Abstract

An optical parametric oscillator (OPO) based on magnesium-oxide-doped periodically poled lithium niobate (MgO:PPLN) is demonstrated to deliver visible femtosecond pulses, which were created through the intra-cavity nonlinear interactions within the PPLN itself. The signal from the OPO produces femtosecond pulses in the near-infrared region tunable from 1050 to 1600 nm. Visible femtosecond pulses in the range of 522−800 nm and those of 455−540 nm, respectively, were generated via second-harmonic generation (SHG) of signal photons and through sum-frequency generation (SFG) of pump and signal photons. Maximum output efficiencies of 9.2% at 614 nm and 8.0% at 522 nm for the SHG and SFG are attained, respectively, where the efficient visible pulse generation relies on the quasi-phase matching with the aid of the higher-order grating momentum.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Femtosecond near-IR optical parametric oscillator with efficient intracavity generation of visible light

Xinping Zhang, Janos Hebling, Jürgen Kuhl, Wolfgang W. Rühle, Laszlo Palfalvi, and Harald Giessen
J. Opt. Soc. Am. B 19(10) 2479-2488 (2002)

Efficient intracavity generation of visible pulses in a femtosecond near-infrared optical parametric oscillator

X. P. Zhang, J. Hebling, J. Kuhl, W. W. Rühle, and H. Giessen
Opt. Lett. 26(24) 2005-2007 (2001)

High power tunable femtosecond ultraviolet laser source based on an Yb-fiber-laser pumped optical parametric oscillator

Chenglin Gu, Minglie Hu, Jintao Fan, Youjian Song, Bowen Liu, Lu Chai, Chingyue Wang, and Derryck T. Reid
Opt. Express 23(5) 6181-6186 (2015)

