Abstract

We present a new approach for the development of structured optical fibers. It is shown that fibers having an effective gradient index profile with designed refractive index distribution can be developed with internal nanostructuring of the core composed of two glasses. As proof-of-concept, fibers made of two soft glasses with a parabolic gradient index profile are developed. Energy-dispersive X-ray spectroscopy reveals a possibility of selective diffusion of individual chemical ingredients among the sub-wavelength components of the nanostructure. This hints a postulate that core nanostructuring also changes material dispersion of the glasses in the core, potentially opening up unique dispersion shaping possibilities.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Limits in development of photonic crystal fibers with a subwavelength inclusion in the core

Jacek Pniewski, Tomasz Stefaniuk, Grzegorz Stepniewski, Dariusz Pysz, Tadeusz Martynkien, Ryszard Stepien, and Ryszard Buczynski
Opt. Mater. Express 5(10) 2366-2376 (2015)

Nanostructured graded-index core chalcogenide fiber with all-normal dispersion–design and nonlinear simulations

Bartłomiej Siwicki, Adam Filipkowski, Rafał Kasztelanic, Mariusz Klimczak, and Ryszard Buczyński
Opt. Express 25(11) 12984-12998 (2017)

References

  • View by:
  • |
  • |
  • |

  1. G. Brambilla, “Optical fibre nanowires and microwires: a review,” J. Opt. 12(4), 043001 (2010).
    [Crossref]
  2. E. Mägi, P. Steinvurzel, and B. Eggleton, “Tapered photonic crystal fibers,” Opt. Express 12(5), 776–784 (2004).
    [Crossref] [PubMed]
  3. G. S. Wiederhecker, C. M. B. Cordeiro, F. Couny, F. Benabid, S. A. Maier, J. C. Knight, C. H. B. Cruz, and H. L. Fragnito, “Field enhancement within an optical fibre with a subwavelength air core,” Nat. Photonics 1(2), 115–118 (2007).
    [Crossref]
  4. P. Dainese, P. St. J. Russell, N. Joly, J. C. Knight, G. S. Wiederhecker, H. L. Fragnito, V. Laude, and A. Khelif, “Stimulated Brillouin scattering from multi-GHz-guided acoustic phonons in nanostructured photonic crystal fibres,” Nat. Phys. 2(6), 388–392 (2006).
    [Crossref]
  5. M. A. Foster, J. M. Dudley, B. Kibler, Q. Cao, D. Lee, R. Trebino, and A. L. Gaeta, “Nonlinear pulse propagation and supercontinuum generation in photonic nanowires: experiment and simulation,” Appl. Phys. B 81(2–3), 363–367 (2005).
    [Crossref]
  6. C. W. Rudy, A. Marandi, K. L. Vodopyanov, and R. L. Byer, “In-situ tapering of chalcogenide fiber for mid-infrared supercontinuum generation,” J. Vis. Exp. 75, e50518 (2013).
  7. S. Afshar V, W. Q. Zhang, H. Ebendorff-Heidepriem, and T. M. Monro, “Small core optical waveguides are more nonlinear than expected: experimental confirmation,” Opt. Lett. 34(22), 3577–3579 (2009).
    [Crossref] [PubMed]
  8. F. Biancalana, T. X. Tran, S. Stark, M. A. Schmidt, and P. St. J. Russell, “Emergence of geometrical optical nonlinearities in photonic crystal fiber nanowires,” Phys. Rev. Lett. 105(9), 093904 (2010).
    [Crossref] [PubMed]
  9. M. Liao, X. Yan, Z. Duan, T. Suzuki, and Y. Ohishi, “Tellurite photonic nanostructured fiber,” J. Lightwave Technol. 29(7), 1018–1025 (2011).
    [Crossref]
  10. H. Ebendorff-Heidepriem, S. C. Warren-Smith, and T. M. Monro, “Suspended nanowires: Fabrication, design and characterization of fibers with nanoscale cores,” Opt. Express 17(4), 2646–2657 (2009).
    [Crossref] [PubMed]
  11. Y. Ruan, H. Ebendorff-Heidepriem, S. Afshar, and T. M. Monro, “Light confinement within nanoholes in nanostructured optical fibers,” Opt. Express 18(25), 26018–26026 (2010).
    [Crossref] [PubMed]
  12. F. Hudelist, R. Buczynski, A. J. Waddie, and M. R. Taghizadeh, “Design and fabrication of nano-structured gradient index microlenses,” Opt. Express 17(5), 3255–3263 (2009).
    [Crossref] [PubMed]
  13. F. Hudelist, J. M. Nowosielski, R. Buczyński, A. J. Waddie, and M. R. Taghizadeh, “Nanostructured elliptical gradient-index microlenses,” Opt. Lett. 35(2), 130–132 (2010).
    [Crossref] [PubMed]
  14. A. J. Waddie, R. Buczynski, F. Hudelist, J. Nowosielski, D. Pysz, R. Stepien, and M. R. Taghizadeh, “Form birefringence in nanostructured micro-optical devices,” Opt. Mater. Express 1(7), 1251–1261 (2011).
    [Crossref]
  15. J. H. V. Price, X. Feng, A. M. Heidt, G. Brambilla, P. Horak, F. Poletti, G. Ponzo, P. Petropoulos, M. Petrovich, J. Shi, M. Ibsen, W. H. Loh, H. N. Rutt, and D. J. Richardson, “Supercontinuum generation in non-silica fibers,” Opt. Fiber Technol. 18(5), 327–344 (2012).
    [Crossref]
  16. P. Hlubina, M. Szpulak, D. Ciprian, T. Martynkien, and W. Urbanczyk, “Measurement of the group dispersion of the fundamental mode of holey fiber by white-light spectral interferometry,” Opt. Express 15(18), 11073–11081 (2007).
    [Crossref] [PubMed]
  17. Y. Lizé, E. Mägi, V. Ta’eed, J. Bolger, P. Steinvurzel, and B. Eggleton, “Microstructured optical fiber photonic wires with subwavelength core diameter,” Opt. Express 12(14), 3209–3217 (2004).
    [Crossref] [PubMed]
  18. M. Klimczak, B. Siwicki, P. Skibiński, D. Pysz, R. Stępień, A. Heidt, C. Radzewicz, and R. Buczyński, “Coherent supercontinuum generation up to 2.3 µm in all-solid soft-glass photonic crystal fibers with flat all-normal dispersion,” Opt. Express 22(15), 18824–18832 (2014).
    [Crossref] [PubMed]
  19. J. Goldstein, D. E. Newbury, D. C. Joy, C. E. Lyman, P. Echlin, E. Lifshin, L. Sawyer, and J. R. Michael, Scanning Electron Microscopy and X-Ray Microanalysis (Springer, 2003).
  20. L. G. Wright, D. N. Christodoulides, and F. W. Wise, “Controllable spatiotemporal nonlinear effects in multimode fibres,” Nat. Photonics 9(5), 306–310 (2015).
    [Crossref]
  21. R. Lehneis, A. Steinmetz, J. Limpert, and A. Tünnermann, “All-fiber pulse shortening of passively Q-switched microchip laser pulses down to sub-200 fs,” Opt. Lett. 39(20), 5806–5809 (2014).
    [Crossref] [PubMed]
  22. T. Godin, Y. Combes, R. Ahmad, M. Rochette, T. Sylvestre, and J. M. Dudley, “Far-detuned mid-infrared frequency conversion via normal dispersion modulation instability in chalcogenide microwires,” Opt. Lett. 39(7), 1885–1888 (2014).
    [Crossref] [PubMed]

