Abstract

Artificially structured hyperbolic metamaterials (HMMs) - uniaxial materials with opposite signs of permittivity for ordinary and extraordinary waves - are one of the most attractive classes of metamaterials. Their existing in nature counterpart natural (homogeneous) hyperbolic materials (NHMs) has several advantages but has not yet been analyzed extensively. Here, based on literature-available data on permittivity as a function of wavelength, we review materials with naturally occurring anisotropy of permittivity in specific wavelength ranges. We suggest the best choice of materials that may act as NHMs depending on the wavelength, strength of the dielectric anisotropy (SDA), and losses.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Hyperbolic metamaterials: beyond the effective medium theory

Tengfei Li and Jacob B. Khurgin
Optica 3(12) 1388-1396 (2016)

Modal amplification in active waveguides with hyperbolic dispersion at telecommunication frequencies

Joseph S. T. Smalley, Felipe Vallini, Boubacar Kanté, and Yeshaiahu Fainman
Opt. Express 22(17) 21088-21105 (2014)

Physical nature of volume plasmon polaritons in hyperbolic metamaterials

Sergei V. Zhukovsky, Omar Kidwai, and J. E. Sipe
Opt. Express 21(12) 14982-14987 (2013)

References

  • View by:
  • |
  • |
  • |

  1. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
    [Crossref] [PubMed]
  2. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental Verification of a Negative Index of Refraction,” Science 292(5514), 77–79 (2001).
    [Crossref] [PubMed]
  3. I. I. Smolyaninov, E. Hwang, and E. E. Narimanov, “Hyperbolic metamaterial interfaces: Hawking radiation from Rindler horizons and spacetime signature transitions,” Phys. Rev. B 85(23), 235122 (2012).
    [Crossref]
  4. Y. He, S. He, and X. Yang, “Optical field enhancement in nanoscale slot waveguides of hyperbolic metamaterials,” Opt. Lett. 37(14), 2907–2909 (2012).
    [Crossref] [PubMed]
  5. A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6(12), 946–950 (2007).
    [Crossref] [PubMed]
  6. J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321(5891), 930 (2008).
    [Crossref] [PubMed]
  7. V. A. Podolskiy and E. E. Narimanov, “Strongly anisotropic waveguide as a nonmagnetic left-handed system,” Phys. Rev. B 71(20), 201101 (2005).
    [Crossref]
  8. P. Shekhar, J. Atkinson, and Z. Jacob, “Hyperbolic metamaterials: fundamentals and applications,” Nano Convergence 1(1), 14 (2014).
    [Crossref]
  9. K. G. Balmain, A. A. E. Lüttgen, and P. C. Kremer, “Resonance cone formation, reflection, refraction, and focusing in a planar anisotropic metamaterial,” IEEE Antennas Wirel. Propag. Lett. 1(1), 146–149 (2002).
    [Crossref]
  10. T. Taubner, D. Korobkin, Y. Urzhumov, G. Shvets, and R. Hillenbrand, “Near-field microscopy through a SiC superlens,” Science 313(5793), 1595 (2006).
    [Crossref] [PubMed]
  11. J. Yao, X. Yang, X. Yin, G. Bartal, and X. Zhang, “Three-dimensional nanometer-scale optical cavities of indefinite medium,” Proc. Natl. Acad. Sci. U.S.A. 108(28), 11327–11331 (2011).
    [Crossref] [PubMed]
  12. Y. Guo, C. L. Cortes, S. Molesky, and Z. Jacob, “Broadband super-Planckian thermal emission from hyperbolic metamaterials,” Appl. Phys. Lett. 101(13), 131106 (2012).
    [Crossref]
  13. Z. Jacob, I. I. Smolyaninov, and E. E. Narimanov, “Broadband purcell effect: radiative decay engineering with metamaterials,” Appl. Phys. Lett. 100(18), 181105 (2012).
    [Crossref]
  14. M. A. Noginov, H. Li, Y. A. Barnakov, D. Dryden, G. Nataraj, G. Zhu, C. E. Bonner, M. Mayy, Z. Jacob, and E. E. Narimanov, “Controlling spontaneous emission with metamaterials,” Opt. Lett. 35(11), 1863–1865 (2010).
    [Crossref] [PubMed]
  15. T. Tumkur, G. Zhu, P. Black, Y. A. Barnakov, C. E. Bonner, and M. A. Noginov, “Control of spontaneous emission in a volume of functionalized hyperbolic metamaterial,” Appl. Phys. Lett. 99(15), 151115 (2011).
    [Crossref]
  16. U. Tumkur, L. Gu, J. K. Kitur, E. E. Narimanov, and M. A. Noginov, “Control of absorption with hyperbolic metamaterials,” Appl. Phys. Lett. 100(16), 161103 (2012).
    [Crossref]
  17. Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
    [Crossref] [PubMed]
  18. Z. Jacob, L. V. Alekseyev, and E. Narimanov, “Optical Hyperlens: Far-field imaging beyond the diffraction limit,” Opt. Express 14(18), 8247–8256 (2006).
    [Crossref] [PubMed]
  19. A. Salandrino and N. Engheta, “Far-Field Subdiffraction Optical Microscopy Using Metamaterial Crystals: Theory and Simulations,” Phys. Rev. B 74(7), 075103 (2006).
    [Crossref]
  20. D. R. Smith and D. Schurig, “Electromagnetic Wave Propagation in Media with Indefinite Permittivity and Permeability Tensors,” Phys. Rev. Lett. 90(7), 077405 (2003).
    [Crossref] [PubMed]
  21. D. Korobkin, B. Neuner, C. Fietz, N. Jegenyes, G. Ferro, and G. Shvets, “Measurements of the negative refractive index of sub-diffraction waves propagating in an indefinite permittivity medium,” Opt. Express 18(22), 22734–22746 (2010).
    [Crossref] [PubMed]
  22. S. Ishii, A. V. Kildishev, E. Narimanov, V. M. Shalaev, and V. P. Drachev, “Sub-wavelength interference pattern from volume plasmon polaritons in a hyperbolic medium,” Laser Photonics Rev. 7(2), 265–271 (2013).
    [Crossref]
  23. Y. Xiong, Z. Liu, C. Sun, and X. Zhang, “Two-dimensional imaging by far-field superlens at visible wavelengths,” Nano Lett. 7(11), 3360–3365 (2007).
    [Crossref] [PubMed]
  24. M. A. Noginov, Y. A. Barnakov, G. Zhu, T. Tumkur, H. Li, and E. E. Narimanov, “Bulk photonic metamaterial with hyperbolic dispersion,” Appl. Phys. Lett. 94(15), 151105 (2009).
    [Crossref]
  25. T. Xu, A. Agrawal, M. Abashin, K. J. Chau, and H. J. Lezec, “All-angle negative refraction and active flat lensing of ultraviolet light,” Nature 497(7450), 470–474 (2013).
    [Crossref] [PubMed]
  26. T. U. Tumkur, J. K. Kitur, B. Chu, L. Gu, V. A. Podolskiy, E. E. Narimanov, and M. A. Noginov, “Control of reflectance and transmittance in scattering and curvilinear hyperbolic metamaterials,” Appl. Phys. Lett. 101(9), 091105 (2012).
    [Crossref]
  27. G. V. Naik, J. L. Schroeder, X. Ni, A. V. Kildishev, T. D. Sands, and A. Boltasseva, “Titanium nitride as a plasmonic material for visible and near-infrared wavelengths,” Opt. Mater. Express 2(4), 478–489 (2012).
    [Crossref]
  28. J. Liu, G. V. Naik, S. Ishii, C. Devault, A. Boltasseva, V. M. Shalaev, and E. Narimanov, “Optical absorption of hyperbolic metamaterial with stochastic surfaces,” Opt. Express 22(8), 8893–8901 (2014).
    [Crossref] [PubMed]
  29. R. Wang, J. Sun, and J. Zhou, “Indefinite permittivity in uniaxial single crystal at infrared frequency,” Appl. Phys. Lett. 97(3), 031912 (2010).
    [Crossref]
  30. L. V. Alekseyev, V. A. Podolskiy, and E. E. Narimanov, “Homogeneous hyperbolic systems for terahertz and far-infrared frequencies,” Adv. Optoelectron. 2012, 267564 (2012).
    [Crossref]
  31. V. P. Drachev, V. A. Podolskiy, and A. V. Kildishev, “Hyperbolic metamaterials: New physics behind a classical problem,” Opt. Express 21(12), 15048–15064 (2013).
    [Crossref] [PubMed]
  32. J. Sun, J. Zhou, B. Li, and F. Kang, “Indefinite permittivity and negative refraction in natural material: Graphite,” Appl. Phys. Lett. 98(10), 101901 (2011).
    [Crossref]
  33. J. Sun, N. M. Litchinitser, and J. Zhou, “Indefinite by nature: from ultraviolet to terahertz,” ACS Photonics 1(4), 293–303 (2014).
    [Crossref]
  34. M. Esslinger, R. Vogelgesang, N. Talebi, W. Khunsin, P. Gehring, S. De Zuani, B. Gompf, and K. Kern, “Tetradymites as Natural Hyperbolic Materials for the Near-Infrared to Visible,” ACS Photonics 1(12), 1285–1289 (2014).
    [Crossref]
  35. J. D. Caldwell, A. V. Kretinin, Y. Chen, V. Giannini, M. M. Fogler, Y. Francescato, C. T. Ellis, J. G. Tischler, C. R. Woods, A. J. Giles, M. Hong, K. Watanabe, T. Taniguchi, S. A. Maier, and K. S. Novoselov, “Sub-diffractional volume-confined polaritons in the natural hyperbolic material hexagonal boron nitride,” Nat. Commun. 5, 5221 (2014).
    [Crossref] [PubMed]
  36. E. Gerlach, P. Grosse, M. Rautenberg, and W. Senske, “Dynamical conductivity and plasmon excitation in Bi,” Phys. Status Solidi 75(2), 553–558 (1976).
    [Crossref]
  37. E. D. Palik and G. Ghosh, The electronic handbook of optical constants of solids (Academic Press, 1999).
  38. K. Korzeb, M. Gajc, and D. A. Pawlak, “Dataset 1,” figshare (2015) [retrieved 2 July 2015], http://figshare.com/articles/Compendium_of_natural_hyperbolic_metamaterials/1471761 .
  39. H. Friis, A. A. Finch, C. T. Williams, and J. M. Hanchar, “Photoluminescence of zircon (ZrSiO4) doped with REE 3+ (REE = Pr, Sm, Eu, Gd, Dy, Ho, Er),” Phys. Chem. Miner. 37(6), 333–342 (2010).
    [Crossref]
  40. R. Terki, G. Bertrand, and H. Aourag, “Full potential investigations of structural and electronic properties of ZrSiO4,” Microelectron. Eng. 81(2-4), 514–523 (2005).
    [Crossref]
  41. K. Kitamura, Y. Furukawa, K. Niwa, V. Gopalan, and T. E. Mitchell, “Crystal Growth and Low Coercive Field 180° Domain Switching Characteristics of Stochiometric LiTaO3,” Appl. Phys. Lett. 73(21), 3073–3075 (1998).
    [Crossref]
  42. K. Länge, B. E. Rapp, and M. Rapp, “Surface acoustic wave biosensors: a review,” Anal. Bioanal. Chem. 391(5), 1509–1519 (2008).
    [Crossref] [PubMed]
  43. A. M. Glass, “Dielectric, thermal, and pyroelectric properties of ferroelectric LiTaO3,” Phys. Rev. 172(2), 564–571 (1968).
    [Crossref]
  44. C. B. Roundy and R. L. Byer, “Sensitive LiTaO3 Pyroelectric Detector,” J. Appl. Phys. 44(2), 929–931 (1973).
    [Crossref]
  45. T. Feurer, N. S. Stoyanov, D. W. Ward, J. C. Vaughan, E. R. Statz, and K. A. Nelson, “Terahertz polaritonics,” Annu. Rev. Mater. Sci. 37(1), 317–350 (2007).
    [Crossref]
  46. Y. Furukawa, K. Kitamura, E. Suzuki, and K. Niwa, “Stoichiometric LiTaO3 single crystal growth by double crucible Czochralski method using automatic powder supply system,” J. Cryst. Growth 197(4), 889–895 (1999).
    [Crossref]
  47. Z. Zhao, V. Buscaglia, M. Viviani, M. T. Buscaglia, L. Mitoseriu, A. Testino, M. Nygren, M. Johnsson, and P. Nanni, “Grain-size effects on the ferroelectric behavior of dense nanocrystalline BaTiO3 ceramics,” Phys. Rev. B 70(2), 024107 (2004).
    [Crossref]
  48. N. Novak, R. Pirc, and Z. Kutnjak, “Impact of critical point on piezoelectric and electrocaloric response in barium titanate,” Phys. Rev. B 87(10), 104102 (2013).
    [Crossref]
  49. M. Zgonik, P. Bernasconi, M. Duelli, R. Schlesser, P. Günter, M. H. Garrett, D. Rytz, Y. Zhu, and X. Wu, “Dielectric, elastic, piezoelectric, electro-optic, and elasto-optic tensors of BaTiO3 crystals,” Phys. Rev. B Condens. Matter 50(9), 5941–5949 (1994).
    [Crossref] [PubMed]
  50. Z. Yan, Y. Guo, G. Zhang, and J.-M. Liu, “High-performance programmable memory devices based on co-doped BaTiO3.,” Adv. Mater. 23(11), 1351–1355 (2011).
    [Crossref] [PubMed]
  51. G. Godefroy, P. Lompre, C. Dumas, and H. Arend, “Pure and doped barium titanate. Crystal growth and chemical composition,” Mater. Res. Bull. 12(2), 165–169 (1977).
    [Crossref]
  52. H. Guo, L. Liu, Z. Chen, S. Ding, H. Lu, K.-J. Jin, Y. Zhou, and B. Cheng, “Structural and optical properties of BaTiO3 ultrathin films,” Europhys. Lett. 73(1), 110–115 (2006).
    [Crossref]
  53. R. Wang, J. Sun, and J. Zhou, “Indefinite permittivity in uniaxial single crystal at infrared frequency,” Appl. Phys. Lett. 97(3), 031912 (2010).
    [Crossref]
  54. H. S. Güder, B. Abay, H. Efeoglu, and Y. K. Yogurtcu, “Photoluminescence characterization of GaTe single crystals,” J. Lumin. 93(3), 243–248 (2001).
    [Crossref]
  55. E. G. Gillan and A. R. Barron, “Chemical vapour deposition of hexagonal gallium selenide and telluride films from cubane precursors: Understanding the envelope ofmolecular control,” Chem. Mater. 9, 3037–3048 (1997).
    [Crossref]
  56. P. M. Reshmi, A. G. Kunjomana, and K. A. Chandrasekharan, “Electrical and mechanical properties of vapour grown gallium monotelluride crystals,” Int. J. Min. Met. Mater. 20(10), 967–971 (2013).
    [Crossref]
  57. A. M. Conway, C. E. Reinhardt, J. Nikolic, A. J. Nelson, T. F. Wang, K. J. Wu, A. Payne, A. Mertiri, G. Pabst, R. Roy, K. C. Mandal, P. Bhattacharya, Y. Cui, M. Groza, and A. Burger, “Exploration of GaTe for gamma detection,” IEEE Nuclear Science Symposium Conference RecordN24–326,1551–1555 (2007).
  58. W. I. Milne and J. C. Anderson, “Memory switching in gallium telluride single crystals,” J. Phys. D Appl. Phys. 7(11), 1540–1548 (1974).
    [Crossref]
  59. W. I. Milne and J. C. Anderson, “Threshold switching in gallium telluride single crystals,” J. Phys. D Appl. Phys. 6(17), 2115–2123 (1973).
    [Crossref]
  60. J. Z. Wan, J. L. Brebner, R. Leonelli, and J. T. Graham, “Optical properties of excitons in GaTe,” Phys. Rev. B Condens. Matter 46(3), 1468–1471 (1992).
    [Crossref] [PubMed]
  61. F. F. Mazda, Discrete Electronic Components, (Cambridge University Press, 1981).
  62. V. Skoromets, S. Glinšek, V. Bovtun, M. Kempa, J. Petzelt, S. Kamba, B. Malič, M. Kosec, and P. Kužel, “Ferroelectric phase transition in polycrystalline KTaO3 thin film revealed by terahertz spectroscopy,” Appl. Phys. Lett. 99(5), 052908 (2011).
    [Crossref]
  63. P. Kŭzel, F. Kadlec, H. Nemec, R. Ott, E. Hollmann, and N. Klein, “Dielectric tenability of SrTiO3 thin films in the terahertz range,” Appl. Phys. Lett. 88(10), 102901 (2006).
    [Crossref]
  64. O. Svelto, Principles of Lasers, (Springer 2010).
  65. L. Wu, F. Ling, J. Liu, and J. Yao, “Optical modulation of permittivity for different doped near stoichiometric lithium niobate in the terahertz range,” Proc. SPIE 8330, 83300N (2011).
  66. C. L. Cortes, W. Newman, S. Molesky, and Z. Jacob, “Quantum nanophotonics using hyperbolic metamaterials,” J. Opt. 14(6), 063001 (2012).
    [Crossref]
  67. Y. Guo, W. Newman, C. L. Cortes, and Z. Jacob, “Applications of hyperbolic metamaterials substrates,” Adv. Optoelectron. 2012, 452502 (2012).
    [Crossref]