References

  • View by:
  • |
  • |
  • |

  1. M. Ghotbi, A. Esteban-Martin, and M. Ebrahim-Zadeh, “Tunable, high-repetition-rate, femtosecond pulse generation in the ultraviolet,” Opt. Lett. 33(4), 345–347 (2008).
    [Crossref] [PubMed]
  2. T. J. Driscoll, G. M. Gale, and F. Hache, “Ti:sapphire second-harmonic-pumped visible range femtosecond optical parametric oscillator,” Opt. Commun. 110(5-6), 638–644 (1994).
    [Crossref]
  3. D. C. Edelstein, E. S. Wachman, and C. L. Tang, “Broadly tunable high repetition rate femtosecond optical parametric oscillator,” Appl. Phys. Lett. 54(18), 1728–1730 (1989).
    [Crossref]
  4. Z. Zhang, D. T. Reid, S. Chaitanya Kumar, M. Ebrahim-Zadeh, P. G. Schunemann, K. T. Zawilski, and C. R. Howle, “Femtosecond-laser pumped CdSiP₂ optical parametric oscillator producing 100 MHz pulses centered at 6.2 μm,” Opt. Lett. 38(23), 5110–5113 (2013).
    [Crossref] [PubMed]
  5. K. J. Yee, J. H. Kim, M. H. Jung, B. H. Hong, and K. J. Kong, “Ultrafast modulation of optical transitions in monolayer and multilayer graphene,” Carbon 49(14), 4781–4785 (2011).
    [Crossref]
  6. H. Chen, H. Wang, M. N. Slipchenko, Y. Jung, Y. Shi, J. Zhu, K. K. Buhman, and J. X. Cheng, “A multimodal platform for nonlinear optical microscopy and microspectroscopy,” Opt. Express 17(3), 1282–1290 (2009).
    [Crossref] [PubMed]
  7. J. E. Schaar, K. L. Vodopyanov, and M. M. Fejer, “Intracavity terahertz-wave generation in a synchronously pumped optical parametric oscillator using quasi-phase-matched GaAs,” Opt. Lett. 32(10), 1284–1286 (2007).
    [Crossref] [PubMed]
  8. Y. Jin, S. M. Cristescu, F. J. M. Harren, and J. Mandon, “Two-crystal mid-infrared optical parametric oscillator for absorption and dispersion dual-comb spectroscopy,” Opt. Lett. 39(11), 3270–3273 (2014).
    [Crossref] [PubMed]
  9. G. D. Miller, R. G. Batchko, W. M. Tulloch, D. R. Weise, M. M. Fejer, and R. L. Byer, “42%-efficient single-pass cw second-harmonic generation in periodically poled lithium niobate,” Opt. Lett. 22(24), 1834–1836 (1997).
    [Crossref] [PubMed]
  10. K. Fradkin, A. Arie, A. Skliar, and G. Rosenman, “Tunable midinfrared source by difference frequency generation in bulk periodically poled KTiOPO4,” Appl. Phys. Lett. 74(7), 914–916 (1999).
    [Crossref]
  11. R. V. Roussev, C. Langrock, J. R. Kurz, and M. M. Fejer, “Periodically poled lithium niobate waveguide sum-frequency generator for efficient single-photon detection at communication wavelengths,” Opt. Lett. 29(13), 1518–1520 (2004).
    [Crossref] [PubMed]
  12. K. Sasagawa and M. Tsuchiya, “Highly efficient third harmonic generation in a periodically poled MgO:LiNbO3 disk resonator,” Appl. Phys. Express 2(12), 122401 (2009).
    [Crossref]
  13. A. Esteban-Martin, O. Kokabee, and M. Ebrahim-Zadeh, “Efficient, high-repetition-rate, femtosecond optical parametric oscillator tunable in the red,” Opt. Lett. 33(22), 2650–2652 (2008).
    [Crossref] [PubMed]
  14. F. Ruebel, P. Haag, and J. A. L’huillier, “Synchronously pumped femtosecond optical parametric oscillator with integrated sum frequency generation,” Appl. Phys. Lett. 92(1), 011122 (2008).
    [Crossref]
  15. S. Mieth, A. Henderson, and T. Halfmann, “Tunable, continuous-wave optical parametric oscillator with more than 1W output power in the orange visible spectrum,” Opt. Express 22(9), 11182–11191 (2014).
    [Crossref] [PubMed]
  16. H. Y. Shen, H. Xu, Z. D. Zeng, W. X. Lin, R. F. Wu, and G. F. Xu, “Measurement of refractive indices and thermal refractive-index coefficients of LiNbO3 crystal doped with 5 mol. % MgO,” Appl. Opt. 31(31), 6695–6697 (1992).
    [Crossref] [PubMed]
  17. K. J. Han, D. W. Jang, J. H. Kim, C. K. Min, T. H. Joo, Y. S. Lim, D. Lee, and K. J. Yee, “Synchronously pumped optical parametric oscillator based on periodically poled MgO-doped lithium niobate,” Opt. Express 16(8), 5299–5304 (2008).
    [Crossref] [PubMed]
  18. K. C. Burr, C. L. Tang, M. A. Arbore, and M. M. Fejer, “High-repetition-rate femtosecond optical parametric oscillator based on periodically poled lithium niobate,” Opt. Lett. 70, 3341–3343 (1997).
  19. B. Proctor, E. Westwig, and F. Wise, “Characterization of a Kerr-lens mode-locked Ti:sapphire laser with positive group-velocity dispersion,” Opt. Lett. 18(19), 1654–1656 (1993).
    [Crossref] [PubMed]
  20. J. Collins, “Change in the infra-red absorption spectrum of water with temperature,” Phys. Rev. 26(6), 771–779 (1925).
    [Crossref]

2014 (2)

2013 (1)

2011 (1)

K. J. Yee, J. H. Kim, M. H. Jung, B. H. Hong, and K. J. Kong, “Ultrafast modulation of optical transitions in monolayer and multilayer graphene,” Carbon 49(14), 4781–4785 (2011).
[Crossref]

2009 (2)

K. Sasagawa and M. Tsuchiya, “Highly efficient third harmonic generation in a periodically poled MgO:LiNbO3 disk resonator,” Appl. Phys. Express 2(12), 122401 (2009).
[Crossref]

