Abstract

The transformation optics cloak was proposed for the medium with the angle dependent tensors of permittivity and permeability consisted of the right-handed and left-handed metamaterial media. The cloaking effect was numerically simulated using finite element method in the terahertz frequency range for different wave sources. The impact of cloaking medium thickness on the invisibility effect was demonstrated.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Multifunctional complementary cloak with homogeneous anisotropic material parameters

Jin-Shuo Mei, Qun Wu, and Kuang Zhang
J. Opt. Soc. Am. A 29(10) 2067-2073 (2012)

References

  • View by:
  • |
  • |
  • |

  1. N. Fang, H. Lee, C. Sun, and X. Zhang, “Subdiffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
    [Crossref] [PubMed]
  2. Z. Jacob, L. V. Alekseyev, and E. Narimanov, “Optical hyperlens: far-field imaging beyond the diffraction limit,” Opt. Express 14(18), 8247–8256 (2006).
    [Crossref] [PubMed]
  3. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
    [Crossref] [PubMed]
  4. W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1(4), 224–227 (2007).
    [Crossref]
  5. Sh. Xi, H. Chen, B.-I. Wu, and J. A. Kong, “One-directional perfect cloak created with homogeneous material,” IEEE Microw. Wirel. Co. 19(3), 131–133 (2009).
    [Crossref]
  6. T. Han, Xi. Tang, and F. Xiao, “Open cloaks via embedded optical transformation,” IEEE Microw. Wirel. Co. 20(2), 64–66 (2010).
    [Crossref]
  7. X. Wang, F. Chen, and E. Semouchkina, “Implementation of low scattering microwave cloaking by all-dielectric metamaterials,” IEEE Microw. Wirel. Co. 23, (2)63–65 (2013).
    [Crossref]
  8. M. Fridman, A. Farsi, Y. Okawachi, and A. L. Gaeta, “Demonstration of temporal cloaking,” Nature 481(7379), 62–65 (2012).
    [Crossref] [PubMed]
  9. E. A. Gurvitz, A. V. Vozianova, and M. K. Khodzitskiy, “Tunable frequency converter for terahertz frequency range based on space-time transformation,” Proc. SPIE 9160, 91602 (2014).
    [Crossref]
  10. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184 (2000).
    [Crossref] [PubMed]
  11. Y. E. Terekhov, M. K. Khodzitsky, Y. V. Grachev, E. A. Sedykh, G. V. Belokopytov, and X. C. Zhang, “The influence of period between U-shaped resonators on metasurface response at terahertz frequency range,” Proc. SPIE 8806, 88062 (2013).
    [Crossref]
  12. N. Garcia, E. V. Ponizovskaya, and J. Q. Xiao, “Zero permittivity materials: band gaps at the visible,” Appl. Phys. Lett. 80(7), 1120–1122 (2002).
    [Crossref]
  13. F. Rana, “Graphene terahertz plasmon oscillators,” IEEE Trans. Nanotechnol. 7(1), 91–99 (2008).
    [Crossref]
  14. A. K. Denisultanov, S. E. Azbite, and M. K. Khodzitsky, “Excitation of surface waves in the photonic crystal/graphene structure for terahertz frequency range,” Proc. SPIE 9160, 91602–91610 (2014).
    [Crossref]
  15. E. A. Gurvitz, S. A. Andronaki, S. I. Gusev, V. Y. Soboleva, Y. D. Nazarov, and M. K. Khodzitsky, “Development of 3D anisotropic artificial dielectric metamaterial for THz frequency range,” in Proceedings of Progress in Electromagnetics Research Symposium 2014, 2715–2718 (2014).
  16. H. F. Ma and T. J. Cui, “Three-dimensional broadband ground-plane cloak made of metamaterials,” Nat. Commun. 1, 21 (2010).
    [Crossref] [PubMed]
  17. B. Edwards, A. Alu, M. G. Silveirinha, and N. Engheta, “Experimental verification of plasmonic cloaking at microwave frequencies with metamaterials,” Phys. Rev. Lett. 103(15), 153901 (2009).
    [Crossref] [PubMed]
  18. E. A. Gurvitz, E. A. Sedykh, and M. K. Khodzitskiy, “Nonlinear cloaking at microwave frequencies,” Proc. SPIE 8455, 845532 (2012).
    [Crossref]
  19. U. Leonhardt, “Optical conformal mapping,” Science 312(5781), 1777–1780 (2006).
    [Crossref] [PubMed]
  20. U. Leonhardt and T. Philbin, Geometry and Light: The Science of Invisibility (Dover Publications, 2010).
  21. E. A. Gurvitz, A. V. Vozianova, and M. K. Khodzitsky, “Simulation of beam-splitter made of metamaterials with angle spatial distribution of constitutive parameters based on transformation optics for THz frequency range,” J. Phys. Conf. Ser. 541, 1 (2014).
    [Crossref]
  22. J. Carbonell, D. Torrent, A. Diaz-Rubio, and J. Sanchez-Dehesa, “Multidisciplinary approach to cylindrical anisotropic metamaterials,” New. J. Phys. 13(10), 103034 (2011).
    [Crossref]

