceedings of IEEE International Conference on Communications, Circuits and Systems (IEEE, 2009), pp. 86–90.

Yang, H.

H. Yang, L. Zhu, and T. Wu, “The effects of mismatched roll-off factor on the receiving performance of QAM signals,” in Proceedings of IEEE International Conference on Communications, Circuits and Systems (IEEE, 2009), pp. 86–90.

Zhang, H.

H. Wen, L. Cheng, X. Zheng, H. Zhang, Y. Guo, and B. Zhou, “Simultaneous clock recovery and dispersion, OSNR monitoring for 112 Gbit/s NRZ-QPSK using frequency down-conversion electro-optical phase-locked loop,” in Proceedings of IEEE European Conference on Optical Communication (IEEE, 2011), pp. 1–3.

Zheng, X.

H. Wen, L. Cheng, X. Zheng, H. Zhang, Y. Guo, and B. Zhou, “Simultaneous clock recovery and dispersion, OSNR monitoring for 112 Gbit/s NRZ-QPSK using frequency down-conversion electro-optical phase-locked loop,” in Proceedings of IEEE European Conference on Optical Communication (IEEE, 2011), pp. 1–3.

Zhou, B.

H. Wen, L. Cheng, X. Zheng, H. Zhang, Y. Guo, and B. Zhou, “Simultaneous clock recovery and dispersion, OSNR monitoring for 112 Gbit/s NRZ-QPSK using frequency down-conversion electro-optical phase-locked loop,” in Proceedings of IEEE European Conference on Optical Communication (IEEE, 2011), pp. 1–3.

Zhou, Y.

F. N. Khan, Y. Zhou, Q. Sui, and A. P. T. Lau, “Non-data-aided joint bit-rate and modulation format identification for next-generation heterogeneous optical networks,” Opt. Fiber Tech. 20(2), 68–74 (2014).
[Crossref]

M. C. Tan, F.N. Khan, W. H. Al-Arashi, Y. Zhou, and A. P. T. Lau, “Simultaneous optical performance monitoring and modulation format/bit-rate identification using principal component analysis,” J. Opt. Commun. Netw. 6(5), 441–448 (2014).
[Crossref]

Zhu, L.

H. Yang, L. Zhu, and T. Wu, “The effects of mismatched roll-off factor on the receiving performance of QAM signals,” in Proceedings of IEEE International Conference on Communications, Circuits and Systems (IEEE, 2009), pp. 86–90.

IEEE Trans. Acoust. Speech Signal Process. (1)

W. A. Gardner, “Measurement of spectral correlation,” IEEE Trans. Acoust. Speech Signal Process. 34(5), 1111–1123 (1986).
[Crossref]

J. Lightwave Technol. (3)

J. Opt. Commun. Netw. (1)

Opt. Express (1)

Opt. Fiber Tech. (1)

F. N. Khan, Y. Zhou, Q. Sui, and A. P. T. Lau, “Non-data-aided joint bit-rate and modulation format identification for next-generation heterogeneous optical networks,” Opt. Fiber Tech. 20(2), 68–74 (2014).
[Crossref]

Signal Process. (1)

W. A. Gardner, “The spectral correlation theory of cyclostationary time-series,” Signal Process. 11(1), 13–36 (1986).
[Crossref]

Other (8)

W. A. Gardner, Statistical Spectral Analysis: a Non-Probabilistic Theory (Prentice-Hall, 1987).

H. Wen, L. Cheng, X. Zheng, H. Zhang, Y. Guo, and B. Zhou, “Simultaneous clock recovery and dispersion, OSNR monitoring for 112 Gbit/s NRZ-QPSK using frequency down-conversion electro-optical phase-locked loop,” in Proceedings of IEEE European Conference on Optical Communication (IEEE, 2011), pp. 1–3.

W. Grupp, “In-band OSNR measurement based on spectral correlation,” in Proceedings of the ITG Symposium on Photonic Networks, May 3–4 (2010), pp 1–4.

R. Maher, D. S. Millar, S. J. Savory, and B. C. Thomsen, “Fast switching burst mode receiver in a 24-channel 112 Gb/s DP-QPSK WDM system with 240 km transmission,” in Proceedings of IEEE Optical Fiber Communication Conference and Exposition (IEEE, 2012), pp. 1–3.