H. Chen, H. Wang, M. N. Slipchenko, Y. Jung, Y. Shi, J. Zhu, K. K. Buhman, and J. X. Cheng, “A multimodal platform for nonlinear optical microscopy and microspectroscopy,” Opt. Express 17(3), 1282–1290 (2009).
[Crossref] [PubMed]

2008 (4)

2007 (1)

2004 (1)

1999 (1)

K. Fradkin, A. Arie, A. Skliar, and G. Rosenman, “Tunable midinfrared source by difference frequency generation in bulk periodically poled KTiOPO4,” Appl. Phys. Lett. 74(7), 914–916 (1999).
[Crossref]

1997 (2)

K. C. Burr, C. L. Tang, M. A. Arbore, and M. M. Fejer, “High-repetition-rate femtosecond optical parametric oscillator based on periodically poled lithium niobate,” Opt. Lett. 70, 3341–3343 (1997).

G. D. Miller, R. G. Batchko, W. M. Tulloch, D. R. Weise, M. M. Fejer, and R. L. Byer, “42%-efficient single-pass cw second-harmonic generation in periodically poled lithium niobate,” Opt. Lett. 22(24), 1834–1836 (1997).
[Crossref] [PubMed]

1994 (1)

T. J. Driscoll, G. M. Gale, and F. Hache, “Ti:sapphire second-harmonic-pumped visible range femtosecond optical parametric oscillator,” Opt. Commun. 110(5-6), 638–644 (1994).
[Crossref]

1993 (1)

1992 (1)

1989 (1)

D. C. Edelstein, E. S. Wachman, and C. L. Tang, “Broadly tunable high repetition rate femtosecond optical parametric oscillator,” Appl. Phys. Lett. 54(18), 1728–1730 (1989).
[Crossref]

1925 (1)

J. Collins, “Change in the infra-red absorption spectrum of water with temperature,” Phys. Rev. 26(6), 771–779 (1925).
[Crossref]

Arbore, M. A.

K. C. Burr, C. L. Tang, M. A. Arbore, and M. M. Fejer, “High-repetition-rate femtosecond optical parametric oscillator based on periodically poled lithium niobate,” Opt. Lett. 70, 3341–3343 (1997).

Arie, A.

K. Fradkin, A. Arie, A. Skliar, and G. Rosenman, “Tunable midinfrared source by difference frequency generation in bulk periodically poled KTiOPO4,” Appl. Phys. Lett. 74(7), 914–916 (1999).
[Crossref]

Batchko, R. G.

Buhman, K. K.

Burr, K. C.

K. C. Burr, C. L. Tang, M. A. Arbore, and M. M. Fejer, “High-repetition-rate femtosecond optical parametric oscillator based on periodically poled lithium niobate,” Opt. Lett. 70, 3341–3343 (1997).

Byer, R. L.

Chaitanya Kumar, S.

Chen, H.

Cheng, J. X.

Collins, J.

J. Collins, “Change in the infra-red absorption spectrum of water with temperature,” Phys. Rev. 26(6), 771–779 (1925).
[Crossref]

Cristescu, S. M.

Driscoll, T. J.

T. J. Driscoll, G. M. Gale, and F. Hache, “Ti:sapphire second-harmonic-pumped visible range femtosecond optical parametric oscillator,” Opt. Commun. 110(5-6), 638–644 (1994).
[Crossref]

Ebrahim-Zadeh, M.

Edelstein, D. C.

D. C. Edelstein, E. S. Wachman, and C. L. Tang, “Broadly tunable high repetition rate femtosecond optical parametric oscillator,” Appl. Phys. Lett. 54(18), 1728–1730 (1989).
[Crossref]

Esteban-Martin, A.

Fejer, M. M.

Fradkin, K.

K. Fradkin, A. Arie, A. Skliar, and G. Rosenman, “Tunable midinfrared source by difference frequency generation in bulk periodically poled KTiOPO4,” Appl. Phys. Lett. 74(7), 914–916 (1999).
[Crossref]

Gale, G. M.

T. J. Driscoll, G. M. Gale, and F. Hache, “Ti:sapphire second-harmonic-pumped visible range femtosecond optical parametric oscillator,” Opt. Commun. 110(5-6), 638–644 (1994).
[Crossref]

Ghotbi, M.