2014 (3)

E. A. Gurvitz, A. V. Vozianova, and M. K. Khodzitskiy, “Tunable frequency converter for terahertz frequency range based on space-time transformation,” Proc. SPIE 9160, 91602 (2014).
[Crossref]

A. K. Denisultanov, S. E. Azbite, and M. K. Khodzitsky, “Excitation of surface waves in the photonic crystal/graphene structure for terahertz frequency range,” Proc. SPIE 9160, 91602–91610 (2014).
[Crossref]

E. A. Gurvitz, A. V. Vozianova, and M. K. Khodzitsky, “Simulation of beam-splitter made of metamaterials with angle spatial distribution of constitutive parameters based on transformation optics for THz frequency range,” J. Phys. Conf. Ser. 541, 1 (2014).
[Crossref]

2013 (2)

Y. E. Terekhov, M. K. Khodzitsky, Y. V. Grachev, E. A. Sedykh, G. V. Belokopytov, and X. C. Zhang, “The influence of period between U-shaped resonators on metasurface response at terahertz frequency range,” Proc. SPIE 8806, 88062 (2013).
[Crossref]

X. Wang, F. Chen, and E. Semouchkina, “Implementation of low scattering microwave cloaking by all-dielectric metamaterials,” IEEE Microw. Wirel. Co. 23, (2)63–65 (2013).
[Crossref]

2012 (2)

M. Fridman, A. Farsi, Y. Okawachi, and A. L. Gaeta, “Demonstration of temporal cloaking,” Nature 481(7379), 62–65 (2012).
[Crossref] [PubMed]

E. A. Gurvitz, E. A. Sedykh, and M. K. Khodzitskiy, “Nonlinear cloaking at microwave frequencies,” Proc. SPIE 8455, 845532 (2012).
[Crossref]

2011 (1)

J. Carbonell, D. Torrent, A. Diaz-Rubio, and J. Sanchez-Dehesa, “Multidisciplinary approach to cylindrical anisotropic metamaterials,” New. J. Phys. 13(10), 103034 (2011).
[Crossref]

2010 (2)

H. F. Ma and T. J. Cui, “Three-dimensional broadband ground-plane cloak made of metamaterials,” Nat. Commun. 1, 21 (2010).
[Crossref] [PubMed]

T. Han, Xi. Tang, and F. Xiao, “Open cloaks via embedded optical transformation,” IEEE Microw. Wirel. Co. 20(2), 64–66 (2010).
[Crossref]

2009 (2)

Sh. Xi, H. Chen, B.-I. Wu, and J. A. Kong, “One-directional perfect cloak created with homogeneous material,” IEEE Microw. Wirel. Co. 19(3), 131–133 (2009).
[Crossref]

B. Edwards, A. Alu, M. G. Silveirinha, and N. Engheta, “Experimental verification of plasmonic cloaking at microwave frequencies with metamaterials,” Phys. Rev. Lett. 103(15), 153901 (2009).
[Crossref] [PubMed]