2014 (5)

P. Shekhar, J. Atkinson, and Z. Jacob, “Hyperbolic metamaterials: fundamentals and applications,” Nano Convergence 1(1), 14 (2014).
[Crossref]

J. Liu, G. V. Naik, S. Ishii, C. Devault, A. Boltasseva, V. M. Shalaev, and E. Narimanov, “Optical absorption of hyperbolic metamaterial with stochastic surfaces,” Opt. Express 22(8), 8893–8901 (2014).
[Crossref] [PubMed]

J. Sun, N. M. Litchinitser, and J. Zhou, “Indefinite by nature: from ultraviolet to terahertz,” ACS Photonics 1(4), 293–303 (2014).
[Crossref]

M. Esslinger, R. Vogelgesang, N. Talebi, W. Khunsin, P. Gehring, S. De Zuani, B. Gompf, and K. Kern, “Tetradymites as Natural Hyperbolic Materials for the Near-Infrared to Visible,” ACS Photonics 1(12), 1285–1289 (2014).
[Crossref]

J. D. Caldwell, A. V. Kretinin, Y. Chen, V. Giannini, M. M. Fogler, Y. Francescato, C. T. Ellis, J. G. Tischler, C. R. Woods, A. J. Giles, M. Hong, K. Watanabe, T. Taniguchi, S. A. Maier, and K. S. Novoselov, “Sub-diffractional volume-confined polaritons in the natural hyperbolic material hexagonal boron nitride,” Nat. Commun. 5, 5221 (2014).
[Crossref] [PubMed]

2013 (5)

V. P. Drachev, V. A. Podolskiy, and A. V. Kildishev, “Hyperbolic metamaterials: New physics behind a classical problem,” Opt. Express 21(12), 15048–15064 (2013).
[Crossref] [PubMed]

T. Xu, A. Agrawal, M. Abashin, K. J. Chau, and H. J. Lezec, “All-angle negative refraction and active flat lensing of ultraviolet light,” Nature 497(7450), 470–474 (2013).
[Crossref] [PubMed]

S. Ishii, A. V. Kildishev, E. Narimanov, V. M. Shalaev, and V. P. Drachev, “Sub-wavelength interference pattern from volume plasmon polaritons in a hyperbolic medium,” Laser Photonics Rev. 7(2), 265–271 (2013).
[Crossref]

N. Novak, R. Pirc, and Z. Kutnjak, “Impact of critical point on piezoelectric and electrocaloric response in barium titanate,” Phys. Rev. B 87(10), 104102 (2013).
[Crossref]

P. M. Reshmi, A. G. Kunjomana, and K. A. Chandrasekharan, “Electrical and mechanical properties of vapour grown gallium monotelluride crystals,” Int. J. Min. Met. Mater. 20(10), 967–971 (2013).
[Crossref]

2012 (10)

C. L. Cortes, W. Newman, S. Molesky, and Z. Jacob, “Quantum nanophotonics using hyperbolic metamaterials,” J. Opt. 14(6), 063001 (2012).
[Crossref]

Y. Guo, W. Newman, C. L. Cortes, and Z. Jacob, “Applications of hyperbolic metamaterials substrates,” Adv. Optoelectron. 2012, 452502 (2012).
[Crossref]

T. U. Tumkur, J. K. Kitur, B. Chu, L. Gu, V. A. Podolskiy, E. E. Narimanov, and M. A. Noginov, “Control of reflectance and transmittance in scattering and curvilinear hyperbolic metamaterials,” Appl. Phys. Lett. 101(9), 091105 (2012).
[Crossref]

G. V. Naik, J. L. Schroeder, X. Ni, A. V. Kildishev, T. D. Sands, and A. Boltasseva, “Titanium nitride as a plasmonic material for visible and near-infrared wavelengths,” Opt. Mater. Express 2(4), 478–489 (2012).
[Crossref]

L. V. Alekseyev, V. A. Podolskiy, and E. E. Narimanov, “Homogeneous hyperbolic systems for terahertz and far-infrared frequencies,” Adv. Optoelectron. 2012, 267564 (2012).
[Crossref]

I. I. Smolyaninov, E. Hwang, and E. E. Narimanov, “Hyperbolic metamaterial interfaces: Hawking radiation from Rindler horizons and spacetime signature transitions,” Phys. Rev. B 85(23), 235122 (2012).
[Crossref]

Y. He, S. He, and X. Yang, “Optical field enhancement in nanoscale slot waveguides of hyperbolic metamaterials,” Opt. Lett. 37(14), 2907–2909 (2012).
[Crossref] [PubMed]

Y. Guo, C. L. Cortes, S. Molesky, and Z. Jacob, “Broadband super-Planckian thermal emission from hyperbolic metamaterials,” Appl. Phys. Lett. 101(13), 131106 (2012).
[Crossref]

Z. Jacob, I. I. Smolyaninov, and E. E. Narimanov, “Broadband purcell effect: radiative decay engineering with metamaterials,” Appl. Phys. Lett. 100(18), 181105 (2012).
[Crossref]

U. Tumkur, L. Gu, J. K. Kitur, E. E. Narimanov, and M. A. Noginov, “Control of absorption with hyperbolic metamaterials,” Appl. Phys. Lett. 100(16), 161103 (2012).
[Crossref]

2011 (6)

J. Yao, X. Yang, X. Yin, G. Bartal, and X. Zhang, “Three-dimensional nanometer-scale optical cavities of indefinite medium,” Proc. Natl. Acad. Sci. U.S.A. 108(28), 11327–11331 (2011).
[Crossref] [PubMed]

J. Sun, J. Zhou, B. Li, and F. Kang, “Indefinite permittivity and negative refraction in natural material: Graphite,” Appl. Phys. Lett. 98(10), 101901 (2011).
[Crossref]

T. Tumkur, G. Zhu, P. Black, Y. A. Barnakov, C. E. Bonner, and M. A. Noginov, “Control of spontaneous emission in a volume of functionalized hyperbolic metamaterial,” Appl. Phys. Lett. 99(15), 151115 (2011).
[Crossref]

L. Wu, F. Ling, J. Liu, and J. Yao, “Optical modulation of permittivity for different doped near stoichiometric lithium niobate in the terahertz range,” Proc. SPIE 8330, 83300N (2011).

V. Skoromets, S. Glinšek, V. Bovtun, M. Kempa, J. Petzelt, S. Kamba, B. Malič, M. Kosec, and P. Kužel, “Ferroelectric phase transition in polycrystalline KTaO3 thin film revealed by terahertz spectroscopy,” Appl. Phys. Lett. 99(5), 052908 (2011).
[Crossref]

Z. Yan, Y. Guo, G. Zhang, and J.-M. Liu, “High-performance programmable memory devices based on co-doped BaTiO3.,” Adv. Mater. 23(11), 1351–1355 (2011).
[Crossref] [PubMed]

2010 (5)

R. Wang, J. Sun, and J. Zhou, “Indefinite permittivity in uniaxial single crystal at infrared frequency,” Appl. Phys. Lett. 97(3), 031912 (2010).
[Crossref]

H. Friis, A. A. Finch, C. T. Williams, and J. M. Hanchar, “Photoluminescence of zircon (ZrSiO4) doped with REE 3+ (REE = Pr, Sm, Eu, Gd, Dy, Ho, Er),” Phys. Chem. Miner. 37(6), 333–342 (2010).
[Crossref]

D. Korobkin, B. Neuner, C. Fietz, N. Jegenyes, G. Ferro, and G. Shvets, “Measurements of the negative refractive index of sub-diffraction waves propagating in an indefinite permittivity medium,” Opt. Express 18(22), 22734–22746 (2010).
[Crossref] [PubMed]

R. Wang, J. Sun, and J. Zhou, “Indefinite permittivity in uniaxial single crystal at infrared frequency,” Appl. Phys. Lett. 97(3), 031912 (2010).
[Crossref]

M. A. Noginov, H. Li, Y. A. Barnakov, D. Dryden, G. Nataraj, G. Zhu, C. E. Bonner, M. Mayy, Z. Jacob, and E. E. Narimanov, “Controlling spontaneous emission with metamaterials,” Opt. Lett. 35(11), 1863–1865 (2010).
[Crossref] [PubMed]

2009 (1)

M. A. Noginov, Y. A. Barnakov, G. Zhu, T. Tumkur, H. Li, and E. E. Narimanov, “Bulk photonic metamaterial with hyperbolic dispersion,” Appl. Phys. Lett. 94(15), 151105 (2009).
[Crossref]

2008 (2)

J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321(5891), 930 (2008).
[Crossref] [PubMed]

K. Länge, B. E. Rapp, and M. Rapp, “Surface acoustic wave biosensors: a review,” Anal. Bioanal. Chem. 391(5), 1509–1519 (2008).
[Crossref] [PubMed]

2007 (4)

T. Feurer, N. S. Stoyanov, D. W. Ward, J. C. Vaughan, E. R. Statz, and K. A. Nelson, “Terahertz polaritonics,” Annu. Rev. Mater. Sci. 37(1), 317–350 (2007).
[Crossref]

A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6(12), 946–950 (2007).
[Crossref] [PubMed]

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
[Crossref] [PubMed]

Y. Xiong, Z. Liu, C. Sun, and X. Zhang, “Two-dimensional imaging by far-field superlens at visible wavelengths,” Nano Lett. 7(11), 3360–3365 (2007).
[Crossref] [PubMed]

2006 (5)

Z. Jacob, L. V. Alekseyev, and E. Narimanov, “Optical Hyperlens: Far-field imaging beyond the diffraction limit,” Opt. Express 14(18), 8247–8256 (2006).
[Crossref] [PubMed]

A. Salandrino and N. Engheta, “Far-Field Subdiffraction Optical Microscopy Using Metamaterial Crystals: Theory and Simulations,” Phys. Rev. B 74(7), 075103 (2006).
[Crossref]

T. Taubner, D. Korobkin, Y. Urzhumov, G. Shvets, and R. Hillenbrand, “Near-field microscopy through a SiC superlens,” Science 313(5793), 1595 (2006).
[Crossref] [PubMed]

P. Kŭzel, F. Kadlec, H. Nemec, R. Ott, E. Hollmann, and N. Klein, “Dielectric tenability of SrTiO3 thin films in the terahertz range,” Appl. Phys. Lett. 88(10), 102901 (2006).
[Crossref]

H. Guo, L. Liu, Z. Chen, S. Ding, H. Lu, K.-J. Jin, Y. Zhou, and B. Cheng, “Structural and optical properties of BaTiO3 ultrathin films,” Europhys. Lett. 73(1), 110–115 (2006).
[Crossref]

2005 (2)

R. Terki, G. Bertrand, and H. Aourag, “Full potential investigations of structural and electronic properties of ZrSiO4,” Microelectron. Eng. 81(2-4), 514–523 (2005).
[Crossref]

V. A. Podolskiy and E. E. Narimanov, “Strongly anisotropic waveguide as a nonmagnetic left-handed system,” Phys. Rev. B 71(20), 201101 (2005).
[Crossref]

2004 (1)

Z. Zhao, V. Buscaglia, M. Viviani, M. T. Buscaglia, L. Mitoseriu, A. Testino, M. Nygren, M. Johnsson, and P. Nanni, “Grain-size effects on the ferroelectric behavior of dense nanocrystalline BaTiO3 ceramics,” Phys. Rev. B 70(2), 024107 (2004).
[Crossref]

2003 (1)

D. R. Smith and D. Schurig, “Electromagnetic Wave Propagation in Media with Indefinite Permittivity and Permeability Tensors,” Phys. Rev. Lett. 90(7), 077405 (2003).
[Crossref] [PubMed]

2002 (1)

K. G. Balmain, A. A. E. Lüttgen, and P. C. Kremer, “Resonance cone formation, reflection, refraction, and focusing in a planar anisotropic metamaterial,” IEEE Antennas Wirel. Propag. Lett. 1(1), 146–149 (2002).
[Crossref]

2001 (2)

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental Verification of a Negative Index of Refraction,” Science 292(5514), 77–79 (2001).
[Crossref] [PubMed]

H. S. Güder, B. Abay, H. Efeoglu, and Y. K. Yogurtcu, “Photoluminescence characterization of GaTe single crystals,” J. Lumin. 93(3), 243–248 (2001).
[Crossref]

2000 (1)

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[Crossref] [PubMed]

1999 (1)

Y. Furukawa, K. Kitamura, E. Suzuki, and K. Niwa, “Stoichiometric LiTaO3 single crystal growth by double crucible Czochralski method using automatic powder supply system,” J. Cryst. Growth 197(4), 889–895 (1999).
[Crossref]

1998 (1)

K. Kitamura, Y. Furukawa, K. Niwa, V. Gopalan, and T. E. Mitchell, “Crystal Growth and Low Coercive Field 180° Domain Switching Characteristics of Stochiometric LiTaO3,” Appl. Phys. Lett. 73(21), 3073–3075 (1998).
[Crossref]

1997 (1)

E. G. Gillan and A. R. Barron, “Chemical vapour deposition of hexagonal gallium selenide and telluride films from cubane precursors: Understanding the envelope ofmolecular control,” Chem. Mater. 9, 3037–3048 (1997).
[Crossref]

1994 (1)

M. Zgonik, P. Bernasconi, M. Duelli, R. Schlesser, P. Günter, M. H. Garrett, D. Rytz, Y. Zhu, and X. Wu, “Dielectric, elastic, piezoelectric, electro-optic, and elasto-optic tensors of BaTiO3 crystals,” Phys. Rev. B Condens. Matter 50(9), 5941–5949 (1994).
[Crossref] [PubMed]

1992 (1)

J. Z. Wan, J. L. Brebner, R. Leonelli, and J. T. Graham, “Optical properties of excitons in GaTe,” Phys. Rev. B Condens. Matter 46(3), 1468–1471 (1992).
[Crossref] [PubMed]

1977 (1)

G. Godefroy, P. Lompre, C. Dumas, and H. Arend, “Pure and doped barium titanate. Crystal growth and chemical composition,” Mater. Res. Bull. 12(2), 165–169 (1977).
[Crossref]

1976 (1)

E. Gerlach, P. Grosse, M. Rautenberg, and W. Senske, “Dynamical conductivity and plasmon excitation in Bi,” Phys. Status Solidi 75(2), 553–558 (1976).
[Crossref]

1974 (1)

W. I. Milne and J. C. Anderson, “Memory switching in gallium telluride single crystals,” J. Phys. D Appl. Phys. 7(11), 1540–1548 (1974).
[Crossref]

1973 (2)

W. I. Milne and J. C. Anderson, “Threshold switching in gallium telluride single crystals,” J. Phys. D Appl. Phys. 6(17), 2115–2123 (1973).
[Crossref]

C. B. Roundy and R. L. Byer, “Sensitive LiTaO3 Pyroelectric Detector,” J. Appl. Phys. 44(2), 929–931 (1973).
[Crossref]

1968 (1)

A. M. Glass, “Dielectric, thermal, and pyroelectric properties of ferroelectric LiTaO3,” Phys. Rev. 172(2), 564–571 (1968).
[Crossref]

Abashin, M.

