Abstract

A combination of an aspherical hybrid diffractive-refractive lens with a flexible fluidic membrane lens allows the implementation of a light sensitive and wide-aperture optical system with variable focus. This approach is comparable to the vertebrate eye in air, in which the cornea offers a strong optical power and the flexible crystalline lens is used for accommodation. Also following the natural model of the human eye, the decay of image quality with increasing field position is compensated, in the optical system presented here, by successively addressing different tilting angles which mimics saccadic eye-movements. The optical design and the instrumental implementation are presented and discussed, and the working principle is demonstrated.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Intraocular lens based on double-liquid variable-focus lens

Runling Peng, Yifan Li, Shuilan Hu, Maowei Wei, and Jiabi Chen
Appl. Opt. 53(2) 249-253 (2014)

Physical human model eye and methods of its use to analyse optical performance of soft contact lenses

Ravi C Bakaraju, Klaus Ehrmann, Darrin Falk, Arthur Ho, and Eric Papas
Opt. Express 18(16) 16868-16882 (2010)

Anterior segment imaging with Spectral OCT system using a high-speed CMOS camera

Ireneusz Grulkowski, Michalina Gora, Maciej Szkulmowski, Iwona Gorczynska, Daniel Szlag, Susana Marcos, Andrzej Kowalczyk, and Maciej Wojtkowski
Opt. Express 17(6) 4842-4858 (2009)

References

  • View by:
  • |
  • |
  • |

  1. C. A. Curcio, K. R. Sloan, R. E. Kalina, and A. E. Hendrickson, “Human photoreceptor topography,” J. Comp. Neurol. 292(4), 497–523 (1990).
    [Crossref] [PubMed]
  2. L. Alfred, Yarbus; Eye Movements and Vision; (Plenum, 1967).
  3. M. F. Land and D.-E. Nilsson, Animal Eyes (Oxford University, 2002).
  4. M. Ott, “Visual accommodation in vertebrates: mechanisms, physiological response and stimuli,” J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 192(2), 97–111 (2006).
    [Crossref] [PubMed]
  5. J. Draheim, F. Schneider, R. Kamberger, C. Mueller, and U. Wallrabe, “Fabrication of a fluidic membrane lens system,” J. Micromech. Microeng. 19(9), 095013 (2009).
    [Crossref]
  6. J. Draheim, T. Burger, F. Schneider, and U. Wallrabe, “Fluidic zoom lens system using two single chamber adaptive lenses with integrated actuation,” in Proceedings of IEEE Conference on MEMS2011 (IEEE 2011), pp. 692–695.
    [Crossref]
  7. G. Beadie, M. L. Sandrock, M. J. Wiggins, R. S. Lepkowicz, J. S. Shirk, M. Ponting, Y. Yang, T. Kazmierczak, A. Hiltner, and E. Baer, “Tunable polymer lens,” Opt. Express 16(16), 11847–11857 (2008).
    [Crossref] [PubMed]
  8. F. Schneider, J. Draheim, R. Kamberger, P. Waibel, and U. Wallrabe, “Optical characterization of adaptive fluidic silicone-membrane lenses,” Opt. Express 17(14), 11813–11821 (2009).
    [Crossref] [PubMed]
  9. Arctic 39N0 Family,” http://www.varioptic.com/products/variable-focus/arctic-39n0/ .
  10. Optical image capturing lens system,” Patent Application US 2013/0021680 A1.
  11. X. Peng, “Design of High Pixel Mobile Phone Camera Lens,” Res. J. Appl. Sci. Eng. Technol. 6, 1160–1165 (2013).
  12. T. Steinich and V. Blahnik, “Optical design of camera optics for mobile phones,” Adv. Opt. Technol. 1, 51–58 (2012).
  13. S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85(7), 1128–1130 (2004).
    [Crossref]
  14. K. Newman and K. Stephens, “Analysis of gravitational effects on liquid lenses,” Proc. SPIE 8450, 84500G (2012).
    [Crossref]
  15. J. Draheim, F. Schneider, T. Burger, R. Kamberger, and U. Wallrabe, “Single chamber adaptive membrane lens with integrated actuation,” in 2010 International Conference on Optical MEMS and Nanophotonics, (2010), pp. 15–16.
    [Crossref]
  16. F. Trager, Springer Handbook of Lasers and Optics (Springer, 2007).
  17. H. von Helmholtz, Popular Scientific Lectures (Dover, 1962).