2008 (1)

F. Rana, “Graphene terahertz plasmon oscillators,” IEEE Trans. Nanotechnol. 7(1), 91–99 (2008).
[Crossref]

2007 (1)

W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1(4), 224–227 (2007).
[Crossref]

2006 (2)

2005 (1)

N. Fang, H. Lee, C. Sun, and X. Zhang, “Subdiffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[Crossref] [PubMed]

2002 (1)

N. Garcia, E. V. Ponizovskaya, and J. Q. Xiao, “Zero permittivity materials: band gaps at the visible,” Appl. Phys. Lett. 80(7), 1120–1122 (2002).
[Crossref]

2001 (1)

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[Crossref] [PubMed]

2000 (1)

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184 (2000).
[Crossref] [PubMed]

Alekseyev, L. V.

Alu, A.

B. Edwards, A. Alu, M. G. Silveirinha, and N. Engheta, “Experimental verification of plasmonic cloaking at microwave frequencies with metamaterials,” Phys. Rev. Lett. 103(15), 153901 (2009).
[Crossref] [PubMed]

Andronaki, S. A.

E. A. Gurvitz, S. A. Andronaki, S. I. Gusev, V. Y. Soboleva, Y. D. Nazarov, and M. K. Khodzitsky, “Development of 3D anisotropic artificial dielectric metamaterial for THz frequency range,” in Proceedings of Progress in Electromagnetics Research Symposium 2014, 2715–2718 (2014).

Azbite, S. E.

A. K. Denisultanov, S. E. Azbite, and M. K. Khodzitsky, “Excitation of surface waves in the photonic crystal/graphene structure for terahertz frequency range,” Proc. SPIE 9160, 91602–91610 (2014).
[Crossref]

Belokopytov, G. V.

Y. E. Terekhov, M. K. Khodzitsky, Y. V. Grachev, E. A. Sedykh, G. V. Belokopytov, and X. C. Zhang, “The influence of period between U-shaped resonators on metasurface response at terahertz frequency range,” Proc. SPIE 8806, 88062 (2013).
[Crossref]

Cai, W.

W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1(4), 224–227 (2007).
[Crossref]

Carbonell, J.

J. Carbonell, D. Torrent, A. Diaz-Rubio, and J. Sanchez-Dehesa, “Multidisciplinary approach to cylindrical anisotropic metamaterials,” New. J. Phys. 13(10), 103034 (2011).
[Crossref]

Chen, F.

X. Wang, F. Chen, and E. Semouchkina, “Implementation of low scattering microwave cloaking by all-dielectric metamaterials,” IEEE Microw. Wirel. Co. 23, (2)63–65 (2013).
[Crossref]

Chen, H.

Sh. Xi, H. Chen, B.-I. Wu, and J. A. Kong, “One-directional perfect cloak created with homogeneous material,” IEEE Microw. Wirel. Co. 19(3), 131–133 (2009).
[Crossref]

Chettiar, U. K.

W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1(4), 224–227 (2007).
[Crossref]

Cui, T. J.

H. F. Ma and T. J. Cui, “Three-dimensional broadband ground-plane cloak made of metamaterials,” Nat. Commun. 1, 21 (2010).
[Crossref] [PubMed]

Denisultanov, A. K.

A. K. Denisultanov, S. E. Azbite, and M. K. Khodzitsky, “Excitation of surface waves in the photonic crystal/graphene structure for terahertz frequency range,” Proc. SPIE 9160, 91602–91610 (2014).
[Crossref]

Diaz-Rubio, A.

J. Carbonell, D. Torrent, A. Diaz-Rubio, and J. Sanchez-Dehesa, “Multidisciplinary approach to cylindrical anisotropic metamaterials,” New. J. Phys. 13(10), 103034 (2011).
[Crossref]

Edwards, B.

B. Edwards, A. Alu, M. G. Silveirinha, and N. Engheta, “Experimental verification of plasmonic cloaking at microwave frequencies with metamaterials,” Phys. Rev. Lett. 103(15), 153901 (2009).
[Crossref] [PubMed]

Engheta, N.