T. Xu, A. Agrawal, M. Abashin, K. J. Chau, and H. J. Lezec, “All-angle negative refraction and active flat lensing of ultraviolet light,” Nature 497(7450), 470–474 (2013).
[Crossref] [PubMed]

Abay, B.

H. S. Güder, B. Abay, H. Efeoglu, and Y. K. Yogurtcu, “Photoluminescence characterization of GaTe single crystals,” J. Lumin. 93(3), 243–248 (2001).
[Crossref]

Agrawal, A.

T. Xu, A. Agrawal, M. Abashin, K. J. Chau, and H. J. Lezec, “All-angle negative refraction and active flat lensing of ultraviolet light,” Nature 497(7450), 470–474 (2013).
[Crossref] [PubMed]

Alekseyev, L.

A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6(12), 946–950 (2007).
[Crossref] [PubMed]

Alekseyev, L. V.

L. V. Alekseyev, V. A. Podolskiy, and E. E. Narimanov, “Homogeneous hyperbolic systems for terahertz and far-infrared frequencies,” Adv. Optoelectron. 2012, 267564 (2012).
[Crossref]

Z. Jacob, L. V. Alekseyev, and E. Narimanov, “Optical Hyperlens: Far-field imaging beyond the diffraction limit,” Opt. Express 14(18), 8247–8256 (2006).
[Crossref] [PubMed]

Anderson, J. C.

W. I. Milne and J. C. Anderson, “Memory switching in gallium telluride single crystals,” J. Phys. D Appl. Phys. 7(11), 1540–1548 (1974).
[Crossref]

W. I. Milne and J. C. Anderson, “Threshold switching in gallium telluride single crystals,” J. Phys. D Appl. Phys. 6(17), 2115–2123 (1973).
[Crossref]

Aourag, H.

R. Terki, G. Bertrand, and H. Aourag, “Full potential investigations of structural and electronic properties of ZrSiO4,” Microelectron. Eng. 81(2-4), 514–523 (2005).
[Crossref]

Arend, H.

G. Godefroy, P. Lompre, C. Dumas, and H. Arend, “Pure and doped barium titanate. Crystal growth and chemical composition,” Mater. Res. Bull. 12(2), 165–169 (1977).
[Crossref]

Atkinson, J.

P. Shekhar, J. Atkinson, and Z. Jacob, “Hyperbolic metamaterials: fundamentals and applications,” Nano Convergence 1(1), 14 (2014).
[Crossref]

Balmain, K. G.

K. G. Balmain, A. A. E. Lüttgen, and P. C. Kremer, “Resonance cone formation, reflection, refraction, and focusing in a planar anisotropic metamaterial,” IEEE Antennas Wirel. Propag. Lett. 1(1), 146–149 (2002).
[Crossref]

Barnakov, Y. A.

T. Tumkur, G. Zhu, P. Black, Y. A. Barnakov, C. E. Bonner, and M. A. Noginov, “Control of spontaneous emission in a volume of functionalized hyperbolic metamaterial,” Appl. Phys. Lett. 99(15), 151115 (2011).
[Crossref]

M. A. Noginov, H. Li, Y. A. Barnakov, D. Dryden, G. Nataraj, G. Zhu, C. E. Bonner, M. Mayy, Z. Jacob, and E. E. Narimanov, “Controlling spontaneous emission with metamaterials,” Opt. Lett. 35(11), 1863–1865 (2010).
[Crossref] [PubMed]

M. A. Noginov, Y. A. Barnakov, G. Zhu, T. Tumkur, H. Li, and E. E. Narimanov, “Bulk photonic metamaterial with hyperbolic dispersion,” Appl. Phys. Lett. 94(15), 151105 (2009).
[Crossref]

Barron, A. R.

E. G. Gillan and A. R. Barron, “Chemical vapour deposition of hexagonal gallium selenide and telluride films from cubane precursors: Understanding the envelope ofmolecular control,” Chem. Mater. 9, 3037–3048 (1997).
[Crossref]

Bartal, G.

J. Yao, X. Yang, X. Yin, G. Bartal, and X. Zhang, “Three-dimensional nanometer-scale optical cavities of indefinite medium,” Proc. Natl. Acad. Sci. U.S.A. 108(28), 11327–11331 (2011).
[Crossref] [PubMed]

J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321(5891), 930 (2008).
[Crossref] [PubMed]

Bernasconi, P.

M. Zgonik, P. Bernasconi, M. Duelli, R. Schlesser, P. Günter, M. H. Garrett, D. Rytz, Y. Zhu, and X. Wu, “Dielectric, elastic, piezoelectric, electro-optic, and elasto-optic tensors of BaTiO3 crystals,” Phys. Rev. B Condens. Matter 50(9), 5941–5949 (1994).
[Crossref] [PubMed]

Bertrand, G.

R. Terki, G. Bertrand, and H. Aourag, “Full potential investigations of structural and electronic properties of ZrSiO4,” Microelectron. Eng. 81(2-4), 514–523 (2005).
[Crossref]

Black, P.

T. Tumkur, G. Zhu, P. Black, Y. A. Barnakov, C. E. Bonner, and M. A. Noginov, “Control of spontaneous emission in a volume of functionalized hyperbolic metamaterial,” Appl. Phys. Lett. 99(15), 151115 (2011).
[Crossref]

Boltasseva, A.

Bonner, C. E.

T. Tumkur, G. Zhu, P. Black, Y. A. Barnakov, C. E. Bonner, and M. A. Noginov, “Control of spontaneous emission in a volume of functionalized hyperbolic metamaterial,” Appl. Phys. Lett. 99(15), 151115 (2011).
[Crossref]

M. A. Noginov, H. Li, Y. A. Barnakov, D. Dryden, G. Nataraj, G. Zhu, C. E. Bonner, M. Mayy, Z. Jacob, and E. E. Narimanov, “Controlling spontaneous emission with metamaterials,” Opt. Lett. 35(11), 1863–1865 (2010).
[Crossref] [PubMed]

Bovtun, V.

V. Skoromets, S. Glinšek, V. Bovtun, M. Kempa, J. Petzelt, S. Kamba, B. Malič, M. Kosec, and P. Kužel, “Ferroelectric phase transition in polycrystalline KTaO3 thin film revealed by terahertz spectroscopy,” Appl. Phys. Lett. 99(5), 052908 (2011).
[Crossref]

Brebner, J. L.

J. Z. Wan, J. L. Brebner, R. Leonelli, and J. T. Graham, “Optical properties of excitons in GaTe,” Phys. Rev. B Condens. Matter 46(3), 1468–1471 (1992).
[Crossref] [PubMed]

Buscaglia, M. T.

Z. Zhao, V. Buscaglia, M. Viviani, M. T. Buscaglia, L. Mitoseriu, A. Testino, M. Nygren, M. Johnsson, and P. Nanni, “Grain-size effects on the ferroelectric behavior of dense nanocrystalline BaTiO3 ceramics,” Phys. Rev. B 70(2), 024107 (2004).
[Crossref]

Buscaglia, V.

Z. Zhao, V. Buscaglia, M. Viviani, M. T. Buscaglia, L. Mitoseriu, A. Testino, M. Nygren, M. Johnsson, and P. Nanni, “Grain-size effects on the ferroelectric behavior of dense nanocrystalline BaTiO3 ceramics,” Phys. Rev. B 70(2), 024107 (2004).
[Crossref]

Byer, R. L.

C. B. Roundy and R. L. Byer, “Sensitive LiTaO3 Pyroelectric Detector,” J. Appl. Phys. 44(2), 929–931 (1973).
[Crossref]

Caldwell, J. D.

J. D. Caldwell, A. V. Kretinin, Y. Chen, V. Giannini, M. M. Fogler, Y. Francescato, C. T. Ellis, J. G. Tischler, C. R. Woods, A. J. Giles, M. Hong, K. Watanabe, T. Taniguchi, S. A. Maier, and K. S. Novoselov, “Sub-diffractional volume-confined polaritons in the natural hyperbolic material hexagonal boron nitride,” Nat. Commun. 5, 5221 (2014).
[Crossref] [PubMed]

Chandrasekharan, K. A.

P. M. Reshmi, A. G. Kunjomana, and K. A. Chandrasekharan, “Electrical and mechanical properties of vapour grown gallium monotelluride crystals,” Int. J. Min. Met. Mater. 20(10), 967–971 (2013).
[Crossref]

Chau, K. J.

T. Xu, A. Agrawal, M. Abashin, K. J. Chau, and H. J. Lezec, “All-angle negative refraction and active flat lensing of ultraviolet light,” Nature 497(7450), 470–474 (2013).
[Crossref] [PubMed]

Chen, Y.

J. D. Caldwell, A. V. Kretinin, Y. Chen, V. Giannini, M. M. Fogler, Y. Francescato, C. T. Ellis, J. G. Tischler, C. R. Woods, A. J. Giles, M. Hong, K. Watanabe, T. Taniguchi, S. A. Maier, and K. S. Novoselov, “Sub-diffractional volume-confined polaritons in the natural hyperbolic material hexagonal boron nitride,” Nat. Commun. 5, 5221 (2014).
[Crossref] [PubMed]

Chen, Z.

H. Guo, L. Liu, Z. Chen, S. Ding, H. Lu, K.-J. Jin, Y. Zhou, and B. Cheng, “Structural and optical properties of BaTiO3 ultrathin films,” Europhys. Lett. 73(1), 110–115 (2006).
[Crossref]

Cheng, B.

H. Guo, L. Liu, Z. Chen, S. Ding, H. Lu, K.-J. Jin, Y. Zhou, and B. Cheng, “Structural and optical properties of BaTiO3 ultrathin films,” Europhys. Lett. 73(1), 110–115 (2006).
[Crossref]

Chu, B.

T. U. Tumkur, J. K. Kitur, B. Chu, L. Gu, V. A. Podolskiy, E. E. Narimanov, and M. A. Noginov, “Control of reflectance and transmittance in scattering and curvilinear hyperbolic metamaterials,” Appl. Phys. Lett. 101(9), 091105 (2012).
[Crossref]

Cortes, C. L.

Y. Guo, C. L. Cortes, S. Molesky, and Z. Jacob, “Broadband super-Planckian thermal emission from hyperbolic metamaterials,” Appl. Phys. Lett. 101(13), 131106 (2012).
[Crossref]

Y. Guo, W. Newman, C. L. Cortes, and Z. Jacob, “Applications of hyperbolic metamaterials substrates,” Adv. Optoelectron. 2012, 452502 (2012).
[Crossref]

C. L. Cortes, W. Newman, S. Molesky, and Z. Jacob, “Quantum nanophotonics using hyperbolic metamaterials,” J. Opt. 14(6), 063001 (2012).
[Crossref]

De Zuani, S.

M. Esslinger, R. Vogelgesang, N. Talebi, W. Khunsin, P. Gehring, S. De Zuani, B. Gompf, and K. Kern, “Tetradymites as Natural Hyperbolic Materials for the Near-Infrared to Visible,” ACS Photonics 1(12), 1285–1289 (2014).
[Crossref]

Devault, C.

Ding, S.

H. Guo, L. Liu, Z. Chen, S. Ding, H. Lu, K.-J. Jin, Y. Zhou, and B. Cheng, “Structural and optical properties of BaTiO3 ultrathin films,” Europhys. Lett. 73(1), 110–115 (2006).
[Crossref]

Drachev, V. P.

S. Ishii, A. V. Kildishev, E. Narimanov, V. M. Shalaev, and V. P. Drachev, “Sub-wavelength interference pattern from volume plasmon polaritons in a hyperbolic medium,” Laser Photonics Rev. 7(2), 265–271 (2013).
[Crossref]

V. P. Drachev, V. A. Podolskiy, and A. V. Kildishev, “Hyperbolic metamaterials: New physics behind a classical problem,” Opt. Express 21(12), 15048–15064 (2013).
[Crossref] [PubMed]

Dryden, D.

Duelli, M.

M. Zgonik, P. Bernasconi, M. Duelli, R. Schlesser, P. Günter, M. H. Garrett, D. Rytz, Y. Zhu, and X. Wu, “Dielectric, elastic, piezoelectric, electro-optic, and elasto-optic tensors of BaTiO3 crystals,” Phys. Rev. B Condens. Matter 50(9), 5941–5949 (1994).
[Crossref] [PubMed]

Dumas, C.

G. Godefroy, P. Lompre, C. Dumas, and H. Arend, “Pure and doped barium titanate. Crystal growth and chemical composition,” Mater. Res. Bull. 12(2), 165–169 (1977).
[Crossref]

Efeoglu, H.

H. S. Güder, B. Abay, H. Efeoglu, and Y. K. Yogurtcu, “Photoluminescence characterization of GaTe single crystals,” J. Lumin. 93(3), 243–248 (2001).
[Crossref]

Ellis, C. T.

J. D. Caldwell, A. V. Kretinin, Y. Chen, V. Giannini, M. M. Fogler, Y. Francescato, C. T. Ellis, J. G. Tischler, C. R. Woods, A. J. Giles, M. Hong, K. Watanabe, T. Taniguchi, S. A. Maier, and K. S. Novoselov, “Sub-diffractional volume-confined polaritons in the natural hyperbolic material hexagonal boron nitride,” Nat. Commun. 5, 5221 (2014).
[Crossref] [PubMed]

Engheta, N.

A. Salandrino and N. Engheta, “Far-Field Subdiffraction Optical Microscopy Using Metamaterial Crystals: Theory and Simulations,” Phys. Rev. B 74(7), 075103 (2006).
[Crossref]

Esslinger, M.