2015 (1)

L. G. Wright, D. N. Christodoulides, and F. W. Wise, “Controllable spatiotemporal nonlinear effects in multimode fibres,” Nat. Photonics 9(5), 306–310 (2015).
[Crossref]

2014 (3)

2013 (1)

C. W. Rudy, A. Marandi, K. L. Vodopyanov, and R. L. Byer, “In-situ tapering of chalcogenide fiber for mid-infrared supercontinuum generation,” J. Vis. Exp. 75, e50518 (2013).

2012 (1)

J. H. V. Price, X. Feng, A. M. Heidt, G. Brambilla, P. Horak, F. Poletti, G. Ponzo, P. Petropoulos, M. Petrovich, J. Shi, M. Ibsen, W. H. Loh, H. N. Rutt, and D. J. Richardson, “Supercontinuum generation in non-silica fibers,” Opt. Fiber Technol. 18(5), 327–344 (2012).
[Crossref]

2011 (2)

2010 (4)

G. Brambilla, “Optical fibre nanowires and microwires: a review,” J. Opt. 12(4), 043001 (2010).
[Crossref]

Y. Ruan, H. Ebendorff-Heidepriem, S. Afshar, and T. M. Monro, “Light confinement within nanoholes in nanostructured optical fibers,” Opt. Express 18(25), 26018–26026 (2010).
[Crossref] [PubMed]

F. Biancalana, T. X. Tran, S. Stark, M. A. Schmidt, and P. St. J. Russell, “Emergence of geometrical optical nonlinearities in photonic crystal fiber nanowires,” Phys. Rev. Lett. 105(9), 093904 (2010).
[Crossref] [PubMed]