B. Edwards, A. Alu, M. G. Silveirinha, and N. Engheta, “Experimental verification of plasmonic cloaking at microwave frequencies with metamaterials,” Phys. Rev. Lett. 103(15), 153901 (2009).
[Crossref] [PubMed]

Fang, N.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Subdiffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[Crossref] [PubMed]

Farsi, A.

M. Fridman, A. Farsi, Y. Okawachi, and A. L. Gaeta, “Demonstration of temporal cloaking,” Nature 481(7379), 62–65 (2012).
[Crossref] [PubMed]

Fridman, M.

M. Fridman, A. Farsi, Y. Okawachi, and A. L. Gaeta, “Demonstration of temporal cloaking,” Nature 481(7379), 62–65 (2012).
[Crossref] [PubMed]

Gaeta, A. L.

M. Fridman, A. Farsi, Y. Okawachi, and A. L. Gaeta, “Demonstration of temporal cloaking,” Nature 481(7379), 62–65 (2012).
[Crossref] [PubMed]

Garcia, N.

N. Garcia, E. V. Ponizovskaya, and J. Q. Xiao, “Zero permittivity materials: band gaps at the visible,” Appl. Phys. Lett. 80(7), 1120–1122 (2002).
[Crossref]

Grachev, Y. V.

Y. E. Terekhov, M. K. Khodzitsky, Y. V. Grachev, E. A. Sedykh, G. V. Belokopytov, and X. C. Zhang, “The influence of period between U-shaped resonators on metasurface response at terahertz frequency range,” Proc. SPIE 8806, 88062 (2013).
[Crossref]

Gurvitz, E. A.

E. A. Gurvitz, A. V. Vozianova, and M. K. Khodzitskiy, “Tunable frequency converter for terahertz frequency range based on space-time transformation,” Proc. SPIE 9160, 91602 (2014).
[Crossref]

E. A. Gurvitz, A. V. Vozianova, and M. K. Khodzitsky, “Simulation of beam-splitter made of metamaterials with angle spatial distribution of constitutive parameters based on transformation optics for THz frequency range,” J. Phys. Conf. Ser. 541, 1 (2014).
[Crossref]

E. A. Gurvitz, E. A. Sedykh, and M. K. Khodzitskiy, “Nonlinear cloaking at microwave frequencies,” Proc. SPIE 8455, 845532 (2012).
[Crossref]

E. A. Gurvitz, S. A. Andronaki, S. I. Gusev, V. Y. Soboleva, Y. D. Nazarov, and M. K. Khodzitsky, “Development of 3D anisotropic artificial dielectric metamaterial for THz frequency range,” in Proceedings of Progress in Electromagnetics Research Symposium 2014, 2715–2718 (2014).

Gusev, S. I.

E. A. Gurvitz, S. A. Andronaki, S. I. Gusev, V. Y. Soboleva, Y. D. Nazarov, and M. K. Khodzitsky, “Development of 3D anisotropic artificial dielectric metamaterial for THz frequency range,” in Proceedings of Progress in Electromagnetics Research Symposium 2014, 2715–2718 (2014).

Han, T.

T. Han, Xi. Tang, and F. Xiao, “Open cloaks via embedded optical transformation,” IEEE Microw. Wirel. Co. 20(2), 64–66 (2010).
[Crossref]

Jacob, Z.

Khodzitskiy, M. K.

E. A. Gurvitz, A. V. Vozianova, and M. K. Khodzitskiy, “Tunable frequency converter for terahertz frequency range based on space-time transformation,” Proc. SPIE 9160, 91602 (2014).
[Crossref]

E. A. Gurvitz, E. A. Sedykh, and M. K. Khodzitskiy, “Nonlinear cloaking at microwave frequencies,” Proc. SPIE 8455, 845532 (2012).
[Crossref]

Khodzitsky, M. K.