M. Esslinger, R. Vogelgesang, N. Talebi, W. Khunsin, P. Gehring, S. De Zuani, B. Gompf, and K. Kern, “Tetradymites as Natural Hyperbolic Materials for the Near-Infrared to Visible,” ACS Photonics 1(12), 1285–1289 (2014).
[Crossref]

Ferro, G.

Feurer, T.

T. Feurer, N. S. Stoyanov, D. W. Ward, J. C. Vaughan, E. R. Statz, and K. A. Nelson, “Terahertz polaritonics,” Annu. Rev. Mater. Sci. 37(1), 317–350 (2007).
[Crossref]

Fietz, C.

Finch, A. A.

H. Friis, A. A. Finch, C. T. Williams, and J. M. Hanchar, “Photoluminescence of zircon (ZrSiO4) doped with REE 3+ (REE = Pr, Sm, Eu, Gd, Dy, Ho, Er),” Phys. Chem. Miner. 37(6), 333–342 (2010).
[Crossref]

Fogler, M. M.

J. D. Caldwell, A. V. Kretinin, Y. Chen, V. Giannini, M. M. Fogler, Y. Francescato, C. T. Ellis, J. G. Tischler, C. R. Woods, A. J. Giles, M. Hong, K. Watanabe, T. Taniguchi, S. A. Maier, and K. S. Novoselov, “Sub-diffractional volume-confined polaritons in the natural hyperbolic material hexagonal boron nitride,” Nat. Commun. 5, 5221 (2014).
[Crossref] [PubMed]

Francescato, Y.

J. D. Caldwell, A. V. Kretinin, Y. Chen, V. Giannini, M. M. Fogler, Y. Francescato, C. T. Ellis, J. G. Tischler, C. R. Woods, A. J. Giles, M. Hong, K. Watanabe, T. Taniguchi, S. A. Maier, and K. S. Novoselov, “Sub-diffractional volume-confined polaritons in the natural hyperbolic material hexagonal boron nitride,” Nat. Commun. 5, 5221 (2014).
[Crossref] [PubMed]

Franz, K. J.

A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6(12), 946–950 (2007).
[Crossref] [PubMed]

Friis, H.

H. Friis, A. A. Finch, C. T. Williams, and J. M. Hanchar, “Photoluminescence of zircon (ZrSiO4) doped with REE 3+ (REE = Pr, Sm, Eu, Gd, Dy, Ho, Er),” Phys. Chem. Miner. 37(6), 333–342 (2010).
[Crossref]

Furukawa, Y.

Y. Furukawa, K. Kitamura, E. Suzuki, and K. Niwa, “Stoichiometric LiTaO3 single crystal growth by double crucible Czochralski method using automatic powder supply system,” J. Cryst. Growth 197(4), 889–895 (1999).
[Crossref]

K. Kitamura, Y. Furukawa, K. Niwa, V. Gopalan, and T. E. Mitchell, “Crystal Growth and Low Coercive Field 180° Domain Switching Characteristics of Stochiometric LiTaO3,” Appl. Phys. Lett. 73(21), 3073–3075 (1998).
[Crossref]

Garrett, M. H.

M. Zgonik, P. Bernasconi, M. Duelli, R. Schlesser, P. Günter, M. H. Garrett, D. Rytz, Y. Zhu, and X. Wu, “Dielectric, elastic, piezoelectric, electro-optic, and elasto-optic tensors of BaTiO3 crystals,” Phys. Rev. B Condens. Matter 50(9), 5941–5949 (1994).
[Crossref] [PubMed]

Gehring, P.

M. Esslinger, R. Vogelgesang, N. Talebi, W. Khunsin, P. Gehring, S. De Zuani, B. Gompf, and K. Kern, “Tetradymites as Natural Hyperbolic Materials for the Near-Infrared to Visible,” ACS Photonics 1(12), 1285–1289 (2014).
[Crossref]

Gerlach, E.

E. Gerlach, P. Grosse, M. Rautenberg, and W. Senske, “Dynamical conductivity and plasmon excitation in Bi,” Phys. Status Solidi 75(2), 553–558 (1976).
[Crossref]

Giannini, V.

J. D. Caldwell, A. V. Kretinin, Y. Chen, V. Giannini, M. M. Fogler, Y. Francescato, C. T. Ellis, J. G. Tischler, C. R. Woods, A. J. Giles, M. Hong, K. Watanabe, T. Taniguchi, S. A. Maier, and K. S. Novoselov, “Sub-diffractional volume-confined polaritons in the natural hyperbolic material hexagonal boron nitride,” Nat. Commun. 5, 5221 (2014).
[Crossref] [PubMed]

Giles, A. J.

J. D. Caldwell, A. V. Kretinin, Y. Chen, V. Giannini, M. M. Fogler, Y. Francescato, C. T. Ellis, J. G. Tischler, C. R. Woods, A. J. Giles, M. Hong, K. Watanabe, T. Taniguchi, S. A. Maier, and K. S. Novoselov, “Sub-diffractional volume-confined polaritons in the natural hyperbolic material hexagonal boron nitride,” Nat. Commun. 5, 5221 (2014).
[Crossref] [PubMed]

Gillan, E. G.

E. G. Gillan and A. R. Barron, “Chemical vapour deposition of hexagonal gallium selenide and telluride films from cubane precursors: Understanding the envelope ofmolecular control,” Chem. Mater. 9, 3037–3048 (1997).
[Crossref]

Glass, A. M.

A. M. Glass, “Dielectric, thermal, and pyroelectric properties of ferroelectric LiTaO3,” Phys. Rev. 172(2), 564–571 (1968).
[Crossref]

Glinšek, S.

V. Skoromets, S. Glinšek, V. Bovtun, M. Kempa, J. Petzelt, S. Kamba, B. Malič, M. Kosec, and P. Kužel, “Ferroelectric phase transition in polycrystalline KTaO3 thin film revealed by terahertz spectroscopy,” Appl. Phys. Lett. 99(5), 052908 (2011).
[Crossref]

Gmachl, C.

A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6(12), 946–950 (2007).
[Crossref] [PubMed]

Godefroy, G.

G. Godefroy, P. Lompre, C. Dumas, and H. Arend, “Pure and doped barium titanate. Crystal growth and chemical composition,” Mater. Res. Bull. 12(2), 165–169 (1977).
[Crossref]

Gompf, B.

M. Esslinger, R. Vogelgesang, N. Talebi, W. Khunsin, P. Gehring, S. De Zuani, B. Gompf, and K. Kern, “Tetradymites as Natural Hyperbolic Materials for the Near-Infrared to Visible,” ACS Photonics 1(12), 1285–1289 (2014).
[Crossref]

Gopalan, V.

K. Kitamura, Y. Furukawa, K. Niwa, V. Gopalan, and T. E. Mitchell, “Crystal Growth and Low Coercive Field 180° Domain Switching Characteristics of Stochiometric LiTaO3,” Appl. Phys. Lett. 73(21), 3073–3075 (1998).
[Crossref]

Graham, J. T.

J. Z. Wan, J. L. Brebner, R. Leonelli, and J. T. Graham, “Optical properties of excitons in GaTe,” Phys. Rev. B Condens. Matter 46(3), 1468–1471 (1992).
[Crossref] [PubMed]

Grosse, P.

E. Gerlach, P. Grosse, M. Rautenberg, and W. Senske, “Dynamical conductivity and plasmon excitation in Bi,” Phys. Status Solidi 75(2), 553–558 (1976).
[Crossref]

Gu, L.

U. Tumkur, L. Gu, J. K. Kitur, E. E. Narimanov, and M. A. Noginov, “Control of absorption with hyperbolic metamaterials,” Appl. Phys. Lett. 100(16), 161103 (2012).
[Crossref]

T. U. Tumkur, J. K. Kitur, B. Chu, L. Gu, V. A. Podolskiy, E. E. Narimanov, and M. A. Noginov, “Control of reflectance and transmittance in scattering and curvilinear hyperbolic metamaterials,” Appl. Phys. Lett. 101(9), 091105 (2012).
[Crossref]

Güder, H. S.

H. S. Güder, B. Abay, H. Efeoglu, and Y. K. Yogurtcu, “Photoluminescence characterization of GaTe single crystals,” J. Lumin. 93(3), 243–248 (2001).
[Crossref]

Günter, P.

M. Zgonik, P. Bernasconi, M. Duelli, R. Schlesser, P. Günter, M. H. Garrett, D. Rytz, Y. Zhu, and X. Wu, “Dielectric, elastic, piezoelectric, electro-optic, and elasto-optic tensors of BaTiO3 crystals,” Phys. Rev. B Condens. Matter 50(9), 5941–5949 (1994).
[Crossref] [PubMed]

Guo, H.

H. Guo, L. Liu, Z. Chen, S. Ding, H. Lu, K.-J. Jin, Y. Zhou, and B. Cheng, “Structural and optical properties of BaTiO3 ultrathin films,” Europhys. Lett. 73(1), 110–115 (2006).
[Crossref]

Guo, Y.

Y. Guo, W. Newman, C. L. Cortes, and Z. Jacob, “Applications of hyperbolic metamaterials substrates,” Adv. Optoelectron. 2012, 452502 (2012).
[Crossref]

Y. Guo, C. L. Cortes, S. Molesky, and Z. Jacob, “Broadband super-Planckian thermal emission from hyperbolic metamaterials,” Appl. Phys. Lett. 101(13), 131106 (2012).
[Crossref]

Z. Yan, Y. Guo, G. Zhang, and J.-M. Liu, “High-performance programmable memory devices based on co-doped BaTiO3.,” Adv. Mater. 23(11), 1351–1355 (2011).
[Crossref] [PubMed]

Hanchar, J. M.

H. Friis, A. A. Finch, C. T. Williams, and J. M. Hanchar, “Photoluminescence of zircon (ZrSiO4) doped with REE 3+ (REE = Pr, Sm, Eu, Gd, Dy, Ho, Er),” Phys. Chem. Miner. 37(6), 333–342 (2010).
[Crossref]

He, S.

He, Y.

Hillenbrand, R.

T. Taubner, D. Korobkin, Y. Urzhumov, G. Shvets, and R. Hillenbrand, “Near-field microscopy through a SiC superlens,” Science 313(5793), 1595 (2006).
[Crossref] [PubMed]

Hoffman, A. J.

A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6(12), 946–950 (2007).
[Crossref] [PubMed]

Hollmann, E.

P. Kŭzel, F. Kadlec, H. Nemec, R. Ott, E. Hollmann, and N. Klein, “Dielectric tenability of SrTiO3 thin films in the terahertz range,” Appl. Phys. Lett. 88(10), 102901 (2006).
[Crossref]

Hong, M.

J. D. Caldwell, A. V. Kretinin, Y. Chen, V. Giannini, M. M. Fogler, Y. Francescato, C. T. Ellis, J. G. Tischler, C. R. Woods, A. J. Giles, M. Hong, K. Watanabe, T. Taniguchi, S. A. Maier, and K. S. Novoselov, “Sub-diffractional volume-confined polaritons in the natural hyperbolic material hexagonal boron nitride,” Nat. Commun. 5, 5221 (2014).
[Crossref] [PubMed]

Howard, S. S.

A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6(12), 946–950 (2007).
[Crossref] [PubMed]

Hwang, E.

I. I. Smolyaninov, E. Hwang, and E. E. Narimanov, “Hyperbolic metamaterial interfaces: Hawking radiation from Rindler horizons and spacetime signature transitions,” Phys. Rev. B 85(23), 235122 (2012).
[Crossref]

Ishii, S.

J. Liu, G. V. Naik, S. Ishii, C. Devault, A. Boltasseva, V. M. Shalaev, and E. Narimanov, “Optical absorption of hyperbolic metamaterial with stochastic surfaces,” Opt. Express 22(8), 8893–8901 (2014).
[Crossref] [PubMed]

S. Ishii, A. V. Kildishev, E. Narimanov, V. M. Shalaev, and V. P. Drachev, “Sub-wavelength interference pattern from volume plasmon polaritons in a hyperbolic medium,” Laser Photonics Rev. 7(2), 265–271 (2013).
[Crossref]

Jacob, Z.

P. Shekhar, J. Atkinson, and Z. Jacob, “Hyperbolic metamaterials: fundamentals and applications,” Nano Convergence 1(1), 14 (2014).
[Crossref]

C. L. Cortes, W. Newman, S. Molesky, and Z. Jacob, “Quantum nanophotonics using hyperbolic metamaterials,” J. Opt. 14(6), 063001 (2012).
[Crossref]

Y. Guo, W. Newman, C. L. Cortes, and Z. Jacob, “Applications of hyperbolic metamaterials substrates,” Adv. Optoelectron. 2012, 452502 (2012).
[Crossref]

Y. Guo, C. L. Cortes, S. Molesky, and Z. Jacob, “Broadband super-Planckian thermal emission from hyperbolic metamaterials,” Appl. Phys. Lett. 101(13), 131106 (2012).
[Crossref]

Z. Jacob, I. I. Smolyaninov, and E. E. Narimanov, “Broadband purcell effect: radiative decay engineering with metamaterials,” Appl. Phys. Lett. 100(18), 181105 (2012).
[Crossref]

M. A. Noginov, H. Li, Y. A. Barnakov, D. Dryden, G. Nataraj, G. Zhu, C. E. Bonner, M. Mayy, Z. Jacob, and E. E. Narimanov, “Controlling spontaneous emission with metamaterials,” Opt. Lett. 35(11), 1863–1865 (2010).
[Crossref] [PubMed]

Z. Jacob, L. V. Alekseyev, and E. Narimanov, “Optical Hyperlens: Far-field imaging beyond the diffraction limit,” Opt. Express 14(18), 8247–8256 (2006).
[Crossref] [PubMed]

Jegenyes, N.

Jin, K.-J.

H. Guo, L. Liu, Z. Chen, S. Ding, H. Lu, K.-J. Jin, Y. Zhou, and B. Cheng, “Structural and optical properties of BaTiO3 ultrathin films,” Europhys. Lett. 73(1), 110–115 (2006).
[Crossref]

Johnsson, M.

Z. Zhao, V. Buscaglia, M. Viviani, M. T. Buscaglia, L. Mitoseriu, A. Testino, M. Nygren, M. Johnsson, and P. Nanni, “Grain-size effects on the ferroelectric behavior of dense nanocrystalline BaTiO3 ceramics,” Phys. Rev. B 70(2), 024107 (2004).
[Crossref]

Kadlec, F.

P. Kŭzel, F. Kadlec, H. Nemec, R. Ott, E. Hollmann, and N. Klein, “Dielectric tenability of SrTiO3 thin films in the terahertz range,” Appl. Phys. Lett. 88(10), 102901 (2006).
[Crossref]

Kamba, S.

V. Skoromets, S. Glinšek, V. Bovtun, M. Kempa, J. Petzelt, S. Kamba, B. Malič, M. Kosec, and P. Kužel, “Ferroelectric phase transition in polycrystalline KTaO3 thin film revealed by terahertz spectroscopy,” Appl. Phys. Lett. 99(5), 052908 (2011).
[Crossref]

Kang, F.

J. Sun, J. Zhou, B. Li, and F. Kang, “Indefinite permittivity and negative refraction in natural material: Graphite,” Appl. Phys. Lett. 98(10), 101901 (2011).
[Crossref]

Kempa, M.

V. Skoromets, S. Glinšek, V. Bovtun, M. Kempa, J. Petzelt, S. Kamba, B. Malič, M. Kosec, and P. Kužel, “Ferroelectric phase transition in polycrystalline KTaO3 thin film revealed by terahertz spectroscopy,” Appl. Phys. Lett. 99(5), 052908 (2011).
[Crossref]

Kern, K.

