Abstract

We demonstrate an ultrahigh speed germanium photodetector by introducing gold wires into the discrete ground electrodes with standard wire bonding technology. To engineer the parasitic parameter, the physical dimension of the gold wire used for wire bonding is specially designed with an inductance of about 450 pH. Simulation and experimental results show that the bandwidth of the photodetector can be effectively extended from less than 30 GHz to over 60 GHz.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Germanium photodetector with 60 GHz bandwidth using inductive gain peaking

Ari Novack, Mike Gould, Yisu Yang, Zhe Xuan, Matthew Streshinsky, Yang Liu, Giovanni Capellini, Andy Eu-Jin Lim, Guo-Qiang Lo, Tom Baehr-Jones, and Michael Hochberg
Opt. Express 21(23) 28387-28393 (2013)

Improving CMOS-compatible Germanium photodetectors

Guoliang Li, Ying Luo, Xuezhe Zheng, Gianlorenzo Masini, Attila Mekis, Subal Sahni, Hiren Thacker, Jin Yao, Ivan Shubin, Kannan Raj, John E. Cunningham, and Ashok V. Krishnamoorthy
Opt. Express 20(24) 26345-26350 (2012)

Responsivity optimization of a high-speed germanium-on-silicon photodetector

Monireh Moayedi Pour Fard, Glenn Cowan, and Odile Liboiron-Ladouceur
Opt. Express 24(24) 27738-27752 (2016)

References

  • View by:
  • |
  • |
  • |

  1. T. Yin, R. Cohen, M. M. Morse, G. Sarid, Y. Chetrit, D. Rubin, and M. J. Paniccia, “31 GHz Ge n-i-p waveguide photodetectors on Silicon-on-Insulator substrate,” Opt. Express 15(21), 13965–13971 (2007).
    [Crossref] [PubMed]
  2. L. Vivien, J. Osmond, J. M. Fédéli, D. Marris-Morini, P. Crozat, J. F. Damlencourt, E. Cassan, Y. Lecunff, and S. Laval, “42 GHz p.i.n Germanium photodetector integrated in a silicon-on-insulator waveguide,” Opt. Express 17(8), 6252–6257 (2009).
    [Crossref] [PubMed]
  3. J. Michel, J. F. Liu, and L. C. Kimerling, “High-performance Ge-on-Si photodetectors,” Nat. Photonics 4(8), 527–534 (2010).
    [Crossref]
  4. C. T. DeRose, D. C. Trotter, W. A. Zortman, A. L. Starbuck, M. Fisher, M. R. Watts, and P. S. Davids, “Ultra compact 45 GHz CMOS compatible Germanium waveguide photodiode with low dark current,” Opt. Express 19(25), 24897–24904 (2011).
    [Crossref] [PubMed]
  5. S. Liao, N. N. Feng, D. Feng, P. Dong, R. Shafiiha, C. C. Kung, H. Liang, W. Qian, Y. Liu, J. Fong, J. E. Cunningham, Y. Luo, and M. Asghari, “36 GHz submicron silicon waveguide germanium photodetector,” Opt. Express 19(11), 10967–10972 (2011).
    [Crossref] [PubMed]
  6. L. Vivien, A. Polzer, D. Marris-Morini, J. Osmond, J. M. Hartmann, P. Crozat, E. Cassan, C. Kopp, H. Zimmermann, and J. M. Fédéli, “Zero-bias 40Gbit/s germanium waveguide photodetector on silicon,” Opt. Express 20(2), 1096–1101 (2012).
    [Crossref] [PubMed]
  7. L. Virot, L. Vivien, J.-M. Fédéli, Y. Bogumilowicz, J.-M. Hartmann, F. Bœuf, P. Crozat, D. Marris-Morini, and E. Cassan, “High-performance waveguide-integrated germanium PIN photodiodes for optical communication applications [Invited],” Photon. Res. 1(3), 140–147 (2013).
    [Crossref]
  8. R. Going, T. J. Seok, J. Loo, K. Hsu, and M. C. Wu, “Germanium wrap-around photodetectors on Silicon photonics,” Opt. Express 23(9), 11975–11984 (2015).
    [Crossref] [PubMed]
  9. T. Baba, S. Akiyama, M. Imai, N. Hirayama, H. Takahashi, Y. Noguchi, T. Horikawa, and T. Usuki, “50-Gb/s ring-resonator-based silicon modulator,” Opt. Express 21(10), 11869–11876 (2013).
    [Crossref] [PubMed]
  10. H. Xu, X. Li, X. Xiao, P. Zhou, Z. Li, J. Yu, and Y. Yu, “High-speed silicon modulator with band equalization,” Opt. Lett. 39(16), 4839–4842 (2014).
    [Crossref] [PubMed]
  11. D.-X. Xu, A. Densmore, P. Waldron, J. Lapointe, E. Post, A. Delâge, S. Janz, P. Cheben, J. H. Schmid, and B. Lamontagne, “High bandwidth SOI photonic wire ring resonators using MMI couplers,” Opt. Express 15(6), 3149–3155 (2007).
    [Crossref] [PubMed]
  12. Y. Ma, Y. Zhang, S. Yang, A. Novack, R. Ding, A. E. Lim, G. Q. Lo, T. Baehr-Jones, and M. Hochberg, “Ultralow loss single layer submicron silicon waveguide crossing for SOI optical interconnect,” Opt. Express 21(24), 29374–29382 (2013).
    [Crossref] [PubMed]
  13. M. Gould, T. Baehr-Jones, R. Ding, and M. Hochberg, “Bandwidth enhancement of waveguide-coupled photodetectors with inductive gain peaking,” Opt. Express 20(7), 7101–7111 (2012).
    [Crossref] [PubMed]
  14. A. Novack, M. Gould, Y. Yang, Z. Xuan, M. Streshinsky, Y. Liu, G. Capellini, A. E. Lim, G. Q. Lo, T. Baehr-Jones, and M. Hochberg, “Germanium photodetector with 60 GHz bandwidth using inductive gain peaking,” Opt. Express 21(23), 28387–28393 (2013).
    [Crossref] [PubMed]
  15. Y. Ishikawa and K. Wada, “Near-Infrared Ge Photodiodes for Si Photonics: Operation Frequency and an Approach for the Future,” IEEE Photonics J. 2(3), 306–320 (2010).
    [Crossref]
  16. X. Luo, J. Song, X. Tu, Q. Fang, L. Jia, Y. Huang, T. Y. Liow, M. Yu, and G. Q. Lo, “Silicon-based traveling-wave photodetector array (Si-TWPDA) with parallel optical feeding,” Opt. Express 22(17), 20020–20026 (2014).
    [Crossref] [PubMed]
  17. R. Ding, T. Baehr-Jones, T. Pinguet, J. Li, N. C. Harris, M. Streshinsky, L. He, A. Novack, E.-J. Lim, T.-Y. Liow, H.-G. Teo, G.-Q. Lo, and M. Hochberg, “A Silicon Platform for High-Speed Photonics Systems,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2012), paper OM2E.6.
    [Crossref]
  18. N. H. Zhu, Y. Liu, E. Y. B. Pun, and P. S. Chung, “Scattering-parameter measurements of laser diodes,” Opt. Quantum Electron. 34(8), 747–757 (2002).
    [Crossref]