2013 (1)

X. Peng, “Design of High Pixel Mobile Phone Camera Lens,” Res. J. Appl. Sci. Eng. Technol. 6, 1160–1165 (2013).

2012 (2)

T. Steinich and V. Blahnik, “Optical design of camera optics for mobile phones,” Adv. Opt. Technol. 1, 51–58 (2012).

K. Newman and K. Stephens, “Analysis of gravitational effects on liquid lenses,” Proc. SPIE 8450, 84500G (2012).
[Crossref]

2009 (2)

F. Schneider, J. Draheim, R. Kamberger, P. Waibel, and U. Wallrabe, “Optical characterization of adaptive fluidic silicone-membrane lenses,” Opt. Express 17(14), 11813–11821 (2009).
[Crossref] [PubMed]

J. Draheim, F. Schneider, R. Kamberger, C. Mueller, and U. Wallrabe, “Fabrication of a fluidic membrane lens system,” J. Micromech. Microeng. 19(9), 095013 (2009).
[Crossref]

2008 (1)

2006 (1)

M. Ott, “Visual accommodation in vertebrates: mechanisms, physiological response and stimuli,” J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 192(2), 97–111 (2006).
[Crossref] [PubMed]

2004 (1)

S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85(7), 1128–1130 (2004).
[Crossref]

1990 (1)

C. A. Curcio, K. R. Sloan, R. E. Kalina, and A. E. Hendrickson, “Human photoreceptor topography,” J. Comp. Neurol. 292(4), 497–523 (1990).
[Crossref] [PubMed]

Baer, E.

Beadie, G.

Blahnik, V.

T. Steinich and V. Blahnik, “Optical design of camera optics for mobile phones,” Adv. Opt. Technol. 1, 51–58 (2012).

Burger, T.

J. Draheim, F. Schneider, T. Burger, R. Kamberger, and U. Wallrabe, “Single chamber adaptive membrane lens with integrated actuation,” in 2010 International Conference on Optical MEMS and Nanophotonics, (2010), pp. 15–16.
[Crossref]

Curcio, C. A.

C. A. Curcio, K. R. Sloan, R. E. Kalina, and A. E. Hendrickson, “Human photoreceptor topography,” J. Comp. Neurol. 292(4), 497–523 (1990).
[Crossref] [PubMed]

Draheim, J.

J. Draheim, F. Schneider, R. Kamberger, C. Mueller, and U. Wallrabe, “Fabrication of a fluidic membrane lens system,” J. Micromech. Microeng. 19(9), 095013 (2009).
[Crossref]

F. Schneider, J. Draheim, R. Kamberger, P. Waibel, and U. Wallrabe, “Optical characterization of adaptive fluidic silicone-membrane lenses,” Opt. Express 17(14), 11813–11821 (2009).
[Crossref] [PubMed]

J. Draheim, F. Schneider, T. Burger, R. Kamberger, and U. Wallrabe, “Single chamber adaptive membrane lens with integrated actuation,” in 2010 International Conference on Optical MEMS and Nanophotonics, (2010), pp. 15–16.
[Crossref]

Hendrickson, A. E.

C. A. Curcio, K. R. Sloan, R. E. Kalina, and A. E. Hendrickson, “Human photoreceptor topography,” J. Comp. Neurol. 292(4), 497–523 (1990).
[Crossref] [PubMed]

Hendriks, B. H. W.

S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85(7), 1128–1130 (2004).
[Crossref]

Hiltner, A.

Kalina, R. E.

C. A. Curcio, K. R. Sloan, R. E. Kalina, and A. E. Hendrickson, “Human photoreceptor topography,” J. Comp. Neurol. 292(4), 497–523 (1990).
[Crossref] [PubMed]

Kamberger, R.

F. Schneider, J. Draheim, R. Kamberger, P. Waibel, and U. Wallrabe, “Optical characterization of adaptive fluidic silicone-membrane lenses,” Opt. Express 17(14), 11813–11821 (2009).
[Crossref] [PubMed]

J. Draheim, F. Schneider, R. Kamberger, C. Mueller, and U. Wallrabe, “Fabrication of a fluidic membrane lens system,” J. Micromech. Microeng. 19(9), 095013 (2009).
[Crossref]

J. Draheim, F. Schneider, T. Burger, R. Kamberger, and U. Wallrabe, “Single chamber adaptive membrane lens with integrated actuation,” in 2010 International Conference on Optical MEMS and Nanophotonics, (2010), pp. 15–16.
[Crossref]

Kazmierczak, T.

Kuiper, S.

S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85(7), 1128–1130 (2004).
[Crossref]

Lepkowicz, R. S.

Mueller, C.