M. Esslinger, R. Vogelgesang, N. Talebi, W. Khunsin, P. Gehring, S. De Zuani, B. Gompf, and K. Kern, “Tetradymites as Natural Hyperbolic Materials for the Near-Infrared to Visible,” ACS Photonics 1(12), 1285–1289 (2014).
[Crossref]

Khunsin, W.

M. Esslinger, R. Vogelgesang, N. Talebi, W. Khunsin, P. Gehring, S. De Zuani, B. Gompf, and K. Kern, “Tetradymites as Natural Hyperbolic Materials for the Near-Infrared to Visible,” ACS Photonics 1(12), 1285–1289 (2014).
[Crossref]

Kildishev, A. V.

Kitamura, K.

Y. Furukawa, K. Kitamura, E. Suzuki, and K. Niwa, “Stoichiometric LiTaO3 single crystal growth by double crucible Czochralski method using automatic powder supply system,” J. Cryst. Growth 197(4), 889–895 (1999).
[Crossref]

K. Kitamura, Y. Furukawa, K. Niwa, V. Gopalan, and T. E. Mitchell, “Crystal Growth and Low Coercive Field 180° Domain Switching Characteristics of Stochiometric LiTaO3,” Appl. Phys. Lett. 73(21), 3073–3075 (1998).
[Crossref]

Kitur, J. K.

T. U. Tumkur, J. K. Kitur, B. Chu, L. Gu, V. A. Podolskiy, E. E. Narimanov, and M. A. Noginov, “Control of reflectance and transmittance in scattering and curvilinear hyperbolic metamaterials,” Appl. Phys. Lett. 101(9), 091105 (2012).
[Crossref]

U. Tumkur, L. Gu, J. K. Kitur, E. E. Narimanov, and M. A. Noginov, “Control of absorption with hyperbolic metamaterials,” Appl. Phys. Lett. 100(16), 161103 (2012).
[Crossref]

Klein, N.

P. Kŭzel, F. Kadlec, H. Nemec, R. Ott, E. Hollmann, and N. Klein, “Dielectric tenability of SrTiO3 thin films in the terahertz range,” Appl. Phys. Lett. 88(10), 102901 (2006).
[Crossref]

Korobkin, D.

Kosec, M.

V. Skoromets, S. Glinšek, V. Bovtun, M. Kempa, J. Petzelt, S. Kamba, B. Malič, M. Kosec, and P. Kužel, “Ferroelectric phase transition in polycrystalline KTaO3 thin film revealed by terahertz spectroscopy,” Appl. Phys. Lett. 99(5), 052908 (2011).
[Crossref]

Kremer, P. C.

K. G. Balmain, A. A. E. Lüttgen, and P. C. Kremer, “Resonance cone formation, reflection, refraction, and focusing in a planar anisotropic metamaterial,” IEEE Antennas Wirel. Propag. Lett. 1(1), 146–149 (2002).
[Crossref]

Kretinin, A. V.

J. D. Caldwell, A. V. Kretinin, Y. Chen, V. Giannini, M. M. Fogler, Y. Francescato, C. T. Ellis, J. G. Tischler, C. R. Woods, A. J. Giles, M. Hong, K. Watanabe, T. Taniguchi, S. A. Maier, and K. S. Novoselov, “Sub-diffractional volume-confined polaritons in the natural hyperbolic material hexagonal boron nitride,” Nat. Commun. 5, 5221 (2014).
[Crossref] [PubMed]

Kunjomana, A. G.

P. M. Reshmi, A. G. Kunjomana, and K. A. Chandrasekharan, “Electrical and mechanical properties of vapour grown gallium monotelluride crystals,” Int. J. Min. Met. Mater. 20(10), 967–971 (2013).
[Crossref]

Kutnjak, Z.

N. Novak, R. Pirc, and Z. Kutnjak, “Impact of critical point on piezoelectric and electrocaloric response in barium titanate,” Phys. Rev. B 87(10), 104102 (2013).
[Crossref]

Kuzel, P.

P. Kŭzel, F. Kadlec, H. Nemec, R. Ott, E. Hollmann, and N. Klein, “Dielectric tenability of SrTiO3 thin films in the terahertz range,” Appl. Phys. Lett. 88(10), 102901 (2006).
[Crossref]

Kužel, P.

V. Skoromets, S. Glinšek, V. Bovtun, M. Kempa, J. Petzelt, S. Kamba, B. Malič, M. Kosec, and P. Kužel, “Ferroelectric phase transition in polycrystalline KTaO3 thin film revealed by terahertz spectroscopy,” Appl. Phys. Lett. 99(5), 052908 (2011).
[Crossref]

Länge, K.

K. Länge, B. E. Rapp, and M. Rapp, “Surface acoustic wave biosensors: a review,” Anal. Bioanal. Chem. 391(5), 1509–1519 (2008).
[Crossref] [PubMed]

Lee, H.

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
[Crossref] [PubMed]

Leonelli, R.

J. Z. Wan, J. L. Brebner, R. Leonelli, and J. T. Graham, “Optical properties of excitons in GaTe,” Phys. Rev. B Condens. Matter 46(3), 1468–1471 (1992).
[Crossref] [PubMed]

Lezec, H. J.

T. Xu, A. Agrawal, M. Abashin, K. J. Chau, and H. J. Lezec, “All-angle negative refraction and active flat lensing of ultraviolet light,” Nature 497(7450), 470–474 (2013).
[Crossref] [PubMed]

Li, B.

J. Sun, J. Zhou, B. Li, and F. Kang, “Indefinite permittivity and negative refraction in natural material: Graphite,” Appl. Phys. Lett. 98(10), 101901 (2011).
[Crossref]

Li, H.

M. A. Noginov, H. Li, Y. A. Barnakov, D. Dryden, G. Nataraj, G. Zhu, C. E. Bonner, M. Mayy, Z. Jacob, and E. E. Narimanov, “Controlling spontaneous emission with metamaterials,” Opt. Lett. 35(11), 1863–1865 (2010).
[Crossref] [PubMed]

M. A. Noginov, Y. A. Barnakov, G. Zhu, T. Tumkur, H. Li, and E. E. Narimanov, “Bulk photonic metamaterial with hyperbolic dispersion,” Appl. Phys. Lett. 94(15), 151105 (2009).
[Crossref]

Ling, F.

L. Wu, F. Ling, J. Liu, and J. Yao, “Optical modulation of permittivity for different doped near stoichiometric lithium niobate in the terahertz range,” Proc. SPIE 8330, 83300N (2011).

Litchinitser, N. M.

J. Sun, N. M. Litchinitser, and J. Zhou, “Indefinite by nature: from ultraviolet to terahertz,” ACS Photonics 1(4), 293–303 (2014).
[Crossref]

Liu, J.

J. Liu, G. V. Naik, S. Ishii, C. Devault, A. Boltasseva, V. M. Shalaev, and E. Narimanov, “Optical absorption of hyperbolic metamaterial with stochastic surfaces,” Opt. Express 22(8), 8893–8901 (2014).
[Crossref] [PubMed]

L. Wu, F. Ling, J. Liu, and J. Yao, “Optical modulation of permittivity for different doped near stoichiometric lithium niobate in the terahertz range,” Proc. SPIE 8330, 83300N (2011).

Liu, J.-M.

Z. Yan, Y. Guo, G. Zhang, and J.-M. Liu, “High-performance programmable memory devices based on co-doped BaTiO3.,” Adv. Mater. 23(11), 1351–1355 (2011).
[Crossref] [PubMed]

Liu, L.

H. Guo, L. Liu, Z. Chen, S. Ding, H. Lu, K.-J. Jin, Y. Zhou, and B. Cheng, “Structural and optical properties of BaTiO3 ultrathin films,” Europhys. Lett. 73(1), 110–115 (2006).
[Crossref]

Liu, Y.

J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321(5891), 930 (2008).
[Crossref] [PubMed]

Liu, Z.

J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321(5891), 930 (2008).
[Crossref] [PubMed]

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
[Crossref] [PubMed]

Y. Xiong, Z. Liu, C. Sun, and X. Zhang, “Two-dimensional imaging by far-field superlens at visible wavelengths,” Nano Lett. 7(11), 3360–3365 (2007).
[Crossref] [PubMed]

Lompre, P.

G. Godefroy, P. Lompre, C. Dumas, and H. Arend, “Pure and doped barium titanate. Crystal growth and chemical composition,” Mater. Res. Bull. 12(2), 165–169 (1977).
[Crossref]

Lu, H.

H. Guo, L. Liu, Z. Chen, S. Ding, H. Lu, K.-J. Jin, Y. Zhou, and B. Cheng, “Structural and optical properties of BaTiO3 ultrathin films,” Europhys. Lett. 73(1), 110–115 (2006).
[Crossref]

Lüttgen, A. A. E.

K. G. Balmain, A. A. E. Lüttgen, and P. C. Kremer, “Resonance cone formation, reflection, refraction, and focusing in a planar anisotropic metamaterial,” IEEE Antennas Wirel. Propag. Lett. 1(1), 146–149 (2002).
[Crossref]

Maier, S. A.

J. D. Caldwell, A. V. Kretinin, Y. Chen, V. Giannini, M. M. Fogler, Y. Francescato, C. T. Ellis, J. G. Tischler, C. R. Woods, A. J. Giles, M. Hong, K. Watanabe, T. Taniguchi, S. A. Maier, and K. S. Novoselov, “Sub-diffractional volume-confined polaritons in the natural hyperbolic material hexagonal boron nitride,” Nat. Commun. 5, 5221 (2014).
[Crossref] [PubMed]

Malic, B.

V. Skoromets, S. Glinšek, V. Bovtun, M. Kempa, J. Petzelt, S. Kamba, B. Malič, M. Kosec, and P. Kužel, “Ferroelectric phase transition in polycrystalline KTaO3 thin film revealed by terahertz spectroscopy,” Appl. Phys. Lett. 99(5), 052908 (2011).
[Crossref]

Mayy, M.

Milne, W. I.

W. I. Milne and J. C. Anderson, “Memory switching in gallium telluride single crystals,” J. Phys. D Appl. Phys. 7(11), 1540–1548 (1974).
[Crossref]

W. I. Milne and J. C. Anderson, “Threshold switching in gallium telluride single crystals,” J. Phys. D Appl. Phys. 6(17), 2115–2123 (1973).
[Crossref]

Mitchell, T. E.

K. Kitamura, Y. Furukawa, K. Niwa, V. Gopalan, and T. E. Mitchell, “Crystal Growth and Low Coercive Field 180° Domain Switching Characteristics of Stochiometric LiTaO3,” Appl. Phys. Lett. 73(21), 3073–3075 (1998).
[Crossref]

Mitoseriu, L.

Z. Zhao, V. Buscaglia, M. Viviani, M. T. Buscaglia, L. Mitoseriu, A. Testino, M. Nygren, M. Johnsson, and P. Nanni, “Grain-size effects on the ferroelectric behavior of dense nanocrystalline BaTiO3 ceramics,” Phys. Rev. B 70(2), 024107 (2004).
[Crossref]

Molesky, S.

C. L. Cortes, W. Newman, S. Molesky, and Z. Jacob, “Quantum nanophotonics using hyperbolic metamaterials,” J. Opt. 14(6), 063001 (2012).
[Crossref]

Y. Guo, C. L. Cortes, S. Molesky, and Z. Jacob, “Broadband super-Planckian thermal emission from hyperbolic metamaterials,” Appl. Phys. Lett. 101(13), 131106 (2012).
[Crossref]

Naik, G. V.

Nanni, P.

Z. Zhao, V. Buscaglia, M. Viviani, M. T. Buscaglia, L. Mitoseriu, A. Testino, M. Nygren, M. Johnsson, and P. Nanni, “Grain-size effects on the ferroelectric behavior of dense nanocrystalline BaTiO3 ceramics,” Phys. Rev. B 70(2), 024107 (2004).
[Crossref]

Narimanov, E.

Narimanov, E. E.

L. V. Alekseyev, V. A. Podolskiy, and E. E. Narimanov, “Homogeneous hyperbolic systems for terahertz and far-infrared frequencies,” Adv. Optoelectron. 2012, 267564 (2012).
[Crossref]

T. U. Tumkur, J. K. Kitur, B. Chu, L. Gu, V. A. Podolskiy, E. E. Narimanov, and M. A. Noginov, “Control of reflectance and transmittance in scattering and curvilinear hyperbolic metamaterials,” Appl. Phys. Lett. 101(9), 091105 (2012).
[Crossref]

Z. Jacob, I. I. Smolyaninov, and E. E. Narimanov, “Broadband purcell effect: radiative decay engineering with metamaterials,” Appl. Phys. Lett. 100(18), 181105 (2012).
[Crossref]

U. Tumkur, L. Gu, J. K. Kitur, E. E. Narimanov, and M. A. Noginov, “Control of absorption with hyperbolic metamaterials,” Appl. Phys. Lett. 100(16), 161103 (2012).
[Crossref]

I. I. Smolyaninov, E. Hwang, and E. E. Narimanov, “Hyperbolic metamaterial interfaces: Hawking radiation from Rindler horizons and spacetime signature transitions,” Phys. Rev. B 85(23), 235122 (2012).
[Crossref]

M. A. Noginov, H. Li, Y. A. Barnakov, D. Dryden, G. Nataraj, G. Zhu, C. E. Bonner, M. Mayy, Z. Jacob, and E. E. Narimanov, “Controlling spontaneous emission with metamaterials,” Opt. Lett. 35(11), 1863–1865 (2010).
[Crossref] [PubMed]

M. A. Noginov, Y. A. Barnakov, G. Zhu, T. Tumkur, H. Li, and E. E. Narimanov, “Bulk photonic metamaterial with hyperbolic dispersion,” Appl. Phys. Lett. 94(15), 151105 (2009).
[Crossref]

A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6(12), 946–950 (2007).
[Crossref] [PubMed]

V. A. Podolskiy and E. E. Narimanov, “Strongly anisotropic waveguide as a nonmagnetic left-handed system,” Phys. Rev. B 71(20), 201101 (2005).
[Crossref]

Nataraj, G.

Nelson, K. A.

T. Feurer, N. S. Stoyanov, D. W. Ward, J. C. Vaughan, E. R. Statz, and K. A. Nelson, “Terahertz polaritonics,” Annu. Rev. Mater. Sci. 37(1), 317–350 (2007).
[Crossref]

Nemec, H.

P. Kŭzel, F. Kadlec, H. Nemec, R. Ott, E. Hollmann, and N. Klein, “Dielectric tenability of SrTiO3 thin films in the terahertz range,” Appl. Phys. Lett. 88(10), 102901 (2006).
[Crossref]

Neuner, B.

Newman, W.

Y. Guo, W. Newman, C. L. Cortes, and Z. Jacob, “Applications of hyperbolic metamaterials substrates,” Adv. Optoelectron. 2012, 452502 (2012).
[Crossref]

C. L. Cortes, W. Newman, S. Molesky, and Z. Jacob, “Quantum nanophotonics using hyperbolic metamaterials,” J. Opt. 14(6), 063001 (2012).
[Crossref]

Ni, X.

Niwa, K.