Haag, P.

F. Ruebel, P. Haag, and J. A. L’huillier, “Synchronously pumped femtosecond optical parametric oscillator with integrated sum frequency generation,” Appl. Phys. Lett. 92(1), 011122 (2008).
[Crossref]

Hache, F.

T. J. Driscoll, G. M. Gale, and F. Hache, “Ti:sapphire second-harmonic-pumped visible range femtosecond optical parametric oscillator,” Opt. Commun. 110(5-6), 638–644 (1994).
[Crossref]

Halfmann, T.

Han, K. J.

Harren, F. J. M.

Henderson, A.

Hong, B. H.

K. J. Yee, J. H. Kim, M. H. Jung, B. H. Hong, and K. J. Kong, “Ultrafast modulation of optical transitions in monolayer and multilayer graphene,” Carbon 49(14), 4781–4785 (2011).
[Crossref]

Howle, C. R.

Jang, D. W.

Jin, Y.

Joo, T. H.

Jung, M. H.

K. J. Yee, J. H. Kim, M. H. Jung, B. H. Hong, and K. J. Kong, “Ultrafast modulation of optical transitions in monolayer and multilayer graphene,” Carbon 49(14), 4781–4785 (2011).
[Crossref]

Jung, Y.

Kim, J. H.

K. J. Yee, J. H. Kim, M. H. Jung, B. H. Hong, and K. J. Kong, “Ultrafast modulation of optical transitions in monolayer and multilayer graphene,” Carbon 49(14), 4781–4785 (2011).
[Crossref]

K. J. Han, D. W. Jang, J. H. Kim, C. K. Min, T. H. Joo, Y. S. Lim, D. Lee, and K. J. Yee, “Synchronously pumped optical parametric oscillator based on periodically poled MgO-doped lithium niobate,” Opt. Express 16(8), 5299–5304 (2008).
[Crossref] [PubMed]

Kokabee, O.

Kong, K. J.

K. J. Yee, J. H. Kim, M. H. Jung, B. H. Hong, and K. J. Kong, “Ultrafast modulation of optical transitions in monolayer and multilayer graphene,” Carbon 49(14), 4781–4785 (2011).
[Crossref]

Kurz, J. R.

L’huillier, J. A.

F. Ruebel, P. Haag, and J. A. L’huillier, “Synchronously pumped femtosecond optical parametric oscillator with integrated sum frequency generation,” Appl. Phys. Lett. 92(1), 011122 (2008).
[Crossref]

Langrock, C.

Lee, D.

Lim, Y. S.

Lin, W. X.

Mandon, J.

Mieth, S.

Miller, G. D.

Min, C. K.

Proctor, B.

Reid, D. T.

Rosenman, G.

K. Fradkin, A. Arie, A. Skliar, and G. Rosenman, “Tunable midinfrared source by difference frequency generation in bulk periodically poled KTiOPO4,” Appl. Phys. Lett. 74(7), 914–916 (1999).
[Crossref]

Roussev, R. V.

Ruebel, F.

F. Ruebel, P. Haag, and J. A. L’huillier, “Synchronously pumped femtosecond optical parametric oscillator with integrated sum frequency generation,” Appl. Phys. Lett. 92(1), 011122 (2008).
[Crossref]

Sasagawa, K.

K. Sasagawa and M. Tsuchiya, “Highly efficient third harmonic generation in a periodically poled MgO:LiNbO3 disk resonator,” Appl. Phys. Express 2(12), 122401 (2009).
[Crossref]

Schaar, J. E.

Schunemann, P. G.

Shen, H. Y.

Shi, Y.

Skliar, A.

K. Fradkin, A. Arie, A. Skliar, and G. Rosenman, “Tunable midinfrared source by difference frequency generation in bulk periodically poled KTiOPO4,” Appl. Phys. Lett. 74(7), 914–916 (1999).
[Crossref]

Slipchenko, M. N.

Tang, C. L.

K. C. Burr, C. L. Tang, M. A. Arbore, and M. M. Fejer, “High-repetition-rate femtosecond optical parametric oscillator based on periodically poled lithium niobate,” Opt. Lett. 70, 3341–3343 (1997).