A. K. Denisultanov, S. E. Azbite, and M. K. Khodzitsky, “Excitation of surface waves in the photonic crystal/graphene structure for terahertz frequency range,” Proc. SPIE 9160, 91602–91610 (2014).
[Crossref]

E. A. Gurvitz, A. V. Vozianova, and M. K. Khodzitsky, “Simulation of beam-splitter made of metamaterials with angle spatial distribution of constitutive parameters based on transformation optics for THz frequency range,” J. Phys. Conf. Ser. 541, 1 (2014).
[Crossref]

Y. E. Terekhov, M. K. Khodzitsky, Y. V. Grachev, E. A. Sedykh, G. V. Belokopytov, and X. C. Zhang, “The influence of period between U-shaped resonators on metasurface response at terahertz frequency range,” Proc. SPIE 8806, 88062 (2013).
[Crossref]

E. A. Gurvitz, S. A. Andronaki, S. I. Gusev, V. Y. Soboleva, Y. D. Nazarov, and M. K. Khodzitsky, “Development of 3D anisotropic artificial dielectric metamaterial for THz frequency range,” in Proceedings of Progress in Electromagnetics Research Symposium 2014, 2715–2718 (2014).

Kildishev, A. V.

W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1(4), 224–227 (2007).
[Crossref]

Kong, J. A.

Sh. Xi, H. Chen, B.-I. Wu, and J. A. Kong, “One-directional perfect cloak created with homogeneous material,” IEEE Microw. Wirel. Co. 19(3), 131–133 (2009).
[Crossref]

Lee, H.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Subdiffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[Crossref] [PubMed]

Leonhardt, U.

U. Leonhardt, “Optical conformal mapping,” Science 312(5781), 1777–1780 (2006).
[Crossref] [PubMed]

U. Leonhardt and T. Philbin, Geometry and Light: The Science of Invisibility (Dover Publications, 2010).

Ma, H. F.

H. F. Ma and T. J. Cui, “Three-dimensional broadband ground-plane cloak made of metamaterials,” Nat. Commun. 1, 21 (2010).
[Crossref] [PubMed]

Narimanov, E.

Nazarov, Y. D.

E. A. Gurvitz, S. A. Andronaki, S. I. Gusev, V. Y. Soboleva, Y. D. Nazarov, and M. K. Khodzitsky, “Development of 3D anisotropic artificial dielectric metamaterial for THz frequency range,” in Proceedings of Progress in Electromagnetics Research Symposium 2014, 2715–2718 (2014).

Nemat-Nasser, S. C.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184 (2000).
[Crossref] [PubMed]

Okawachi, Y.

M. Fridman, A. Farsi, Y. Okawachi, and A. L. Gaeta, “Demonstration of temporal cloaking,” Nature 481(7379), 62–65 (2012).
[Crossref] [PubMed]

Padilla, W. J.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184 (2000).
[Crossref] [PubMed]

Philbin, T.

U. Leonhardt and T. Philbin, Geometry and Light: The Science of Invisibility (Dover Publications, 2010).

Ponizovskaya, E. V.

N. Garcia, E. V. Ponizovskaya, and J. Q. Xiao, “Zero permittivity materials: band gaps at the visible,” Appl. Phys. Lett. 80(7), 1120–1122 (2002).
[Crossref]

Rana, F.

F. Rana, “Graphene terahertz plasmon oscillators,” IEEE Trans. Nanotechnol. 7(1), 91–99 (2008).
[Crossref]

Sanchez-Dehesa, J.

J. Carbonell, D. Torrent, A. Diaz-Rubio, and J. Sanchez-Dehesa, “Multidisciplinary approach to cylindrical anisotropic metamaterials,” New. J. Phys. 13(10), 103034 (2011).
[Crossref]

Schultz, S.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[Crossref] [PubMed]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184 (2000).
[Crossref] [PubMed]

Sedykh, E. A.