Y. Furukawa, K. Kitamura, E. Suzuki, and K. Niwa, “Stoichiometric LiTaO3 single crystal growth by double crucible Czochralski method using automatic powder supply system,” J. Cryst. Growth 197(4), 889–895 (1999).
[Crossref]

K. Kitamura, Y. Furukawa, K. Niwa, V. Gopalan, and T. E. Mitchell, “Crystal Growth and Low Coercive Field 180° Domain Switching Characteristics of Stochiometric LiTaO3,” Appl. Phys. Lett. 73(21), 3073–3075 (1998).
[Crossref]

Noginov, M. A.

T. U. Tumkur, J. K. Kitur, B. Chu, L. Gu, V. A. Podolskiy, E. E. Narimanov, and M. A. Noginov, “Control of reflectance and transmittance in scattering and curvilinear hyperbolic metamaterials,” Appl. Phys. Lett. 101(9), 091105 (2012).
[Crossref]

U. Tumkur, L. Gu, J. K. Kitur, E. E. Narimanov, and M. A. Noginov, “Control of absorption with hyperbolic metamaterials,” Appl. Phys. Lett. 100(16), 161103 (2012).
[Crossref]

T. Tumkur, G. Zhu, P. Black, Y. A. Barnakov, C. E. Bonner, and M. A. Noginov, “Control of spontaneous emission in a volume of functionalized hyperbolic metamaterial,” Appl. Phys. Lett. 99(15), 151115 (2011).
[Crossref]

M. A. Noginov, H. Li, Y. A. Barnakov, D. Dryden, G. Nataraj, G. Zhu, C. E. Bonner, M. Mayy, Z. Jacob, and E. E. Narimanov, “Controlling spontaneous emission with metamaterials,” Opt. Lett. 35(11), 1863–1865 (2010).
[Crossref] [PubMed]

M. A. Noginov, Y. A. Barnakov, G. Zhu, T. Tumkur, H. Li, and E. E. Narimanov, “Bulk photonic metamaterial with hyperbolic dispersion,” Appl. Phys. Lett. 94(15), 151105 (2009).
[Crossref]

Novak, N.

N. Novak, R. Pirc, and Z. Kutnjak, “Impact of critical point on piezoelectric and electrocaloric response in barium titanate,” Phys. Rev. B 87(10), 104102 (2013).
[Crossref]

Novoselov, K. S.

J. D. Caldwell, A. V. Kretinin, Y. Chen, V. Giannini, M. M. Fogler, Y. Francescato, C. T. Ellis, J. G. Tischler, C. R. Woods, A. J. Giles, M. Hong, K. Watanabe, T. Taniguchi, S. A. Maier, and K. S. Novoselov, “Sub-diffractional volume-confined polaritons in the natural hyperbolic material hexagonal boron nitride,” Nat. Commun. 5, 5221 (2014).
[Crossref] [PubMed]

Nygren, M.

Z. Zhao, V. Buscaglia, M. Viviani, M. T. Buscaglia, L. Mitoseriu, A. Testino, M. Nygren, M. Johnsson, and P. Nanni, “Grain-size effects on the ferroelectric behavior of dense nanocrystalline BaTiO3 ceramics,” Phys. Rev. B 70(2), 024107 (2004).
[Crossref]

Ott, R.

P. Kŭzel, F. Kadlec, H. Nemec, R. Ott, E. Hollmann, and N. Klein, “Dielectric tenability of SrTiO3 thin films in the terahertz range,” Appl. Phys. Lett. 88(10), 102901 (2006).
[Crossref]

Pendry, J. B.

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[Crossref] [PubMed]

Petzelt, J.

V. Skoromets, S. Glinšek, V. Bovtun, M. Kempa, J. Petzelt, S. Kamba, B. Malič, M. Kosec, and P. Kužel, “Ferroelectric phase transition in polycrystalline KTaO3 thin film revealed by terahertz spectroscopy,” Appl. Phys. Lett. 99(5), 052908 (2011).
[Crossref]

Pirc, R.

N. Novak, R. Pirc, and Z. Kutnjak, “Impact of critical point on piezoelectric and electrocaloric response in barium titanate,” Phys. Rev. B 87(10), 104102 (2013).
[Crossref]

Podolskiy, V. A.

V. P. Drachev, V. A. Podolskiy, and A. V. Kildishev, “Hyperbolic metamaterials: New physics behind a classical problem,” Opt. Express 21(12), 15048–15064 (2013).
[Crossref] [PubMed]

L. V. Alekseyev, V. A. Podolskiy, and E. E. Narimanov, “Homogeneous hyperbolic systems for terahertz and far-infrared frequencies,” Adv. Optoelectron. 2012, 267564 (2012).
[Crossref]

T. U. Tumkur, J. K. Kitur, B. Chu, L. Gu, V. A. Podolskiy, E. E. Narimanov, and M. A. Noginov, “Control of reflectance and transmittance in scattering and curvilinear hyperbolic metamaterials,” Appl. Phys. Lett. 101(9), 091105 (2012).
[Crossref]

A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6(12), 946–950 (2007).
[Crossref] [PubMed]

V. A. Podolskiy and E. E. Narimanov, “Strongly anisotropic waveguide as a nonmagnetic left-handed system,” Phys. Rev. B 71(20), 201101 (2005).
[Crossref]

Rapp, B. E.

K. Länge, B. E. Rapp, and M. Rapp, “Surface acoustic wave biosensors: a review,” Anal. Bioanal. Chem. 391(5), 1509–1519 (2008).
[Crossref] [PubMed]

Rapp, M.

K. Länge, B. E. Rapp, and M. Rapp, “Surface acoustic wave biosensors: a review,” Anal. Bioanal. Chem. 391(5), 1509–1519 (2008).
[Crossref] [PubMed]

Rautenberg, M.

E. Gerlach, P. Grosse, M. Rautenberg, and W. Senske, “Dynamical conductivity and plasmon excitation in Bi,” Phys. Status Solidi 75(2), 553–558 (1976).
[Crossref]

Reshmi, P. M.

P. M. Reshmi, A. G. Kunjomana, and K. A. Chandrasekharan, “Electrical and mechanical properties of vapour grown gallium monotelluride crystals,” Int. J. Min. Met. Mater. 20(10), 967–971 (2013).
[Crossref]

Roundy, C. B.

C. B. Roundy and R. L. Byer, “Sensitive LiTaO3 Pyroelectric Detector,” J. Appl. Phys. 44(2), 929–931 (1973).
[Crossref]

Rytz, D.

M. Zgonik, P. Bernasconi, M. Duelli, R. Schlesser, P. Günter, M. H. Garrett, D. Rytz, Y. Zhu, and X. Wu, “Dielectric, elastic, piezoelectric, electro-optic, and elasto-optic tensors of BaTiO3 crystals,” Phys. Rev. B Condens. Matter 50(9), 5941–5949 (1994).
[Crossref] [PubMed]

Salandrino, A.

A. Salandrino and N. Engheta, “Far-Field Subdiffraction Optical Microscopy Using Metamaterial Crystals: Theory and Simulations,” Phys. Rev. B 74(7), 075103 (2006).
[Crossref]

Sands, T. D.

Schlesser, R.

M. Zgonik, P. Bernasconi, M. Duelli, R. Schlesser, P. Günter, M. H. Garrett, D. Rytz, Y. Zhu, and X. Wu, “Dielectric, elastic, piezoelectric, electro-optic, and elasto-optic tensors of BaTiO3 crystals,” Phys. Rev. B Condens. Matter 50(9), 5941–5949 (1994).
[Crossref] [PubMed]

Schroeder, J. L.

Schultz, S.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental Verification of a Negative Index of Refraction,” Science 292(5514), 77–79 (2001).
[Crossref] [PubMed]

Schurig, D.

D. R. Smith and D. Schurig, “Electromagnetic Wave Propagation in Media with Indefinite Permittivity and Permeability Tensors,” Phys. Rev. Lett. 90(7), 077405 (2003).
[Crossref] [PubMed]

Senske, W.

E. Gerlach, P. Grosse, M. Rautenberg, and W. Senske, “Dynamical conductivity and plasmon excitation in Bi,” Phys. Status Solidi 75(2), 553–558 (1976).
[Crossref]

Shalaev, V. M.

J. Liu, G. V. Naik, S. Ishii, C. Devault, A. Boltasseva, V. M. Shalaev, and E. Narimanov, “Optical absorption of hyperbolic metamaterial with stochastic surfaces,” Opt. Express 22(8), 8893–8901 (2014).
[Crossref] [PubMed]

S. Ishii, A. V. Kildishev, E. Narimanov, V. M. Shalaev, and V. P. Drachev, “Sub-wavelength interference pattern from volume plasmon polaritons in a hyperbolic medium,” Laser Photonics Rev. 7(2), 265–271 (2013).
[Crossref]

Shekhar, P.

P. Shekhar, J. Atkinson, and Z. Jacob, “Hyperbolic metamaterials: fundamentals and applications,” Nano Convergence 1(1), 14 (2014).
[Crossref]

Shelby, R. A.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental Verification of a Negative Index of Refraction,” Science 292(5514), 77–79 (2001).
[Crossref] [PubMed]

Shvets, G.

Sivco, D. L.

A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6(12), 946–950 (2007).
[Crossref] [PubMed]

Skoromets, V.

V. Skoromets, S. Glinšek, V. Bovtun, M. Kempa, J. Petzelt, S. Kamba, B. Malič, M. Kosec, and P. Kužel, “Ferroelectric phase transition in polycrystalline KTaO3 thin film revealed by terahertz spectroscopy,” Appl. Phys. Lett. 99(5), 052908 (2011).
[Crossref]

Smith, D. R.

D. R. Smith and D. Schurig, “Electromagnetic Wave Propagation in Media with Indefinite Permittivity and Permeability Tensors,” Phys. Rev. Lett. 90(7), 077405 (2003).
[Crossref] [PubMed]

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental Verification of a Negative Index of Refraction,” Science 292(5514), 77–79 (2001).
[Crossref] [PubMed]

Smolyaninov, I. I.

I. I. Smolyaninov, E. Hwang, and E. E. Narimanov, “Hyperbolic metamaterial interfaces: Hawking radiation from Rindler horizons and spacetime signature transitions,” Phys. Rev. B 85(23), 235122 (2012).
[Crossref]

Z. Jacob, I. I. Smolyaninov, and E. E. Narimanov, “Broadband purcell effect: radiative decay engineering with metamaterials,” Appl. Phys. Lett. 100(18), 181105 (2012).
[Crossref]

Stacy, A. M.

J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321(5891), 930 (2008).
[Crossref] [PubMed]

Statz, E. R.

T. Feurer, N. S. Stoyanov, D. W. Ward, J. C. Vaughan, E. R. Statz, and K. A. Nelson, “Terahertz polaritonics,” Annu. Rev. Mater. Sci. 37(1), 317–350 (2007).
[Crossref]

Stoyanov, N. S.

T. Feurer, N. S. Stoyanov, D. W. Ward, J. C. Vaughan, E. R. Statz, and K. A. Nelson, “Terahertz polaritonics,” Annu. Rev. Mater. Sci. 37(1), 317–350 (2007).
[Crossref]

Sun, C.

J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321(5891), 930 (2008).
[Crossref] [PubMed]

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
[Crossref] [PubMed]

Y. Xiong, Z. Liu, C. Sun, and X. Zhang, “Two-dimensional imaging by far-field superlens at visible wavelengths,” Nano Lett. 7(11), 3360–3365 (2007).
[Crossref] [PubMed]

Sun, J.

J. Sun, N. M. Litchinitser, and J. Zhou, “Indefinite by nature: from ultraviolet to terahertz,” ACS Photonics 1(4), 293–303 (2014).
[Crossref]

J. Sun, J. Zhou, B. Li, and F. Kang, “Indefinite permittivity and negative refraction in natural material: Graphite,” Appl. Phys. Lett. 98(10), 101901 (2011).
[Crossref]

R. Wang, J. Sun, and J. Zhou, “Indefinite permittivity in uniaxial single crystal at infrared frequency,” Appl. Phys. Lett. 97(3), 031912 (2010).
[Crossref]

R. Wang, J. Sun, and J. Zhou, “Indefinite permittivity in uniaxial single crystal at infrared frequency,” Appl. Phys. Lett. 97(3), 031912 (2010).
[Crossref]

Suzuki, E.

Y. Furukawa, K. Kitamura, E. Suzuki, and K. Niwa, “Stoichiometric LiTaO3 single crystal growth by double crucible Czochralski method using automatic powder supply system,” J. Cryst. Growth 197(4), 889–895 (1999).
[Crossref]

Talebi, N.

M. Esslinger, R. Vogelgesang, N. Talebi, W. Khunsin, P. Gehring, S. De Zuani, B. Gompf, and K. Kern, “Tetradymites as Natural Hyperbolic Materials for the Near-Infrared to Visible,” ACS Photonics 1(12), 1285–1289 (2014).
[Crossref]

Taniguchi, T.

J. D. Caldwell, A. V. Kretinin, Y. Chen, V. Giannini, M. M. Fogler, Y. Francescato, C. T. Ellis, J. G. Tischler, C. R. Woods, A. J. Giles, M. Hong, K. Watanabe, T. Taniguchi, S. A. Maier, and K. S. Novoselov, “Sub-diffractional volume-confined polaritons in the natural hyperbolic material hexagonal boron nitride,” Nat. Commun. 5, 5221 (2014).
[Crossref] [PubMed]

Taubner, T.

T. Taubner, D. Korobkin, Y. Urzhumov, G. Shvets, and R. Hillenbrand, “Near-field microscopy through a SiC superlens,” Science 313(5793), 1595 (2006).
[Crossref] [PubMed]

Terki, R.

R. Terki, G. Bertrand, and H. Aourag, “Full potential investigations of structural and electronic properties of ZrSiO4,” Microelectron. Eng. 81(2-4), 514–523 (2005).
[Crossref]

Testino, A.

Z. Zhao, V. Buscaglia, M. Viviani, M. T. Buscaglia, L. Mitoseriu, A. Testino, M. Nygren, M. Johnsson, and P. Nanni, “Grain-size effects on the ferroelectric behavior of dense nanocrystalline BaTiO3 ceramics,” Phys. Rev. B 70(2), 024107 (2004).
[Crossref]

Tischler, J. G.

J. D. Caldwell, A. V. Kretinin, Y. Chen, V. Giannini, M. M. Fogler, Y. Francescato, C. T. Ellis, J. G. Tischler, C. R. Woods, A. J. Giles, M. Hong, K. Watanabe, T. Taniguchi, S. A. Maier, and K. S. Novoselov, “Sub-diffractional volume-confined polaritons in the natural hyperbolic material hexagonal boron nitride,” Nat. Commun. 5, 5221 (2014).
[Crossref] [PubMed]

Tumkur, T.

T. Tumkur, G. Zhu, P. Black, Y. A. Barnakov, C. E. Bonner, and M. A. Noginov, “Control of spontaneous emission in a volume of functionalized hyperbolic metamaterial,” Appl. Phys. Lett. 99(15), 151115 (2011).
[Crossref]

M. A. Noginov, Y. A. Barnakov, G. Zhu, T. Tumkur, H. Li, and E. E. Narimanov, “Bulk photonic metamaterial with hyperbolic dispersion,” Appl. Phys. Lett. 94(15), 151105 (2009).
[Crossref]

Tumkur, T. U.