F. Hudelist, J. M. Nowosielski, R. Buczyński, A. J. Waddie, and M. R. Taghizadeh, “Nanostructured elliptical gradient-index microlenses,” Opt. Lett. 35(2), 130–132 (2010).
[Crossref] [PubMed]

2009 (3)

2007 (2)

G. S. Wiederhecker, C. M. B. Cordeiro, F. Couny, F. Benabid, S. A. Maier, J. C. Knight, C. H. B. Cruz, and H. L. Fragnito, “Field enhancement within an optical fibre with a subwavelength air core,” Nat. Photonics 1(2), 115–118 (2007).
[Crossref]

P. Hlubina, M. Szpulak, D. Ciprian, T. Martynkien, and W. Urbanczyk, “Measurement of the group dispersion of the fundamental mode of holey fiber by white-light spectral interferometry,” Opt. Express 15(18), 11073–11081 (2007).
[Crossref] [PubMed]

2006 (1)

P. Dainese, P. St. J. Russell, N. Joly, J. C. Knight, G. S. Wiederhecker, H. L. Fragnito, V. Laude, and A. Khelif, “Stimulated Brillouin scattering from multi-GHz-guided acoustic phonons in nanostructured photonic crystal fibres,” Nat. Phys. 2(6), 388–392 (2006).
[Crossref]

2005 (1)

M. A. Foster, J. M. Dudley, B. Kibler, Q. Cao, D. Lee, R. Trebino, and A. L. Gaeta, “Nonlinear pulse propagation and supercontinuum generation in photonic nanowires: experiment and simulation,” Appl. Phys. B 81(2–3), 363–367 (2005).
[Crossref]

2004 (2)

Afshar, S.

Afshar V, S.

Ahmad, R.

Benabid, F.

G. S. Wiederhecker, C. M. B. Cordeiro, F. Couny, F. Benabid, S. A. Maier, J. C. Knight, C. H. B. Cruz, and H. L. Fragnito, “Field enhancement within an optical fibre with a subwavelength air core,” Nat. Photonics 1(2), 115–118 (2007).
[Crossref]

Biancalana, F.

F. Biancalana, T. X. Tran, S. Stark, M. A. Schmidt, and P. St. J. Russell, “Emergence of geometrical optical nonlinearities in photonic crystal fiber nanowires,” Phys. Rev. Lett. 105(9), 093904 (2010).
[Crossref] [PubMed]

Bolger, J.

Brambilla, G.

J. H. V. Price, X. Feng, A. M. Heidt, G. Brambilla, P. Horak, F. Poletti, G. Ponzo, P. Petropoulos, M. Petrovich, J. Shi, M. Ibsen, W. H. Loh, H. N. Rutt, and D. J. Richardson, “Supercontinuum generation in non-silica fibers,” Opt. Fiber Technol. 18(5), 327–344 (2012).
[Crossref]

G. Brambilla, “Optical fibre nanowires and microwires: a review,” J. Opt. 12(4), 043001 (2010).
[Crossref]

Buczynski, R.

Byer, R. L.

C. W. Rudy, A. Marandi, K. L. Vodopyanov, and R. L. Byer, “In-situ tapering of chalcogenide fiber for mid-infrared supercontinuum generation,” J. Vis. Exp. 75, e50518 (2013).

Cao, Q.

M. A. Foster, J. M. Dudley, B. Kibler, Q. Cao, D. Lee, R. Trebino, and A. L. Gaeta, “Nonlinear pulse propagation and supercontinuum generation in photonic nanowires: experiment and simulation,” Appl. Phys. B 81(2–3), 363–367 (2005).
[Crossref]

Christodoulides, D. N.

L. G. Wright, D. N. Christodoulides, and F. W. Wise, “Controllable spatiotemporal nonlinear effects in multimode fibres,” Nat. Photonics 9(5), 306–310 (2015).
[Crossref]

Ciprian, D.

Combes, Y.

Cordeiro, C. M. B.

G. S. Wiederhecker, C. M. B. Cordeiro, F. Couny, F. Benabid, S. A. Maier, J. C. Knight, C. H. B. Cruz, and H. L. Fragnito, “Field enhancement within an optical fibre with a subwavelength air core,” Nat. Photonics 1(2), 115–118 (2007).
[Crossref]

Couny, F.