Y. E. Terekhov, M. K. Khodzitsky, Y. V. Grachev, E. A. Sedykh, G. V. Belokopytov, and X. C. Zhang, “The influence of period between U-shaped resonators on metasurface response at terahertz frequency range,” Proc. SPIE 8806, 88062 (2013).
[Crossref]

E. A. Gurvitz, E. A. Sedykh, and M. K. Khodzitskiy, “Nonlinear cloaking at microwave frequencies,” Proc. SPIE 8455, 845532 (2012).
[Crossref]

Semouchkina, E.

X. Wang, F. Chen, and E. Semouchkina, “Implementation of low scattering microwave cloaking by all-dielectric metamaterials,” IEEE Microw. Wirel. Co. 23, (2)63–65 (2013).
[Crossref]

Shalaev, V. M.

W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1(4), 224–227 (2007).
[Crossref]

Shelby, R. A.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[Crossref] [PubMed]

Silveirinha, M. G.

B. Edwards, A. Alu, M. G. Silveirinha, and N. Engheta, “Experimental verification of plasmonic cloaking at microwave frequencies with metamaterials,” Phys. Rev. Lett. 103(15), 153901 (2009).
[Crossref] [PubMed]

Smith, D. R.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[Crossref] [PubMed]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184 (2000).
[Crossref] [PubMed]

Soboleva, V. Y.

E. A. Gurvitz, S. A. Andronaki, S. I. Gusev, V. Y. Soboleva, Y. D. Nazarov, and M. K. Khodzitsky, “Development of 3D anisotropic artificial dielectric metamaterial for THz frequency range,” in Proceedings of Progress in Electromagnetics Research Symposium 2014, 2715–2718 (2014).

Sun, C.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Subdiffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[Crossref] [PubMed]

Tang, Xi.

T. Han, Xi. Tang, and F. Xiao, “Open cloaks via embedded optical transformation,” IEEE Microw. Wirel. Co. 20(2), 64–66 (2010).
[Crossref]

Terekhov, Y. E.

Y. E. Terekhov, M. K. Khodzitsky, Y. V. Grachev, E. A. Sedykh, G. V. Belokopytov, and X. C. Zhang, “The influence of period between U-shaped resonators on metasurface response at terahertz frequency range,” Proc. SPIE 8806, 88062 (2013).
[Crossref]

Torrent, D.

J. Carbonell, D. Torrent, A. Diaz-Rubio, and J. Sanchez-Dehesa, “Multidisciplinary approach to cylindrical anisotropic metamaterials,” New. J. Phys. 13(10), 103034 (2011).
[Crossref]

Vier, D. C.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184 (2000).
[Crossref] [PubMed]

Vozianova, A. V.

E. A. Gurvitz, A. V. Vozianova, and M. K. Khodzitsky, “Simulation of beam-splitter made of metamaterials with angle spatial distribution of constitutive parameters based on transformation optics for THz frequency range,” J. Phys. Conf. Ser. 541, 1 (2014).
[Crossref]

E. A. Gurvitz, A. V. Vozianova, and M. K. Khodzitskiy, “Tunable frequency converter for terahertz frequency range based on space-time transformation,” Proc. SPIE 9160, 91602 (2014).
[Crossref]

Wang, X.

X. Wang, F. Chen, and E. Semouchkina, “Implementation of low scattering microwave cloaking by all-dielectric metamaterials,” IEEE Microw. Wirel. Co. 23, (2)63–65 (2013).
[Crossref]

Wu, B.-I.

Sh. Xi, H. Chen, B.-I. Wu, and J. A. Kong, “One-directional perfect cloak created with homogeneous material,” IEEE Microw. Wirel. Co. 19(3), 131–133 (2009).
[Crossref]

Xi, Sh.

Sh. Xi, H. Chen, B.-I. Wu, and J. A. Kong, “One-directional perfect cloak created with homogeneous material,” IEEE Microw. Wirel. Co. 19(3), 131–133 (2009).
[Crossref]

Xiao, F.

T. Han, Xi. Tang, and F. Xiao, “Open cloaks via embedded optical transformation,” IEEE Microw. Wirel. Co. 20(2), 64–66 (2010).
[Crossref]

Xiao, J. Q.