T. U. Tumkur, J. K. Kitur, B. Chu, L. Gu, V. A. Podolskiy, E. E. Narimanov, and M. A. Noginov, “Control of reflectance and transmittance in scattering and curvilinear hyperbolic metamaterials,” Appl. Phys. Lett. 101(9), 091105 (2012).
[Crossref]

Tumkur, U.

U. Tumkur, L. Gu, J. K. Kitur, E. E. Narimanov, and M. A. Noginov, “Control of absorption with hyperbolic metamaterials,” Appl. Phys. Lett. 100(16), 161103 (2012).
[Crossref]

Urzhumov, Y.

T. Taubner, D. Korobkin, Y. Urzhumov, G. Shvets, and R. Hillenbrand, “Near-field microscopy through a SiC superlens,” Science 313(5793), 1595 (2006).
[Crossref] [PubMed]

Vaughan, J. C.

T. Feurer, N. S. Stoyanov, D. W. Ward, J. C. Vaughan, E. R. Statz, and K. A. Nelson, “Terahertz polaritonics,” Annu. Rev. Mater. Sci. 37(1), 317–350 (2007).
[Crossref]

Viviani, M.

Z. Zhao, V. Buscaglia, M. Viviani, M. T. Buscaglia, L. Mitoseriu, A. Testino, M. Nygren, M. Johnsson, and P. Nanni, “Grain-size effects on the ferroelectric behavior of dense nanocrystalline BaTiO3 ceramics,” Phys. Rev. B 70(2), 024107 (2004).
[Crossref]

Vogelgesang, R.

M. Esslinger, R. Vogelgesang, N. Talebi, W. Khunsin, P. Gehring, S. De Zuani, B. Gompf, and K. Kern, “Tetradymites as Natural Hyperbolic Materials for the Near-Infrared to Visible,” ACS Photonics 1(12), 1285–1289 (2014).
[Crossref]

Wan, J. Z.

J. Z. Wan, J. L. Brebner, R. Leonelli, and J. T. Graham, “Optical properties of excitons in GaTe,” Phys. Rev. B Condens. Matter 46(3), 1468–1471 (1992).
[Crossref] [PubMed]

Wang, R.

R. Wang, J. Sun, and J. Zhou, “Indefinite permittivity in uniaxial single crystal at infrared frequency,” Appl. Phys. Lett. 97(3), 031912 (2010).
[Crossref]

R. Wang, J. Sun, and J. Zhou, “Indefinite permittivity in uniaxial single crystal at infrared frequency,” Appl. Phys. Lett. 97(3), 031912 (2010).
[Crossref]

Wang, Y.

J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321(5891), 930 (2008).
[Crossref] [PubMed]

Ward, D. W.

T. Feurer, N. S. Stoyanov, D. W. Ward, J. C. Vaughan, E. R. Statz, and K. A. Nelson, “Terahertz polaritonics,” Annu. Rev. Mater. Sci. 37(1), 317–350 (2007).
[Crossref]

Wasserman, D.

A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6(12), 946–950 (2007).
[Crossref] [PubMed]

Watanabe, K.

J. D. Caldwell, A. V. Kretinin, Y. Chen, V. Giannini, M. M. Fogler, Y. Francescato, C. T. Ellis, J. G. Tischler, C. R. Woods, A. J. Giles, M. Hong, K. Watanabe, T. Taniguchi, S. A. Maier, and K. S. Novoselov, “Sub-diffractional volume-confined polaritons in the natural hyperbolic material hexagonal boron nitride,” Nat. Commun. 5, 5221 (2014).
[Crossref] [PubMed]

Williams, C. T.

H. Friis, A. A. Finch, C. T. Williams, and J. M. Hanchar, “Photoluminescence of zircon (ZrSiO4) doped with REE 3+ (REE = Pr, Sm, Eu, Gd, Dy, Ho, Er),” Phys. Chem. Miner. 37(6), 333–342 (2010).
[Crossref]

Woods, C. R.

J. D. Caldwell, A. V. Kretinin, Y. Chen, V. Giannini, M. M. Fogler, Y. Francescato, C. T. Ellis, J. G. Tischler, C. R. Woods, A. J. Giles, M. Hong, K. Watanabe, T. Taniguchi, S. A. Maier, and K. S. Novoselov, “Sub-diffractional volume-confined polaritons in the natural hyperbolic material hexagonal boron nitride,” Nat. Commun. 5, 5221 (2014).
[Crossref] [PubMed]

Wu, L.

L. Wu, F. Ling, J. Liu, and J. Yao, “Optical modulation of permittivity for different doped near stoichiometric lithium niobate in the terahertz range,” Proc. SPIE 8330, 83300N (2011).

Wu, X.

M. Zgonik, P. Bernasconi, M. Duelli, R. Schlesser, P. Günter, M. H. Garrett, D. Rytz, Y. Zhu, and X. Wu, “Dielectric, elastic, piezoelectric, electro-optic, and elasto-optic tensors of BaTiO3 crystals,” Phys. Rev. B Condens. Matter 50(9), 5941–5949 (1994).
[Crossref] [PubMed]

Xiong, Y.

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
[Crossref] [PubMed]

Y. Xiong, Z. Liu, C. Sun, and X. Zhang, “Two-dimensional imaging by far-field superlens at visible wavelengths,” Nano Lett. 7(11), 3360–3365 (2007).
[Crossref] [PubMed]

Xu, T.

T. Xu, A. Agrawal, M. Abashin, K. J. Chau, and H. J. Lezec, “All-angle negative refraction and active flat lensing of ultraviolet light,” Nature 497(7450), 470–474 (2013).
[Crossref] [PubMed]

Yan, Z.

Z. Yan, Y. Guo, G. Zhang, and J.-M. Liu, “High-performance programmable memory devices based on co-doped BaTiO3.,” Adv. Mater. 23(11), 1351–1355 (2011).
[Crossref] [PubMed]

Yang, X.

Y. He, S. He, and X. Yang, “Optical field enhancement in nanoscale slot waveguides of hyperbolic metamaterials,” Opt. Lett. 37(14), 2907–2909 (2012).
[Crossref] [PubMed]

J. Yao, X. Yang, X. Yin, G. Bartal, and X. Zhang, “Three-dimensional nanometer-scale optical cavities of indefinite medium,” Proc. Natl. Acad. Sci. U.S.A. 108(28), 11327–11331 (2011).
[Crossref] [PubMed]

Yao, J.

J. Yao, X. Yang, X. Yin, G. Bartal, and X. Zhang, “Three-dimensional nanometer-scale optical cavities of indefinite medium,” Proc. Natl. Acad. Sci. U.S.A. 108(28), 11327–11331 (2011).
[Crossref] [PubMed]

L. Wu, F. Ling, J. Liu, and J. Yao, “Optical modulation of permittivity for different doped near stoichiometric lithium niobate in the terahertz range,” Proc. SPIE 8330, 83300N (2011).

J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321(5891), 930 (2008).
[Crossref] [PubMed]

Yin, X.

J. Yao, X. Yang, X. Yin, G. Bartal, and X. Zhang, “Three-dimensional nanometer-scale optical cavities of indefinite medium,” Proc. Natl. Acad. Sci. U.S.A. 108(28), 11327–11331 (2011).
[Crossref] [PubMed]

Yogurtcu, Y. K.

H. S. Güder, B. Abay, H. Efeoglu, and Y. K. Yogurtcu, “Photoluminescence characterization of GaTe single crystals,” J. Lumin. 93(3), 243–248 (2001).
[Crossref]

Zgonik, M.

M. Zgonik, P. Bernasconi, M. Duelli, R. Schlesser, P. Günter, M. H. Garrett, D. Rytz, Y. Zhu, and X. Wu, “Dielectric, elastic, piezoelectric, electro-optic, and elasto-optic tensors of BaTiO3 crystals,” Phys. Rev. B Condens. Matter 50(9), 5941–5949 (1994).
[Crossref] [PubMed]

Zhang, G.

Z. Yan, Y. Guo, G. Zhang, and J.-M. Liu, “High-performance programmable memory devices based on co-doped BaTiO3.,” Adv. Mater. 23(11), 1351–1355 (2011).
[Crossref] [PubMed]

Zhang, X.

J. Yao, X. Yang, X. Yin, G. Bartal, and X. Zhang, “Three-dimensional nanometer-scale optical cavities of indefinite medium,” Proc. Natl. Acad. Sci. U.S.A. 108(28), 11327–11331 (2011).
[Crossref] [PubMed]

J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321(5891), 930 (2008).
[Crossref] [PubMed]

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
[Crossref] [PubMed]

Y. Xiong, Z. Liu, C. Sun, and X. Zhang, “Two-dimensional imaging by far-field superlens at visible wavelengths,” Nano Lett. 7(11), 3360–3365 (2007).
[Crossref] [PubMed]

Zhao, Z.

Z. Zhao, V. Buscaglia, M. Viviani, M. T. Buscaglia, L. Mitoseriu, A. Testino, M. Nygren, M. Johnsson, and P. Nanni, “Grain-size effects on the ferroelectric behavior of dense nanocrystalline BaTiO3 ceramics,” Phys. Rev. B 70(2), 024107 (2004).
[Crossref]

Zhou, J.

J. Sun, N. M. Litchinitser, and J. Zhou, “Indefinite by nature: from ultraviolet to terahertz,” ACS Photonics 1(4), 293–303 (2014).
[Crossref]

J. Sun, J. Zhou, B. Li, and F. Kang, “Indefinite permittivity and negative refraction in natural material: Graphite,” Appl. Phys. Lett. 98(10), 101901 (2011).
[Crossref]

R. Wang, J. Sun, and J. Zhou, “Indefinite permittivity in uniaxial single crystal at infrared frequency,” Appl. Phys. Lett. 97(3), 031912 (2010).
[Crossref]

R. Wang, J. Sun, and J. Zhou, “Indefinite permittivity in uniaxial single crystal at infrared frequency,” Appl. Phys. Lett. 97(3), 031912 (2010).
[Crossref]

Zhou, Y.

H. Guo, L. Liu, Z. Chen, S. Ding, H. Lu, K.-J. Jin, Y. Zhou, and B. Cheng, “Structural and optical properties of BaTiO3 ultrathin films,” Europhys. Lett. 73(1), 110–115 (2006).
[Crossref]

Zhu, G.

T. Tumkur, G. Zhu, P. Black, Y. A. Barnakov, C. E. Bonner, and M. A. Noginov, “Control of spontaneous emission in a volume of functionalized hyperbolic metamaterial,” Appl. Phys. Lett. 99(15), 151115 (2011).
[Crossref]

M. A. Noginov, H. Li, Y. A. Barnakov, D. Dryden, G. Nataraj, G. Zhu, C. E. Bonner, M. Mayy, Z. Jacob, and E. E. Narimanov, “Controlling spontaneous emission with metamaterials,” Opt. Lett. 35(11), 1863–1865 (2010).
[Crossref] [PubMed]

M. A. Noginov, Y. A. Barnakov, G. Zhu, T. Tumkur, H. Li, and E. E. Narimanov, “Bulk photonic metamaterial with hyperbolic dispersion,” Appl. Phys. Lett. 94(15), 151105 (2009).
[Crossref]

Zhu, Y.

M. Zgonik, P. Bernasconi, M. Duelli, R. Schlesser, P. Günter, M. H. Garrett, D. Rytz, Y. Zhu, and X. Wu, “Dielectric, elastic, piezoelectric, electro-optic, and elasto-optic tensors of BaTiO3 crystals,” Phys. Rev. B Condens. Matter 50(9), 5941–5949 (1994).
[Crossref] [PubMed]

ACS Photonics (2)

J. Sun, N. M. Litchinitser, and J. Zhou, “Indefinite by nature: from ultraviolet to terahertz,” ACS Photonics 1(4), 293–303 (2014).
[Crossref]

M. Esslinger, R. Vogelgesang, N. Talebi, W. Khunsin, P. Gehring, S. De Zuani, B. Gompf, and K. Kern, “Tetradymites as Natural Hyperbolic Materials for the Near-Infrared to Visible,” ACS Photonics 1(12), 1285–1289 (2014).
[Crossref]

Adv. Mater. (1)

Z. Yan, Y. Guo, G. Zhang, and J.-M. Liu, “High-performance programmable memory devices based on co-doped BaTiO3.,” Adv. Mater. 23(11), 1351–1355 (2011).
[Crossref] [PubMed]

Adv. Optoelectron. (2)

Y. Guo, W. Newman, C. L. Cortes, and Z. Jacob, “Applications of hyperbolic metamaterials substrates,” Adv. Optoelectron. 2012, 452502 (2012).
[Crossref]

L. V. Alekseyev, V. A. Podolskiy, and E. E. Narimanov, “Homogeneous hyperbolic systems for terahertz and far-infrared frequencies,” Adv. Optoelectron. 2012, 267564 (2012).
[Crossref]

Anal. Bioanal. Chem. (1)

K. Länge, B. E. Rapp, and M. Rapp, “Surface acoustic wave biosensors: a review,” Anal. Bioanal. Chem. 391(5), 1509–1519 (2008).
[Crossref] [PubMed]

Annu. Rev. Mater. Sci. (1)

T. Feurer, N. S. Stoyanov, D. W. Ward, J. C. Vaughan, E. R. Statz, and K. A. Nelson, “Terahertz polaritonics,” Annu. Rev. Mater. Sci. 37(1), 317–350 (2007).
[Crossref]

Appl. Phys. Lett. (12)

J. Sun, J. Zhou, B. Li, and F. Kang, “Indefinite permittivity and negative refraction in natural material: Graphite,” Appl. Phys. Lett. 98(10), 101901 (2011).
[Crossref]

K. Kitamura, Y. Furukawa, K. Niwa, V. Gopalan, and T. E. Mitchell, “Crystal Growth and Low Coercive Field 180° Domain Switching Characteristics of Stochiometric LiTaO3,” Appl. Phys. Lett. 73(21), 3073–3075 (1998).
[Crossref]

R. Wang, J. Sun, and J. Zhou, “Indefinite permittivity in uniaxial single crystal at infrared frequency,” Appl. Phys. Lett. 97(3), 031912 (2010).
[Crossref]

V. Skoromets, S. Glinšek, V. Bovtun, M. Kempa, J. Petzelt, S. Kamba, B. Malič, M. Kosec, and P. Kužel, “Ferroelectric phase transition in polycrystalline KTaO3 thin film revealed by terahertz spectroscopy,” Appl. Phys. Lett. 99(5), 052908 (2011).
[Crossref]

P. Kŭzel, F. Kadlec, H. Nemec, R. Ott, E. Hollmann, and N. Klein, “Dielectric tenability of SrTiO3 thin films in the terahertz range,” Appl. Phys. Lett. 88(10), 102901 (2006).
[Crossref]

R. Wang, J. Sun, and J. Zhou, “Indefinite permittivity in uniaxial single crystal at infrared frequency,” Appl. Phys. Lett. 97(3), 031912 (2010).
[Crossref]

M. A. Noginov, Y. A. Barnakov, G. Zhu, T. Tumkur, H. Li, and E. E. Narimanov, “Bulk photonic metamaterial with hyperbolic dispersion,” Appl. Phys. Lett. 94(15), 151105 (2009).
[Crossref]

T. U. Tumkur, J. K. Kitur, B. Chu, L. Gu, V. A. Podolskiy, E. E. Narimanov, and M. A. Noginov, “Control of reflectance and transmittance in scattering and curvilinear hyperbolic metamaterials,” Appl. Phys. Lett. 101(9), 091105 (2012).
[Crossref]