G. S. Wiederhecker, C. M. B. Cordeiro, F. Couny, F. Benabid, S. A. Maier, J. C. Knight, C. H. B. Cruz, and H. L. Fragnito, “Field enhancement within an optical fibre with a subwavelength air core,” Nat. Photonics 1(2), 115–118 (2007).
[Crossref]

Cruz, C. H. B.

G. S. Wiederhecker, C. M. B. Cordeiro, F. Couny, F. Benabid, S. A. Maier, J. C. Knight, C. H. B. Cruz, and H. L. Fragnito, “Field enhancement within an optical fibre with a subwavelength air core,” Nat. Photonics 1(2), 115–118 (2007).
[Crossref]

Dainese, P.

P. Dainese, P. St. J. Russell, N. Joly, J. C. Knight, G. S. Wiederhecker, H. L. Fragnito, V. Laude, and A. Khelif, “Stimulated Brillouin scattering from multi-GHz-guided acoustic phonons in nanostructured photonic crystal fibres,” Nat. Phys. 2(6), 388–392 (2006).
[Crossref]

Duan, Z.

Dudley, J. M.

T. Godin, Y. Combes, R. Ahmad, M. Rochette, T. Sylvestre, and J. M. Dudley, “Far-detuned mid-infrared frequency conversion via normal dispersion modulation instability in chalcogenide microwires,” Opt. Lett. 39(7), 1885–1888 (2014).
[Crossref] [PubMed]

M. A. Foster, J. M. Dudley, B. Kibler, Q. Cao, D. Lee, R. Trebino, and A. L. Gaeta, “Nonlinear pulse propagation and supercontinuum generation in photonic nanowires: experiment and simulation,” Appl. Phys. B 81(2–3), 363–367 (2005).
[Crossref]

Ebendorff-Heidepriem, H.

Eggleton, B.

Feng, X.

J. H. V. Price, X. Feng, A. M. Heidt, G. Brambilla, P. Horak, F. Poletti, G. Ponzo, P. Petropoulos, M. Petrovich, J. Shi, M. Ibsen, W. H. Loh, H. N. Rutt, and D. J. Richardson, “Supercontinuum generation in non-silica fibers,” Opt. Fiber Technol. 18(5), 327–344 (2012).
[Crossref]

Foster, M. A.

M. A. Foster, J. M. Dudley, B. Kibler, Q. Cao, D. Lee, R. Trebino, and A. L. Gaeta, “Nonlinear pulse propagation and supercontinuum generation in photonic nanowires: experiment and simulation,” Appl. Phys. B 81(2–3), 363–367 (2005).
[Crossref]

Fragnito, H. L.

G. S. Wiederhecker, C. M. B. Cordeiro, F. Couny, F. Benabid, S. A. Maier, J. C. Knight, C. H. B. Cruz, and H. L. Fragnito, “Field enhancement within an optical fibre with a subwavelength air core,” Nat. Photonics 1(2), 115–118 (2007).
[Crossref]

P. Dainese, P. St. J. Russell, N. Joly, J. C. Knight, G. S. Wiederhecker, H. L. Fragnito, V. Laude, and A. Khelif, “Stimulated Brillouin scattering from multi-GHz-guided acoustic phonons in nanostructured photonic crystal fibres,” Nat. Phys. 2(6), 388–392 (2006).
[Crossref]

Gaeta, A. L.

M. A. Foster, J. M. Dudley, B. Kibler, Q. Cao, D. Lee, R. Trebino, and A. L. Gaeta, “Nonlinear pulse propagation and supercontinuum generation in photonic nanowires: experiment and simulation,” Appl. Phys. B 81(2–3), 363–367 (2005).
[Crossref]

Godin, T.

Heidt, A.

Heidt, A. M.

J. H. V. Price, X. Feng, A. M. Heidt, G. Brambilla, P. Horak, F. Poletti, G. Ponzo, P. Petropoulos, M. Petrovich, J. Shi, M. Ibsen, W. H. Loh, H. N. Rutt, and D. J. Richardson, “Supercontinuum generation in non-silica fibers,” Opt. Fiber Technol. 18(5), 327–344 (2012).
[Crossref]

Hlubina, P.

Horak, P.

J. H. V. Price, X. Feng, A. M. Heidt, G. Brambilla, P. Horak, F. Poletti, G. Ponzo, P. Petropoulos, M. Petrovich, J. Shi, M. Ibsen, W. H. Loh, H. N. Rutt, and D. J. Richardson, “Supercontinuum generation in non-silica fibers,” Opt. Fiber Technol. 18(5), 327–344 (2012).
[Crossref]

Hudelist, F.

Ibsen, M.