N. Garcia, E. V. Ponizovskaya, and J. Q. Xiao, “Zero permittivity materials: band gaps at the visible,” Appl. Phys. Lett. 80(7), 1120–1122 (2002).
[Crossref]

Zhang, X.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Subdiffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[Crossref] [PubMed]

Zhang, X. C.

Y. E. Terekhov, M. K. Khodzitsky, Y. V. Grachev, E. A. Sedykh, G. V. Belokopytov, and X. C. Zhang, “The influence of period between U-shaped resonators on metasurface response at terahertz frequency range,” Proc. SPIE 8806, 88062 (2013).
[Crossref]

Appl. Phys. Lett. (1)

N. Garcia, E. V. Ponizovskaya, and J. Q. Xiao, “Zero permittivity materials: band gaps at the visible,” Appl. Phys. Lett. 80(7), 1120–1122 (2002).
[Crossref]

IEEE Microw. Wirel. Co. (3)

Sh. Xi, H. Chen, B.-I. Wu, and J. A. Kong, “One-directional perfect cloak created with homogeneous material,” IEEE Microw. Wirel. Co. 19(3), 131–133 (2009).
[Crossref]

T. Han, Xi. Tang, and F. Xiao, “Open cloaks via embedded optical transformation,” IEEE Microw. Wirel. Co. 20(2), 64–66 (2010).
[Crossref]

X. Wang, F. Chen, and E. Semouchkina, “Implementation of low scattering microwave cloaking by all-dielectric metamaterials,” IEEE Microw. Wirel. Co. 23, (2)63–65 (2013).
[Crossref]

IEEE Trans. Nanotechnol. (1)

F. Rana, “Graphene terahertz plasmon oscillators,” IEEE Trans. Nanotechnol. 7(1), 91–99 (2008).
[Crossref]

J. Phys. Conf. Ser. (1)

E. A. Gurvitz, A. V. Vozianova, and M. K. Khodzitsky, “Simulation of beam-splitter made of metamaterials with angle spatial distribution of constitutive parameters based on transformation optics for THz frequency range,” J. Phys. Conf. Ser. 541, 1 (2014).
[Crossref]

Nat. Commun. (1)

H. F. Ma and T. J. Cui, “Three-dimensional broadband ground-plane cloak made of metamaterials,” Nat. Commun. 1, 21 (2010).
[Crossref] [PubMed]

Nat. Photonics (1)

W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1(4), 224–227 (2007).
[Crossref]

Nature (1)

M. Fridman, A. Farsi, Y. Okawachi, and A. L. Gaeta, “Demonstration of temporal cloaking,” Nature 481(7379), 62–65 (2012).
[Crossref] [PubMed]

New. J. Phys. (1)

J. Carbonell, D. Torrent, A. Diaz-Rubio, and J. Sanchez-Dehesa, “Multidisciplinary approach to cylindrical anisotropic metamaterials,” New. J. Phys. 13(10), 103034 (2011).
[Crossref]

Opt. Express (1)

Phys. Rev. Lett. (2)

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184 (2000).
[Crossref] [PubMed]

B. Edwards, A. Alu, M. G. Silveirinha, and N. Engheta, “Experimental verification of plasmonic cloaking at microwave frequencies with metamaterials,” Phys. Rev. Lett. 103(15), 153901 (2009).
[Crossref] [PubMed]

Proc. SPIE (4)

E. A. Gurvitz, E. A. Sedykh, and M. K. Khodzitskiy, “Nonlinear cloaking at microwave frequencies,” Proc. SPIE 8455, 845532 (2012).
[Crossref]

A. K. Denisultanov, S. E. Azbite, and M. K. Khodzitsky, “Excitation of surface waves in the photonic crystal/graphene structure for terahertz frequency range,” Proc. SPIE 9160, 91602–91610 (2014).
[Crossref]

Y. E. Terekhov, M. K. Khodzitsky, Y. V. Grachev, E. A. Sedykh, G. V. Belokopytov, and X. C. Zhang, “The influence of period between U-shaped resonators on metasurface response at terahertz frequency range,” Proc. SPIE 8806, 88062 (2013).
[Crossref]