L. Mazet and P. Loubaton, “Cyclic correlation based symbol rate estimation,” in Proceedings of the Thrity-Third Asilomar Conference on Signals, Systems and Computers, October 24–27 (1999), pp. 1008–1012.
[Crossref]

H. Yang, L. Zhu, and T. Wu, “The effects of mismatched roll-off factor on the receiving performance of QAM signals,” in Proceedings of IEEE International Conference on Communications, Circuits and Systems (IEEE, 2009), pp. 86–90.

M. V. Ionescu, M. Sato, and B. C. Thomsen, “In-band OSNR estimation for Nyquist WDM superchannels,” in Proceedings of IEEE European Conference on Optical Communication (IEEE, 2014), pp. 1–3.

X. Liu and S. Chandrasekhar, “Superchannel for next-generation optical networks,” in Proceedings of IEEE Optical Fiber Communication Conference and Exposition (IEEE, 2014), pp. 1–33.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1
Fig. 1 Digital coherent receiver setup including classic DSP stages (top row), together with the proposed joint estimation blocks (bottom row) based on cyclostationarity properties.
Fig. 2
Fig. 2 The SCF of a WDM signal, periodic with the symbol-rate of 10 GBaud.
Fig. 3
Fig. 3 Proposed implementations of the CAF and SCF (FS=frequency-smoothing).
Fig. 4
Fig. 4 Experimental setup (OCG = optical comb generator, AOS = acousto-optic switch, BPF = band-pass filter, PS = polarisation scrambler, VOA = variable optical attenuator).
Fig. 5
Fig. 5 Precision of the symbol-rate estimation technique (roll-off=0.01).
Fig. 6
Fig. 6 Impact of sample size on the SCF-based symbol-rate estimator.
Fig. 7
Fig. 7 Impact of RRC roll-off on the SCF-based symbol-rate estimation.
Fig. 8
Fig. 8 Maximum distance achievable with the SCF-based symbol-rate estimation.
Fig. 9
Fig. 9 RRC filter roll-off factor estimation performance.
Fig. 10
Fig. 10 Frequency offset estimation results obtained by simulation and experimentally.
Fig. 11
Fig. 11 CDF of the magnitude of the first cyclic spectrum, when the FO is 1GHz.
Fig. 12
Fig. 12 Impact of the RRC filter on the CD estimation (2421 km).
Fig. 13
Fig. 13 Experimental demonstration of CD estimation.
Fig. 14
Fig. 14 OSNR estimation for (a) DP-QPSK (2018km) and (b) DP-16QAM (807km).
Fig. 15
Fig. 15 Impact of RRC roll-off on the OSNR estimation.
Fig. 16
Fig. 16 Impact of roll-off estimation error on the (a) CD, (b) IF and (c) OSNR estimators.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

R ^ x α ( τ ) = lim T 1 T T 2 T 2 x ( t + τ 2 ) x * ( t τ 2 ) e j 2 π α t d t
S ^ x T α ( t , f ) = 1 T X T ( t , f + α 2 ) X T * ( t , f α 2 ) .
S ^ x α ( f ) = lim Δ f 0 lim Δ t 1 Δ f f Δ f 2 f + Δ f 2 S x Δ t α ( t , ν ) d ν
F ^ b = arg α 0 max α max f | S y α ( f ) | .
H CD ( f ) = e j π λ 2 D L c f 2
H ^ CD α = F b ( f ) = H CD ( f + α 2 ) H CD * ( f α 2 ) = e j 2 π λ 2 D L c α f
S ^ y α ( f ) = lim Δ f 0 lim Δ t 1 Δ f f Δ f 2 f + Δ f 2 e j 2 π λ 2 D L c α ν S ^ x Δ t α ( t , ν ) d ν
D L ^ = m c 2 π λ 2 α
R ^ y α ( τ ) = S ^ y Δ t α ( t , f ) e j 2 π f τ d f = R ^ x α ( τ λ 2 D L α c ) = R ^ x α ( τ Δ τ ) .
D L ^ = Δ τ ^ c F ^ b λ 2
OSNR ^ = 10 log 10 ( k P ave α = F b | P ave α = 0 k P ave α = F b | B res B ref ) .

Metrics