J. H. V. Price, X. Feng, A. M. Heidt, G. Brambilla, P. Horak, F. Poletti, G. Ponzo, P. Petropoulos, M. Petrovich, J. Shi, M. Ibsen, W. H. Loh, H. N. Rutt, and D. J. Richardson, “Supercontinuum generation in non-silica fibers,” Opt. Fiber Technol. 18(5), 327–344 (2012).
[Crossref]

Joly, N.

P. Dainese, P. St. J. Russell, N. Joly, J. C. Knight, G. S. Wiederhecker, H. L. Fragnito, V. Laude, and A. Khelif, “Stimulated Brillouin scattering from multi-GHz-guided acoustic phonons in nanostructured photonic crystal fibres,” Nat. Phys. 2(6), 388–392 (2006).
[Crossref]

Khelif, A.

P. Dainese, P. St. J. Russell, N. Joly, J. C. Knight, G. S. Wiederhecker, H. L. Fragnito, V. Laude, and A. Khelif, “Stimulated Brillouin scattering from multi-GHz-guided acoustic phonons in nanostructured photonic crystal fibres,” Nat. Phys. 2(6), 388–392 (2006).
[Crossref]

Kibler, B.

M. A. Foster, J. M. Dudley, B. Kibler, Q. Cao, D. Lee, R. Trebino, and A. L. Gaeta, “Nonlinear pulse propagation and supercontinuum generation in photonic nanowires: experiment and simulation,” Appl. Phys. B 81(2–3), 363–367 (2005).
[Crossref]

Klimczak, M.

Knight, J. C.

G. S. Wiederhecker, C. M. B. Cordeiro, F. Couny, F. Benabid, S. A. Maier, J. C. Knight, C. H. B. Cruz, and H. L. Fragnito, “Field enhancement within an optical fibre with a subwavelength air core,” Nat. Photonics 1(2), 115–118 (2007).
[Crossref]

P. Dainese, P. St. J. Russell, N. Joly, J. C. Knight, G. S. Wiederhecker, H. L. Fragnito, V. Laude, and A. Khelif, “Stimulated Brillouin scattering from multi-GHz-guided acoustic phonons in nanostructured photonic crystal fibres,” Nat. Phys. 2(6), 388–392 (2006).
[Crossref]

Laude, V.

P. Dainese, P. St. J. Russell, N. Joly, J. C. Knight, G. S. Wiederhecker, H. L. Fragnito, V. Laude, and A. Khelif, “Stimulated Brillouin scattering from multi-GHz-guided acoustic phonons in nanostructured photonic crystal fibres,” Nat. Phys. 2(6), 388–392 (2006).
[Crossref]

Lee, D.

M. A. Foster, J. M. Dudley, B. Kibler, Q. Cao, D. Lee, R. Trebino, and A. L. Gaeta, “Nonlinear pulse propagation and supercontinuum generation in photonic nanowires: experiment and simulation,” Appl. Phys. B 81(2–3), 363–367 (2005).
[Crossref]

Lehneis, R.

Liao, M.

Limpert, J.

Lizé, Y.

Loh, W. H.

J. H. V. Price, X. Feng, A. M. Heidt, G. Brambilla, P. Horak, F. Poletti, G. Ponzo, P. Petropoulos, M. Petrovich, J. Shi, M. Ibsen, W. H. Loh, H. N. Rutt, and D. J. Richardson, “Supercontinuum generation in non-silica fibers,” Opt. Fiber Technol. 18(5), 327–344 (2012).
[Crossref]

Mägi, E.

Maier, S. A.

G. S. Wiederhecker, C. M. B. Cordeiro, F. Couny, F. Benabid, S. A. Maier, J. C. Knight, C. H. B. Cruz, and H. L. Fragnito, “Field enhancement within an optical fibre with a subwavelength air core,” Nat. Photonics 1(2), 115–118 (2007).
[Crossref]

Marandi, A.

C. W. Rudy, A. Marandi, K. L. Vodopyanov, and R. L. Byer, “In-situ tapering of chalcogenide fiber for mid-infrared supercontinuum generation,” J. Vis. Exp. 75, e50518 (2013).

Martynkien, T.

Monro, T. M.

Nowosielski, J.

Nowosielski, J. M.

Ohishi, Y.

Petropoulos, P.

J. H. V. Price, X. Feng, A. M. Heidt, G. Brambilla, P. Horak, F. Poletti, G. Ponzo, P. Petropoulos, M. Petrovich, J. Shi, M. Ibsen, W. H. Loh, H. N. Rutt, and D. J. Richardson, “Supercontinuum generation in non-silica fibers,” Opt. Fiber Technol. 18(5), 327–344 (2012).
[Crossref]

Petrovich, M.