2015 (1)

2014 (2)

2013 (4)

2012 (2)

2011 (2)

2010 (2)

J. Michel, J. F. Liu, and L. C. Kimerling, “High-performance Ge-on-Si photodetectors,” Nat. Photonics 4(8), 527–534 (2010).
[Crossref]

Y. Ishikawa and K. Wada, “Near-Infrared Ge Photodiodes for Si Photonics: Operation Frequency and an Approach for the Future,” IEEE Photonics J. 2(3), 306–320 (2010).
[Crossref]

2009 (1)

2007 (2)

2002 (1)

N. H. Zhu, Y. Liu, E. Y. B. Pun, and P. S. Chung, “Scattering-parameter measurements of laser diodes,” Opt. Quantum Electron. 34(8), 747–757 (2002).
[Crossref]

Akiyama, S.

Asghari, M.

Baba, T.

Baehr-Jones, T.

Bœuf, F.

Bogumilowicz, Y.

Capellini, G.

Cassan, E.

Cheben, P.

Chetrit, Y.

Chung, P. S.

N. H. Zhu, Y. Liu, E. Y. B. Pun, and P. S. Chung, “Scattering-parameter measurements of laser diodes,” Opt. Quantum Electron. 34(8), 747–757 (2002).
[Crossref]

Cohen, R.

Crozat, P.

Cunningham, J. E.

Damlencourt, J. F.

Davids, P. S.

Delâge, A.

Densmore, A.

DeRose, C. T.

Ding, R.

Dong, P.

Fang, Q.

Fédéli, J. M.

Fédéli, J.-M.

Feng, D.

Feng, N. N.

Fisher, M.

Fong, J.

Going, R.

Gould, M.

Hartmann, J. M.

Hartmann, J.-M.

Hirayama, N.

Hochberg, M.

Horikawa, T.

Hsu, K.

Huang, Y.

Imai, M.

Ishikawa, Y.

Y. Ishikawa and K. Wada, “Near-Infrared Ge Photodiodes for Si Photonics: Operation Frequency and an Approach for the Future,” IEEE Photonics J. 2(3), 306–320 (2010).
[Crossref]

Janz, S.