D. C. Edelstein, E. S. Wachman, and C. L. Tang, “Broadly tunable high repetition rate femtosecond optical parametric oscillator,” Appl. Phys. Lett. 54(18), 1728–1730 (1989).
[Crossref]

Tsuchiya, M.

K. Sasagawa and M. Tsuchiya, “Highly efficient third harmonic generation in a periodically poled MgO:LiNbO3 disk resonator,” Appl. Phys. Express 2(12), 122401 (2009).
[Crossref]

Tulloch, W. M.

Vodopyanov, K. L.

Wachman, E. S.

D. C. Edelstein, E. S. Wachman, and C. L. Tang, “Broadly tunable high repetition rate femtosecond optical parametric oscillator,” Appl. Phys. Lett. 54(18), 1728–1730 (1989).
[Crossref]

Wang, H.

Weise, D. R.

Westwig, E.

Wise, F.

Wu, R. F.

Xu, G. F.

Xu, H.

Yee, K. J.

K. J. Yee, J. H. Kim, M. H. Jung, B. H. Hong, and K. J. Kong, “Ultrafast modulation of optical transitions in monolayer and multilayer graphene,” Carbon 49(14), 4781–4785 (2011).
[Crossref]

K. J. Han, D. W. Jang, J. H. Kim, C. K. Min, T. H. Joo, Y. S. Lim, D. Lee, and K. J. Yee, “Synchronously pumped optical parametric oscillator based on periodically poled MgO-doped lithium niobate,” Opt. Express 16(8), 5299–5304 (2008).
[Crossref] [PubMed]

Zawilski, K. T.

Zeng, Z. D.

Zhang, Z.

Zhu, J.

Appl. Opt. (1)

Appl. Phys. Express (1)

K. Sasagawa and M. Tsuchiya, “Highly efficient third harmonic generation in a periodically poled MgO:LiNbO3 disk resonator,” Appl. Phys. Express 2(12), 122401 (2009).
[Crossref]

Appl. Phys. Lett. (3)

F. Ruebel, P. Haag, and J. A. L’huillier, “Synchronously pumped femtosecond optical parametric oscillator with integrated sum frequency generation,” Appl. Phys. Lett. 92(1), 011122 (2008).
[Crossref]

D. C. Edelstein, E. S. Wachman, and C. L. Tang, “Broadly tunable high repetition rate femtosecond optical parametric oscillator,” Appl. Phys. Lett. 54(18), 1728–1730 (1989).
[Crossref]

K. Fradkin, A. Arie, A. Skliar, and G. Rosenman, “Tunable midinfrared source by difference frequency generation in bulk periodically poled KTiOPO4,” Appl. Phys. Lett. 74(7), 914–916 (1999).
[Crossref]

Carbon (1)

K. J. Yee, J. H. Kim, M. H. Jung, B. H. Hong, and K. J. Kong, “Ultrafast modulation of optical transitions in monolayer and multilayer graphene,” Carbon 49(14), 4781–4785 (2011).
[Crossref]

Opt. Commun. (1)

T. J. Driscoll, G. M. Gale, and F. Hache, “Ti:sapphire second-harmonic-pumped visible range femtosecond optical parametric oscillator,” Opt. Commun. 110(5-6), 638–644 (1994).
[Crossref]

Opt. Express (3)

Opt. Lett. (9)

Y. Jin, S. M. Cristescu, F. J. M. Harren, and J. Mandon, “Two-crystal mid-infrared optical parametric oscillator for absorption and dispersion dual-comb spectroscopy,” Opt. Lett. 39(11), 3270–3273 (2014).
[Crossref] [PubMed]

Z. Zhang, D. T. Reid, S. Chaitanya Kumar, M. Ebrahim-Zadeh, P. G. Schunemann, K. T. Zawilski, and C. R. Howle, “Femtosecond-laser pumped CdSiP₂ optical parametric oscillator producing 100 MHz pulses centered at 6.2 μm,” Opt. Lett. 38(23), 5110–5113 (2013).
[Crossref] [PubMed]