J. H. V. Price, X. Feng, A. M. Heidt, G. Brambilla, P. Horak, F. Poletti, G. Ponzo, P. Petropoulos, M. Petrovich, J. Shi, M. Ibsen, W. H. Loh, H. N. Rutt, and D. J. Richardson, “Supercontinuum generation in non-silica fibers,” Opt. Fiber Technol. 18(5), 327–344 (2012).
[Crossref]

Poletti, F.

J. H. V. Price, X. Feng, A. M. Heidt, G. Brambilla, P. Horak, F. Poletti, G. Ponzo, P. Petropoulos, M. Petrovich, J. Shi, M. Ibsen, W. H. Loh, H. N. Rutt, and D. J. Richardson, “Supercontinuum generation in non-silica fibers,” Opt. Fiber Technol. 18(5), 327–344 (2012).
[Crossref]

Ponzo, G.

J. H. V. Price, X. Feng, A. M. Heidt, G. Brambilla, P. Horak, F. Poletti, G. Ponzo, P. Petropoulos, M. Petrovich, J. Shi, M. Ibsen, W. H. Loh, H. N. Rutt, and D. J. Richardson, “Supercontinuum generation in non-silica fibers,” Opt. Fiber Technol. 18(5), 327–344 (2012).
[Crossref]

Price, J. H. V.

J. H. V. Price, X. Feng, A. M. Heidt, G. Brambilla, P. Horak, F. Poletti, G. Ponzo, P. Petropoulos, M. Petrovich, J. Shi, M. Ibsen, W. H. Loh, H. N. Rutt, and D. J. Richardson, “Supercontinuum generation in non-silica fibers,” Opt. Fiber Technol. 18(5), 327–344 (2012).
[Crossref]

Pysz, D.

Radzewicz, C.

Richardson, D. J.

J. H. V. Price, X. Feng, A. M. Heidt, G. Brambilla, P. Horak, F. Poletti, G. Ponzo, P. Petropoulos, M. Petrovich, J. Shi, M. Ibsen, W. H. Loh, H. N. Rutt, and D. J. Richardson, “Supercontinuum generation in non-silica fibers,” Opt. Fiber Technol. 18(5), 327–344 (2012).
[Crossref]

Rochette, M.

Ruan, Y.

Rudy, C. W.

C. W. Rudy, A. Marandi, K. L. Vodopyanov, and R. L. Byer, “In-situ tapering of chalcogenide fiber for mid-infrared supercontinuum generation,” J. Vis. Exp. 75, e50518 (2013).

Russell, P. St. J.

F. Biancalana, T. X. Tran, S. Stark, M. A. Schmidt, and P. St. J. Russell, “Emergence of geometrical optical nonlinearities in photonic crystal fiber nanowires,” Phys. Rev. Lett. 105(9), 093904 (2010).
[Crossref] [PubMed]

P. Dainese, P. St. J. Russell, N. Joly, J. C. Knight, G. S. Wiederhecker, H. L. Fragnito, V. Laude, and A. Khelif, “Stimulated Brillouin scattering from multi-GHz-guided acoustic phonons in nanostructured photonic crystal fibres,” Nat. Phys. 2(6), 388–392 (2006).
[Crossref]

Rutt, H. N.

J. H. V. Price, X. Feng, A. M. Heidt, G. Brambilla, P. Horak, F. Poletti, G. Ponzo, P. Petropoulos, M. Petrovich, J. Shi, M. Ibsen, W. H. Loh, H. N. Rutt, and D. J. Richardson, “Supercontinuum generation in non-silica fibers,” Opt. Fiber Technol. 18(5), 327–344 (2012).
[Crossref]

Schmidt, M. A.

F. Biancalana, T. X. Tran, S. Stark, M. A. Schmidt, and P. St. J. Russell, “Emergence of geometrical optical nonlinearities in photonic crystal fiber nanowires,” Phys. Rev. Lett. 105(9), 093904 (2010).
[Crossref] [PubMed]

Shi, J.

J. H. V. Price, X. Feng, A. M. Heidt, G. Brambilla, P. Horak, F. Poletti, G. Ponzo, P. Petropoulos, M. Petrovich, J. Shi, M. Ibsen, W. H. Loh, H. N. Rutt, and D. J. Richardson, “Supercontinuum generation in non-silica fibers,” Opt. Fiber Technol. 18(5), 327–344 (2012).
[Crossref]

Siwicki, B.

Skibinski, P.

Stark, S.