Jia, L.

Kimerling, L. C.

J. Michel, J. F. Liu, and L. C. Kimerling, “High-performance Ge-on-Si photodetectors,” Nat. Photonics 4(8), 527–534 (2010).
[Crossref]

Kopp, C.

Kung, C. C.

Lamontagne, B.

Lapointe, J.

Laval, S.

Lecunff, Y.

Li, X.

Li, Z.

Liang, H.

Liao, S.

Lim, A. E.

Liow, T. Y.

Liu, J. F.

J. Michel, J. F. Liu, and L. C. Kimerling, “High-performance Ge-on-Si photodetectors,” Nat. Photonics 4(8), 527–534 (2010).
[Crossref]

Liu, Y.

Lo, G. Q.

Loo, J.

Luo, X.

Luo, Y.

Ma, Y.

Marris-Morini, D.

Michel, J.

J. Michel, J. F. Liu, and L. C. Kimerling, “High-performance Ge-on-Si photodetectors,” Nat. Photonics 4(8), 527–534 (2010).
[Crossref]

Morse, M. M.

Noguchi, Y.

Novack, A.

Osmond, J.

Paniccia, M. J.

Polzer, A.

Post, E.

Pun, E. Y. B.

N. H. Zhu, Y. Liu, E. Y. B. Pun, and P. S. Chung, “Scattering-parameter measurements of laser diodes,” Opt. Quantum Electron. 34(8), 747–757 (2002).
[Crossref]

Qian, W.

Rubin, D.

Sarid, G.

Schmid, J. H.

Seok, T. J.

Shafiiha, R.

Song, J.

Starbuck, A. L.

Streshinsky, M.

Takahashi, H.

Trotter, D. C.

Tu, X.

Usuki, T.

Virot, L.

Vivien, L.

Wada, K.

Y. Ishikawa and K. Wada, “Near-Infrared Ge Photodiodes for Si Photonics: Operation Frequency and an Approach for the Future,” IEEE Photonics J. 2(3), 306–320 (2010).
[Crossref]

Waldron, P.

Watts, M. R.

Wu, M. C.

Xiao, X.

Xu, D.-X.

Xu, H.

Xuan, Z.

Yang, S.

Yang, Y.

Yin, T.

Yu, J.

Yu, M.

Yu, Y.

Zhang, Y.

Zhou, P.

Zhu, N. H.

N. H. Zhu, Y. Liu, E. Y. B. Pun, and P. S. Chung, “Scattering-parameter measurements of laser diodes,” Opt. Quantum Electron. 34(8), 747–757 (2002).
[Crossref]

Zimmermann, H.

Zortman, W. A.

IEEE Photonics J. (1)

Y. Ishikawa and K. Wada, “Near-Infrared Ge Photodiodes for Si Photonics: Operation Frequency and an Approach for the Future,” IEEE Photonics J. 2(3), 306–320 (2010).
[Crossref]

Nat. Photonics (1)

J. Michel, J. F. Liu, and L. C. Kimerling, “High-performance Ge-on-Si photodetectors,” Nat. Photonics 4(8), 527–534 (2010).
[Crossref]

Opt. Express (12)

A. Novack, M. Gould, Y. Yang, Z. Xuan, M. Streshinsky, Y. Liu, G. Capellini, A. E. Lim, G. Q. Lo, T. Baehr-Jones, and M. Hochberg, “Germanium photodetector with 60 GHz bandwidth using inductive gain peaking,” Opt. Express 21(23), 28387–28393 (2013).
[Crossref] [PubMed]

Y. Ma, Y. Zhang, S. Yang, A. Novack, R. Ding, A. E. Lim, G. Q. Lo, T. Baehr-Jones, and M. Hochberg, “Ultralow loss single layer submicron silicon waveguide crossing for SOI optical interconnect,” Opt. Express 21(24), 29374–29382 (2013).
[Crossref] [PubMed]

X. Luo, J. Song, X. Tu, Q. Fang, L. Jia, Y. Huang, T. Y. Liow, M. Yu, and G. Q. Lo, “Silicon-based traveling-wave photodetector array (Si-TWPDA) with parallel optical feeding,” Opt. Express 22(17), 20020–20026 (2014).
[Crossref] [PubMed]

R. Going, T. J. Seok, J. Loo, K. Hsu, and M. C. Wu, “Germanium wrap-around photodetectors on Silicon photonics,” Opt. Express 23(9), 11975–11984 (2015).
[Crossref] [PubMed]