E. A. Gurvitz, A. V. Vozianova, and M. K. Khodzitskiy, “Tunable frequency converter for terahertz frequency range based on space-time transformation,” Proc. SPIE 9160, 91602 (2014).
[Crossref]

Science (3)

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[Crossref] [PubMed]

U. Leonhardt, “Optical conformal mapping,” Science 312(5781), 1777–1780 (2006).
[Crossref] [PubMed]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Subdiffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[Crossref] [PubMed]

Other (2)

U. Leonhardt and T. Philbin, Geometry and Light: The Science of Invisibility (Dover Publications, 2010).

E. A. Gurvitz, S. A. Andronaki, S. I. Gusev, V. Y. Soboleva, Y. D. Nazarov, and M. K. Khodzitsky, “Development of 3D anisotropic artificial dielectric metamaterial for THz frequency range,” in Proceedings of Progress in Electromagnetics Research Symposium 2014, 2715–2718 (2014).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Virtual space, (b) physical (transformed) space.

Fig. 2
Fig. 2

The simulation setup scheme: 1 - RHM, 2 - LHM, 3 - object.

Fig. 3
Fig. 3

The wave separation in RHM for ϕ2 − ϕ1 = 4π/3. The distribution of electric field at the frequency of 0.1 THz. The distribution of refractive index components in cylindrical coordinate system for the simulated structure.

Fig. 4
Fig. 4

The simulation of the object cloaking using finite element method at the frequency of 0.1 THz. (a) a is 3 3 mm, (b) 4 3 mm, (c) 8 3 mm. The distribution of refractive index components in cylindrical coordinate system for the simulated structure for ϕ2 −ϕ1 = 4π/3.

Fig. 5
Fig. 5

The propagation of (a) plane wave at the incidence angle of π 6 and (b) cylindrical wave through the cloak. The simulations were performed at the frequency of 0.1 THz.

Fig. 6
Fig. 6

Real (a) and Imaginary part (b) of refractive indices of most useful photopolymers for 3D stereolithography.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

x = x c o s ( ϕ ) c o s ( ϕ ) , y = y s i n ( ϕ ) s i n ( ϕ ) , z = z , r = r .
Λ i i = x i x i = ( Q S + C T Q P 0 P Q T S + Q C 0 0 0 1 ) ,
ε = μ = Λ Λ T d e t ( Λ ) ε ,
ε j i = μ j i = 1 Q ( M 11 M 12 0 M 12 M 22 0 0 0 1 ) ,
( Q 2 s i n 2 ( ϕ ) + c o s 2 ( ϕ ) ( 1 Q 2 ) c o s ( ϕ ) s i n ( ϕ ) ( 1 Q 2 ) c o s ( ϕ ) s i n ( ϕ ) s i n 2 ( ϕ ) + Q 2 c o s 2 ( ϕ ) ) .
ϕ = f ( ϕ ) = ( ϕ 2 ϕ 1 ) 2 π ϕ + b ,
n 2 = ( ε y y ε z z ε x y ε z z 0 ε y x ε z z ε x x ε z z 0 0 0 ε x x ε y y ε y x ε x y ) .
( 1 Q 2 s i n 2 ( ϕ ) + c o s 2 ( ϕ ) ( 1 1 Q 2 ) c o s ( ϕ ) s i n ( ϕ ) ( 1 1 Q 2 ) c o s ( ϕ ) s i n ( ϕ ) s i n 2 ( ϕ ) + 1 Q 2 c o s 2 ( ϕ ) ) .
ε j i = μ j i = d i a g ( Q 1 , Q , Q 1 ) .
n 2 = d i a g ( 1 , Q 2 , 1 ) .
μ = d i a g ( Q 2 , 1 , 1 ) ,
ε = d i a g ( 1 , 1 , 1 ) ,
ε = d i a g ( Q 2 , 1 , 1 ) ,
μ = d i a g ( 1 , 1 , 1 ) .

Metrics