F. Biancalana, T. X. Tran, S. Stark, M. A. Schmidt, and P. St. J. Russell, “Emergence of geometrical optical nonlinearities in photonic crystal fiber nanowires,” Phys. Rev. Lett. 105(9), 093904 (2010).
[Crossref] [PubMed]

Steinmetz, A.

Steinvurzel, P.

Stepien, R.

Suzuki, T.

Sylvestre, T.

Szpulak, M.

Ta’eed, V.

Taghizadeh, M. R.

Tran, T. X.

F. Biancalana, T. X. Tran, S. Stark, M. A. Schmidt, and P. St. J. Russell, “Emergence of geometrical optical nonlinearities in photonic crystal fiber nanowires,” Phys. Rev. Lett. 105(9), 093904 (2010).
[Crossref] [PubMed]

Trebino, R.

M. A. Foster, J. M. Dudley, B. Kibler, Q. Cao, D. Lee, R. Trebino, and A. L. Gaeta, “Nonlinear pulse propagation and supercontinuum generation in photonic nanowires: experiment and simulation,” Appl. Phys. B 81(2–3), 363–367 (2005).
[Crossref]

Tünnermann, A.

Urbanczyk, W.

Vodopyanov, K. L.

C. W. Rudy, A. Marandi, K. L. Vodopyanov, and R. L. Byer, “In-situ tapering of chalcogenide fiber for mid-infrared supercontinuum generation,” J. Vis. Exp. 75, e50518 (2013).

Waddie, A. J.

Warren-Smith, S. C.

Wiederhecker, G. S.

G. S. Wiederhecker, C. M. B. Cordeiro, F. Couny, F. Benabid, S. A. Maier, J. C. Knight, C. H. B. Cruz, and H. L. Fragnito, “Field enhancement within an optical fibre with a subwavelength air core,” Nat. Photonics 1(2), 115–118 (2007).
[Crossref]

P. Dainese, P. St. J. Russell, N. Joly, J. C. Knight, G. S. Wiederhecker, H. L. Fragnito, V. Laude, and A. Khelif, “Stimulated Brillouin scattering from multi-GHz-guided acoustic phonons in nanostructured photonic crystal fibres,” Nat. Phys. 2(6), 388–392 (2006).
[Crossref]

Wise, F. W.

L. G. Wright, D. N. Christodoulides, and F. W. Wise, “Controllable spatiotemporal nonlinear effects in multimode fibres,” Nat. Photonics 9(5), 306–310 (2015).
[Crossref]

Wright, L. G.

L. G. Wright, D. N. Christodoulides, and F. W. Wise, “Controllable spatiotemporal nonlinear effects in multimode fibres,” Nat. Photonics 9(5), 306–310 (2015).
[Crossref]

Yan, X.

Zhang, W. Q.

Appl. Phys. B (1)

M. A. Foster, J. M. Dudley, B. Kibler, Q. Cao, D. Lee, R. Trebino, and A. L. Gaeta, “Nonlinear pulse propagation and supercontinuum generation in photonic nanowires: experiment and simulation,” Appl. Phys. B 81(2–3), 363–367 (2005).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. (1)

G. Brambilla, “Optical fibre nanowires and microwires: a review,” J. Opt. 12(4), 043001 (2010).
[Crossref]

J. Vis. Exp. (1)

C. W. Rudy, A. Marandi, K. L. Vodopyanov, and R. L. Byer, “In-situ tapering of chalcogenide fiber for mid-infrared supercontinuum generation,” J. Vis. Exp. 75, e50518 (2013).

Nat. Photonics (2)

G. S. Wiederhecker, C. M. B. Cordeiro, F. Couny, F. Benabid, S. A. Maier, J. C. Knight, C. H. B. Cruz, and H. L. Fragnito, “Field enhancement within an optical fibre with a subwavelength air core,” Nat. Photonics 1(2), 115–118 (2007).
[Crossref]

L. G. Wright, D. N. Christodoulides, and F. W. Wise, “Controllable spatiotemporal nonlinear effects in multimode fibres,” Nat. Photonics 9(5), 306–310 (2015).
[Crossref]

Nat. Phys. (1)

P. Dainese, P. St. J. Russell, N. Joly, J. C. Knight, G. S. Wiederhecker, H. L. Fragnito, V. Laude, and A. Khelif, “Stimulated Brillouin scattering from multi-GHz-guided acoustic phonons in nanostructured photonic crystal fibres,” Nat. Phys. 2(6), 388–392 (2006).
[Crossref]

Opt. Express (7)

E. Mägi, P. Steinvurzel, and B. Eggleton, “Tapered photonic crystal fibers,” Opt. Express 12(5), 776–784 (2004).
[Crossref] [PubMed]