D.-X. Xu, A. Densmore, P. Waldron, J. Lapointe, E. Post, A. Delâge, S. Janz, P. Cheben, J. H. Schmid, and B. Lamontagne, “High bandwidth SOI photonic wire ring resonators using MMI couplers,” Opt. Express 15(6), 3149–3155 (2007).
[Crossref] [PubMed]

T. Yin, R. Cohen, M. M. Morse, G. Sarid, Y. Chetrit, D. Rubin, and M. J. Paniccia, “31 GHz Ge n-i-p waveguide photodetectors on Silicon-on-Insulator substrate,” Opt. Express 15(21), 13965–13971 (2007).
[Crossref] [PubMed]

L. Vivien, J. Osmond, J. M. Fédéli, D. Marris-Morini, P. Crozat, J. F. Damlencourt, E. Cassan, Y. Lecunff, and S. Laval, “42 GHz p.i.n Germanium photodetector integrated in a silicon-on-insulator waveguide,” Opt. Express 17(8), 6252–6257 (2009).
[Crossref] [PubMed]

S. Liao, N. N. Feng, D. Feng, P. Dong, R. Shafiiha, C. C. Kung, H. Liang, W. Qian, Y. Liu, J. Fong, J. E. Cunningham, Y. Luo, and M. Asghari, “36 GHz submicron silicon waveguide germanium photodetector,” Opt. Express 19(11), 10967–10972 (2011).
[Crossref] [PubMed]

C. T. DeRose, D. C. Trotter, W. A. Zortman, A. L. Starbuck, M. Fisher, M. R. Watts, and P. S. Davids, “Ultra compact 45 GHz CMOS compatible Germanium waveguide photodiode with low dark current,” Opt. Express 19(25), 24897–24904 (2011).
[Crossref] [PubMed]

L. Vivien, A. Polzer, D. Marris-Morini, J. Osmond, J. M. Hartmann, P. Crozat, E. Cassan, C. Kopp, H. Zimmermann, and J. M. Fédéli, “Zero-bias 40Gbit/s germanium waveguide photodetector on silicon,” Opt. Express 20(2), 1096–1101 (2012).
[Crossref] [PubMed]

M. Gould, T. Baehr-Jones, R. Ding, and M. Hochberg, “Bandwidth enhancement of waveguide-coupled photodetectors with inductive gain peaking,” Opt. Express 20(7), 7101–7111 (2012).
[Crossref] [PubMed]

T. Baba, S. Akiyama, M. Imai, N. Hirayama, H. Takahashi, Y. Noguchi, T. Horikawa, and T. Usuki, “50-Gb/s ring-resonator-based silicon modulator,” Opt. Express 21(10), 11869–11876 (2013).
[Crossref] [PubMed]

Opt. Lett. (1)

Opt. Quantum Electron. (1)

N. H. Zhu, Y. Liu, E. Y. B. Pun, and P. S. Chung, “Scattering-parameter measurements of laser diodes,” Opt. Quantum Electron. 34(8), 747–757 (2002).
[Crossref]

Photon. Res. (1)

Other (1)

R. Ding, T. Baehr-Jones, T. Pinguet, J. Li, N. C. Harris, M. Streshinsky, L. He, A. Novack, E.-J. Lim, T.-Y. Liow, H.-G. Teo, G.-Q. Lo, and M. Hochberg, “A Silicon Platform for High-Speed Photonics Systems,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2012), paper OM2E.6.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Equivalent circuit model of the Ge photodetector (a) without inductor and (b) with inductor.
Fig. 2
Fig. 2 Schematic layout for the Ge photodetector (a) without wire bonded and (b) with wire bonded.
Fig. 3
Fig. 3 Simulated S21 of Ge photodetector with and without inductor.
Fig. 4
Fig. 4 (a) Cross section of the Ge photodetector; (b) Microscopic image of the germanium; (c) Microscopic image for the Ge photodetector with wire bonded.
Fig. 5
Fig. 5 Measured dark current and photocurrent for the Ge photodetector without wire bonded and with wire bonded.
Fig. 6
Fig. 6 (a) Measured S21 for the Ge photodetector without wire bonded and with wire bonded when the bias voltage is −4V; Measured 32 Gb/s NRZ data transmission results for the Ge photodetector (b) without wire bonded and (c) with wire bonded.

Tables (1)

Tables Icon

Table 1 Fit Parameters Used in the Simulation

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

f 3 dB = 1 / 1 f RC 2 + 1 f τ 2
f RC = 1 2 π ( R P D + Z l o a d ) C P D
H ( s ) = 1 / ( Z i n d + Z load + R p d ) 1 / ( Z i n d + Z load + R p d ) + s C p d Z load
Z ind = 1 1 / ( R i n d + s L i n d ) + s C i n d
Z load = 1 1 / R l o a d + s C load

Metrics