Y. Guo, C. L. Cortes, S. Molesky, and Z. Jacob, “Broadband super-Planckian thermal emission from hyperbolic metamaterials,” Appl. Phys. Lett. 101(13), 131106 (2012).
[Crossref]

Z. Jacob, I. I. Smolyaninov, and E. E. Narimanov, “Broadband purcell effect: radiative decay engineering with metamaterials,” Appl. Phys. Lett. 100(18), 181105 (2012).
[Crossref]

T. Tumkur, G. Zhu, P. Black, Y. A. Barnakov, C. E. Bonner, and M. A. Noginov, “Control of spontaneous emission in a volume of functionalized hyperbolic metamaterial,” Appl. Phys. Lett. 99(15), 151115 (2011).
[Crossref]

U. Tumkur, L. Gu, J. K. Kitur, E. E. Narimanov, and M. A. Noginov, “Control of absorption with hyperbolic metamaterials,” Appl. Phys. Lett. 100(16), 161103 (2012).
[Crossref]

Chem. Mater. (1)

E. G. Gillan and A. R. Barron, “Chemical vapour deposition of hexagonal gallium selenide and telluride films from cubane precursors: Understanding the envelope ofmolecular control,” Chem. Mater. 9, 3037–3048 (1997).
[Crossref]

Europhys. Lett. (1)

H. Guo, L. Liu, Z. Chen, S. Ding, H. Lu, K.-J. Jin, Y. Zhou, and B. Cheng, “Structural and optical properties of BaTiO3 ultrathin films,” Europhys. Lett. 73(1), 110–115 (2006).
[Crossref]

IEEE Antennas Wirel. Propag. Lett. (1)

K. G. Balmain, A. A. E. Lüttgen, and P. C. Kremer, “Resonance cone formation, reflection, refraction, and focusing in a planar anisotropic metamaterial,” IEEE Antennas Wirel. Propag. Lett. 1(1), 146–149 (2002).
[Crossref]

Int. J. Min. Met. Mater. (1)

P. M. Reshmi, A. G. Kunjomana, and K. A. Chandrasekharan, “Electrical and mechanical properties of vapour grown gallium monotelluride crystals,” Int. J. Min. Met. Mater. 20(10), 967–971 (2013).
[Crossref]

J. Appl. Phys. (1)

C. B. Roundy and R. L. Byer, “Sensitive LiTaO3 Pyroelectric Detector,” J. Appl. Phys. 44(2), 929–931 (1973).
[Crossref]

J. Cryst. Growth (1)

Y. Furukawa, K. Kitamura, E. Suzuki, and K. Niwa, “Stoichiometric LiTaO3 single crystal growth by double crucible Czochralski method using automatic powder supply system,” J. Cryst. Growth 197(4), 889–895 (1999).
[Crossref]

J. Lumin. (1)

H. S. Güder, B. Abay, H. Efeoglu, and Y. K. Yogurtcu, “Photoluminescence characterization of GaTe single crystals,” J. Lumin. 93(3), 243–248 (2001).
[Crossref]

J. Opt. (1)

C. L. Cortes, W. Newman, S. Molesky, and Z. Jacob, “Quantum nanophotonics using hyperbolic metamaterials,” J. Opt. 14(6), 063001 (2012).
[Crossref]

J. Phys. D Appl. Phys. (2)

W. I. Milne and J. C. Anderson, “Memory switching in gallium telluride single crystals,” J. Phys. D Appl. Phys. 7(11), 1540–1548 (1974).
[Crossref]

W. I. Milne and J. C. Anderson, “Threshold switching in gallium telluride single crystals,” J. Phys. D Appl. Phys. 6(17), 2115–2123 (1973).
[Crossref]

Laser Photonics Rev. (1)

S. Ishii, A. V. Kildishev, E. Narimanov, V. M. Shalaev, and V. P. Drachev, “Sub-wavelength interference pattern from volume plasmon polaritons in a hyperbolic medium,” Laser Photonics Rev. 7(2), 265–271 (2013).
[Crossref]

Mater. Res. Bull. (1)

G. Godefroy, P. Lompre, C. Dumas, and H. Arend, “Pure and doped barium titanate. Crystal growth and chemical composition,” Mater. Res. Bull. 12(2), 165–169 (1977).
[Crossref]

Microelectron. Eng. (1)

R. Terki, G. Bertrand, and H. Aourag, “Full potential investigations of structural and electronic properties of ZrSiO4,” Microelectron. Eng. 81(2-4), 514–523 (2005).
[Crossref]

Nano Convergence (1)

P. Shekhar, J. Atkinson, and Z. Jacob, “Hyperbolic metamaterials: fundamentals and applications,” Nano Convergence 1(1), 14 (2014).
[Crossref]

Nano Lett. (1)

Y. Xiong, Z. Liu, C. Sun, and X. Zhang, “Two-dimensional imaging by far-field superlens at visible wavelengths,” Nano Lett. 7(11), 3360–3365 (2007).
[Crossref] [PubMed]

Nat. Commun. (1)

J. D. Caldwell, A. V. Kretinin, Y. Chen, V. Giannini, M. M. Fogler, Y. Francescato, C. T. Ellis, J. G. Tischler, C. R. Woods, A. J. Giles, M. Hong, K. Watanabe, T. Taniguchi, S. A. Maier, and K. S. Novoselov, “Sub-diffractional volume-confined polaritons in the natural hyperbolic material hexagonal boron nitride,” Nat. Commun. 5, 5221 (2014).
[Crossref] [PubMed]

Nat. Mater. (1)

A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6(12), 946–950 (2007).
[Crossref] [PubMed]

Nature (1)

T. Xu, A. Agrawal, M. Abashin, K. J. Chau, and H. J. Lezec, “All-angle negative refraction and active flat lensing of ultraviolet light,” Nature 497(7450), 470–474 (2013).
[Crossref] [PubMed]

Opt. Express (4)

Opt. Lett. (2)

Opt. Mater. Express (1)

Phys. Chem. Miner. (1)

H. Friis, A. A. Finch, C. T. Williams, and J. M. Hanchar, “Photoluminescence of zircon (ZrSiO4) doped with REE 3+ (REE = Pr, Sm, Eu, Gd, Dy, Ho, Er),” Phys. Chem. Miner. 37(6), 333–342 (2010).
[Crossref]

Phys. Rev. (1)

A. M. Glass, “Dielectric, thermal, and pyroelectric properties of ferroelectric LiTaO3,” Phys. Rev. 172(2), 564–571 (1968).
[Crossref]

Phys. Rev. B (5)

Z. Zhao, V. Buscaglia, M. Viviani, M. T. Buscaglia, L. Mitoseriu, A. Testino, M. Nygren, M. Johnsson, and P. Nanni, “Grain-size effects on the ferroelectric behavior of dense nanocrystalline BaTiO3 ceramics,” Phys. Rev. B 70(2), 024107 (2004).
[Crossref]

N. Novak, R. Pirc, and Z. Kutnjak, “Impact of critical point on piezoelectric and electrocaloric response in barium titanate,” Phys. Rev. B 87(10), 104102 (2013).
[Crossref]

I. I. Smolyaninov, E. Hwang, and E. E. Narimanov, “Hyperbolic metamaterial interfaces: Hawking radiation from Rindler horizons and spacetime signature transitions,” Phys. Rev. B 85(23), 235122 (2012).
[Crossref]

V. A. Podolskiy and E. E. Narimanov, “Strongly anisotropic waveguide as a nonmagnetic left-handed system,” Phys. Rev. B 71(20), 201101 (2005).
[Crossref]

A. Salandrino and N. Engheta, “Far-Field Subdiffraction Optical Microscopy Using Metamaterial Crystals: Theory and Simulations,” Phys. Rev. B 74(7), 075103 (2006).
[Crossref]

Phys. Rev. B Condens. Matter (2)

M. Zgonik, P. Bernasconi, M. Duelli, R. Schlesser, P. Günter, M. H. Garrett, D. Rytz, Y. Zhu, and X. Wu, “Dielectric, elastic, piezoelectric, electro-optic, and elasto-optic tensors of BaTiO3 crystals,” Phys. Rev. B Condens. Matter 50(9), 5941–5949 (1994).
[Crossref] [PubMed]

J. Z. Wan, J. L. Brebner, R. Leonelli, and J. T. Graham, “Optical properties of excitons in GaTe,” Phys. Rev. B Condens. Matter 46(3), 1468–1471 (1992).
[Crossref] [PubMed]

Phys. Rev. Lett. (2)

D. R. Smith and D. Schurig, “Electromagnetic Wave Propagation in Media with Indefinite Permittivity and Permeability Tensors,” Phys. Rev. Lett. 90(7), 077405 (2003).
[Crossref] [PubMed]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[Crossref] [PubMed]

Phys. Status Solidi (1)

E. Gerlach, P. Grosse, M. Rautenberg, and W. Senske, “Dynamical conductivity and plasmon excitation in Bi,” Phys. Status Solidi 75(2), 553–558 (1976).
[Crossref]

Proc. Natl. Acad. Sci. U.S.A. (1)

J. Yao, X. Yang, X. Yin, G. Bartal, and X. Zhang, “Three-dimensional nanometer-scale optical cavities of indefinite medium,” Proc. Natl. Acad. Sci. U.S.A. 108(28), 11327–11331 (2011).
[Crossref] [PubMed]

Proc. SPIE (1)

L. Wu, F. Ling, J. Liu, and J. Yao, “Optical modulation of permittivity for different doped near stoichiometric lithium niobate in the terahertz range,” Proc. SPIE 8330, 83300N (2011).

Science (4)

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental Verification of a Negative Index of Refraction,” Science 292(5514), 77–79 (2001).
[Crossref] [PubMed]

J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321(5891), 930 (2008).
[Crossref] [PubMed]

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
[Crossref] [PubMed]

T. Taubner, D. Korobkin, Y. Urzhumov, G. Shvets, and R. Hillenbrand, “Near-field microscopy through a SiC superlens,” Science 313(5793), 1595 (2006).
[Crossref] [PubMed]

Other (5)

E. D. Palik and G. Ghosh, The electronic handbook of optical constants of solids (Academic Press, 1999).

K. Korzeb, M. Gajc, and D. A. Pawlak, “Dataset 1,” figshare (2015) [retrieved 2 July 2015], http://figshare.com/articles/Compendium_of_natural_hyperbolic_metamaterials/1471761 .

F. F. Mazda, Discrete Electronic Components, (Cambridge University Press, 1981).

A. M. Conway, C. E. Reinhardt, J. Nikolic, A. J. Nelson, T. F. Wang, K. J. Wu, A. Payne, A. Mertiri, G. Pabst, R. Roy, K. C. Mandal, P. Bhattacharya, Y. Cui, M. Groza, and A. Burger, “Exploration of GaTe for gamma detection,” IEEE Nuclear Science Symposium Conference RecordN24–326,1551–1555 (2007).

O. Svelto, Principles of Lasers, (Springer 2010).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Scheme presenting types of hyperbolic materials.

Fig. 2
Fig. 2

Occurrence of natural hyperbolic materials at particular wavelength ranges. Chosen crystalline uniaxial and biaxal (orange stars) materials are shown which possess at least at some wavelength maximal quality factor Q>5 (green colour) or 3<Q<5 (blue colour); Materials with Q<3 have been neglected. The total wavelength range for which these materials exhibits Re(εi)<0, Re(εj)>0 with Q>5 or 3<Q<5 are shown.

Fig. 3
Fig. 3

Natural hyperbolic materials with highest available quality factor, Qmax, demonstrating materials with relatively small losses in the comparison with the magnitude of the negative real part of permittivity. Q = -Re(εi)/Im(εi), where Re(εi)<0, Re(εj)>0. The histograms are presented for chosen crystalline uniaxial and biaxal (orange stars) materials for which their maximal quality factor is: (a) Qmax>5; (b) 3<Qmax<5. Materials with Qmax<3 have been neglected. Δε = Re(εi)-Re(εj) and Im(εj) at this wavelength are also presented.

Fig. 4
Fig. 4

Natural uniaxial materials with high quality factor, Q: a) ZrSiO4, b) BaTiO3. Graphs show real parts (solid lines) and imaginary parts (dash lines) of dielectric permittivity and quality factor (dot line) for ordinary and extraordinary waves.

Fig. 5
Fig. 5

Aluminum oxide, Al2O3, as homogeneous hyperbolic material: a) exhibiting a relatively high Q factor and small losses, b) exhibiting very high dielectric anisotropy, Δε. Graphs show real parts (solid lines) and imaginary parts (dash lines) of dielectric permittivity and the quality factor (dot line) for ordinary and extraordinary waves.

Fig. 6
Fig. 6

Natural hyperbolic materials with the maximal value of quality factor Qmax>5 and relativity small losses for the positive part of the dielectric permittivity: a) SiO2, b) MgF2. Graphs show real parts (solid lines) and imaginary parts (dash lines) of dielectric permittivity and quality factor (dot line) for ordinary and extraordinary waves.

Fig. 7
Fig. 7

Natural uniaxial materials with opposite signs of permittivity for ordinary and extraordinary waves in the broad range of wavelengths: a) NaNO3, b) BaTiO3. Graphs show real parts (solid lines) and imaginary parts (dash lines) of dielectric permittivity and the quality factor (dot line) for ordinary and extraordinary waves.

Fig. 8
Fig. 8

Natural hyperbolic materials with highest known anisotropy of permittivity, ∆εmax. Δε = Re(εj)-Re(εi), where Re(εi)<0, Re(εj)>0. a) Histograms show materials with Δε>100 at the wavelength of its maximal value. Im(εi) and Im(εj) at the ∆εmax wavelength are also presented. b) Occurrence of natural hyperbolic materials for which Δεmax>100 at particular wavelength ranges. Complete wavelength ranges at which these materials exhibit Δεmax>100 are shown.

Fig. 9
Fig. 9

Graphite - natural uniaxial material with the highest anisotropy of permittivity, ∆ε. Graph shows real parts of dielectric permittivity for ordinary and extraordinary waves.

Fig. 10
Fig. 10

Gallium telluride, GaTe, biaxial natural material with high dielectric anisotropy in the visible wavelength range. Graphs show real parts (solid lines) and imaginary parts (dash lines) of dielectric permittivity and quality factor (dot line) for three crystallography axes.

Fig. 11
Fig. 11

Composite and natural hyperbolic materials at different spectral ranges. Materials shown in bold are proposed in this paper.

Tables (3)

Tables Icon

Table 1 Natural hyperbolic materials characterized by quality factor Q>5 or 3<Q<5 at specific wavelength range.

Tables Icon

Table 2 Chosen data, as quality factor, Q, dielectric losses Im(ε), strength of anisotropy, Δε, for chosen materials.

Tables Icon

Table 3 Natural hyperbolic materials characterized by high strength of dielectric anisotropy, Δε, Δεmax>100 at specific wavelength ranges.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

k x 2 ε 1 + k y 2 ε 2 + k z 2 ε 3 = ω 2 c 2
ε =[ ε xx , ε yy , ε zz ]
( k x 2 + k y 2 ) ε 1 + k z 2 ε 2 = ( ω c ) 2
Re( ε j )= n j 2 k j 2
Im( ε j )=2 n j k j
Q j = Re( ε j ) Im( ε j )
Δε=Re( ε j )Re( ε i )

Metrics