A. Esteban-Martin, O. Kokabee, and M. Ebrahim-Zadeh, “Efficient, high-repetition-rate, femtosecond optical parametric oscillator tunable in the red,” Opt. Lett. 33(22), 2650–2652 (2008).
[Crossref] [PubMed]

B. Proctor, E. Westwig, and F. Wise, “Characterization of a Kerr-lens mode-locked Ti:sapphire laser with positive group-velocity dispersion,” Opt. Lett. 18(19), 1654–1656 (1993).
[Crossref] [PubMed]

G. D. Miller, R. G. Batchko, W. M. Tulloch, D. R. Weise, M. M. Fejer, and R. L. Byer, “42%-efficient single-pass cw second-harmonic generation in periodically poled lithium niobate,” Opt. Lett. 22(24), 1834–1836 (1997).
[Crossref] [PubMed]

R. V. Roussev, C. Langrock, J. R. Kurz, and M. M. Fejer, “Periodically poled lithium niobate waveguide sum-frequency generator for efficient single-photon detection at communication wavelengths,” Opt. Lett. 29(13), 1518–1520 (2004).
[Crossref] [PubMed]

J. E. Schaar, K. L. Vodopyanov, and M. M. Fejer, “Intracavity terahertz-wave generation in a synchronously pumped optical parametric oscillator using quasi-phase-matched GaAs,” Opt. Lett. 32(10), 1284–1286 (2007).
[Crossref] [PubMed]

M. Ghotbi, A. Esteban-Martin, and M. Ebrahim-Zadeh, “Tunable, high-repetition-rate, femtosecond pulse generation in the ultraviolet,” Opt. Lett. 33(4), 345–347 (2008).
[Crossref] [PubMed]

K. C. Burr, C. L. Tang, M. A. Arbore, and M. M. Fejer, “High-repetition-rate femtosecond optical parametric oscillator based on periodically poled lithium niobate,” Opt. Lett. 70, 3341–3343 (1997).

Phys. Rev. (1)

J. Collins, “Change in the infra-red absorption spectrum of water with temperature,” Phys. Rev. 26(6), 771–779 (1925).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic diagram of synchronously-pumped optical parametric oscillator. MgO:PPLN: periodically poled magnesium-oxide-doped lithium niobate crystal; M1, M2: concave mirrors with radius of curvature (R) = 150 mm; M3−M7: flat mirrors, M8: concave mirror with R = 200 mm for pump-beam focusing; P1, P2: SF10 prisms; NIR OC: BK7 window with single-side anti-reflection coating at 1.0−1.6 μm for signal-pulse output coupling; Visible OC: long-pass filter with 900 nm cutoff for visible pulse output coupling.
Fig. 2
Fig. 2 (a,c,e) Spectrum and (b,d,f) field autocorrelation trace of signal pulses under different GVD conditions for signal pulses with the center wavelength near 1250 nm. The insets show the shift of the signal wavelength according to the M6 mirror displacement.
Fig. 3
Fig. 3 Signal-pulse tunability obtained by adjusting cavity mirror M6 displacement while keeping other components fixed. Inset is the average signal power as a function of peak wavelength, together with the calculated phase mismatch (Δk) for the parametric down conversion.
Fig. 4
Fig. 4 (a,d) Spectrum and (b,e) temporal profile of the field autocorrelation, and (c, f) average powers as functions of pumping power, for the visible pulses created by the SHG or SFG process.
Fig. 5
Fig. 5 Tunability of visible femtosecond pulses generated via the SFG and SHG processes, achieved through the adjustment of cavity mirror M6. Inset is the beam profile of visible pulses at 542 nm generated from the SHG process.
Fig. 6
Fig. 6 (a) Average output powers of visible pulses generated through the SFG or SHG process as functions of the peak wavelength. (b) Phase mismatches (Δk) calculated with including 2nd- and 3rd- order grating wavevectors for SHG process and the 3rd- and 4th-order grating wavevectors for SFG process.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δ k PDC = 2π· n pump λ pump 2π· n signal λ signal 2π· n idler λ idler 2π Λ

Metrics