H. Ebendorff-Heidepriem, S. C. Warren-Smith, and T. M. Monro, “Suspended nanowires: Fabrication, design and characterization of fibers with nanoscale cores,” Opt. Express 17(4), 2646–2657 (2009).
[Crossref] [PubMed]

Y. Ruan, H. Ebendorff-Heidepriem, S. Afshar, and T. M. Monro, “Light confinement within nanoholes in nanostructured optical fibers,” Opt. Express 18(25), 26018–26026 (2010).
[Crossref] [PubMed]

F. Hudelist, R. Buczynski, A. J. Waddie, and M. R. Taghizadeh, “Design and fabrication of nano-structured gradient index microlenses,” Opt. Express 17(5), 3255–3263 (2009).
[Crossref] [PubMed]

P. Hlubina, M. Szpulak, D. Ciprian, T. Martynkien, and W. Urbanczyk, “Measurement of the group dispersion of the fundamental mode of holey fiber by white-light spectral interferometry,” Opt. Express 15(18), 11073–11081 (2007).
[Crossref] [PubMed]

Y. Lizé, E. Mägi, V. Ta’eed, J. Bolger, P. Steinvurzel, and B. Eggleton, “Microstructured optical fiber photonic wires with subwavelength core diameter,” Opt. Express 12(14), 3209–3217 (2004).
[Crossref] [PubMed]

M. Klimczak, B. Siwicki, P. Skibiński, D. Pysz, R. Stępień, A. Heidt, C. Radzewicz, and R. Buczyński, “Coherent supercontinuum generation up to 2.3 µm in all-solid soft-glass photonic crystal fibers with flat all-normal dispersion,” Opt. Express 22(15), 18824–18832 (2014).
[Crossref] [PubMed]

Opt. Fiber Technol. (1)

J. H. V. Price, X. Feng, A. M. Heidt, G. Brambilla, P. Horak, F. Poletti, G. Ponzo, P. Petropoulos, M. Petrovich, J. Shi, M. Ibsen, W. H. Loh, H. N. Rutt, and D. J. Richardson, “Supercontinuum generation in non-silica fibers,” Opt. Fiber Technol. 18(5), 327–344 (2012).
[Crossref]

Opt. Lett. (4)

Opt. Mater. Express (1)

Phys. Rev. Lett. (1)

F. Biancalana, T. X. Tran, S. Stark, M. A. Schmidt, and P. St. J. Russell, “Emergence of geometrical optical nonlinearities in photonic crystal fiber nanowires,” Phys. Rev. Lett. 105(9), 093904 (2010).
[Crossref] [PubMed]

Other (1)

J. Goldstein, D. E. Newbury, D. C. Joy, C. E. Lyman, P. Echlin, E. Lifshin, L. Sawyer, and J. R. Michael, Scanning Electron Microscopy and X-Ray Microanalysis (Springer, 2003).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 a: designed structure of the fiber core; b: refractive index profile in the core – the base level corresponds to refractive index of the low-index glass used also for the cladding tube; c: manually stacked preform of the core, left-to-right dimension (diagonal) is about 6 cm and comprises 100 rods; d, image of the drawn fiber preform, about 2 mm wide (optical microscope image).
Fig. 2
Fig. 2 SEM images of the nanostructured fibers: a,b: core area and nanostructure detail in fiber #1; c: core area of fiber #3.
Fig. 3
Fig. 3 a: Calculated chromatic dispersion profiles of the fibers, b: dispersion profiles measured for the family of the fabricated nanostructured core fibers.
Fig. 4
Fig. 4 Supercontinuum spectra measured in the nanostructured core fibers under 1560 nm, 90 fs pumping – a: fiber #3, where soliton propagation sets in at around 1800-1900 nm, indicating presence of a ZDW; b: fiber #4, with all-normal dispersion spectra.
Fig. 5
Fig. 5 The chemical elements concentration characteristics measured along the core diameter of a: sub-preform; and b: fiber #3, with the corresponding SEM images of fibers.
Fig. 6
Fig. 6 a: Effective refractive index distribution in the nanostructured core; b: calculated chromatic dispersion profiles with the non-uniform diffusion of chemical elements in the nanostructured core taken into account as modified profiles of the effective index.

Tables (3)

Tables Icon

Table 1 Refractive indices, thermal and rheological properties of the used soft glasses.

Tables Icon

Table 2 Chemical composition of the used glasses (mol%).

Tables Icon

Table 3 Summary of geometric parameters of fabricated nanostructured core fibers.

Metrics