J. Draheim, F. Schneider, R. Kamberger, C. Mueller, and U. Wallrabe, “Fabrication of a fluidic membrane lens system,” J. Micromech. Microeng. 19(9), 095013 (2009).
[Crossref]

Newman, K.

K. Newman and K. Stephens, “Analysis of gravitational effects on liquid lenses,” Proc. SPIE 8450, 84500G (2012).
[Crossref]

Ott, M.

M. Ott, “Visual accommodation in vertebrates: mechanisms, physiological response and stimuli,” J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 192(2), 97–111 (2006).
[Crossref] [PubMed]

Peng, X.

X. Peng, “Design of High Pixel Mobile Phone Camera Lens,” Res. J. Appl. Sci. Eng. Technol. 6, 1160–1165 (2013).

Ponting, M.

Sandrock, M. L.

Schneider, F.

F. Schneider, J. Draheim, R. Kamberger, P. Waibel, and U. Wallrabe, “Optical characterization of adaptive fluidic silicone-membrane lenses,” Opt. Express 17(14), 11813–11821 (2009).
[Crossref] [PubMed]

J. Draheim, F. Schneider, R. Kamberger, C. Mueller, and U. Wallrabe, “Fabrication of a fluidic membrane lens system,” J. Micromech. Microeng. 19(9), 095013 (2009).
[Crossref]

J. Draheim, F. Schneider, T. Burger, R. Kamberger, and U. Wallrabe, “Single chamber adaptive membrane lens with integrated actuation,” in 2010 International Conference on Optical MEMS and Nanophotonics, (2010), pp. 15–16.
[Crossref]

Shirk, J. S.

Sloan, K. R.

C. A. Curcio, K. R. Sloan, R. E. Kalina, and A. E. Hendrickson, “Human photoreceptor topography,” J. Comp. Neurol. 292(4), 497–523 (1990).
[Crossref] [PubMed]

Steinich, T.

T. Steinich and V. Blahnik, “Optical design of camera optics for mobile phones,” Adv. Opt. Technol. 1, 51–58 (2012).

Stephens, K.

K. Newman and K. Stephens, “Analysis of gravitational effects on liquid lenses,” Proc. SPIE 8450, 84500G (2012).
[Crossref]

Waibel, P.

Wallrabe, U.

F. Schneider, J. Draheim, R. Kamberger, P. Waibel, and U. Wallrabe, “Optical characterization of adaptive fluidic silicone-membrane lenses,” Opt. Express 17(14), 11813–11821 (2009).
[Crossref] [PubMed]

J. Draheim, F. Schneider, R. Kamberger, C. Mueller, and U. Wallrabe, “Fabrication of a fluidic membrane lens system,” J. Micromech. Microeng. 19(9), 095013 (2009).
[Crossref]

J. Draheim, F. Schneider, T. Burger, R. Kamberger, and U. Wallrabe, “Single chamber adaptive membrane lens with integrated actuation,” in 2010 International Conference on Optical MEMS and Nanophotonics, (2010), pp. 15–16.
[Crossref]

Wiggins, M. J.

Yang, Y.

Adv. Opt. Technol. (1)

T. Steinich and V. Blahnik, “Optical design of camera optics for mobile phones,” Adv. Opt. Technol. 1, 51–58 (2012).

Appl. Phys. Lett. (1)

S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85(7), 1128–1130 (2004).
[Crossref]

J. Comp. Neurol. (1)

C. A. Curcio, K. R. Sloan, R. E. Kalina, and A. E. Hendrickson, “Human photoreceptor topography,” J. Comp. Neurol. 292(4), 497–523 (1990).
[Crossref] [PubMed]

J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. (1)

M. Ott, “Visual accommodation in vertebrates: mechanisms, physiological response and stimuli,” J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 192(2), 97–111 (2006).
[Crossref] [PubMed]

J. Micromech. Microeng. (1)

J. Draheim, F. Schneider, R. Kamberger, C. Mueller, and U. Wallrabe, “Fabrication of a fluidic membrane lens system,” J. Micromech. Microeng. 19(9), 095013 (2009).
[Crossref]

Opt. Express (2)

Proc. SPIE (1)

K. Newman and K. Stephens, “Analysis of gravitational effects on liquid lenses,” Proc. SPIE 8450, 84500G (2012).
[Crossref]

Res. J. Appl. Sci. Eng. Technol. (1)

X. Peng, “Design of High Pixel Mobile Phone Camera Lens,” Res. J. Appl. Sci. Eng. Technol. 6, 1160–1165 (2013).

Other (8)

J. Draheim, F. Schneider, T. Burger, R. Kamberger, and U. Wallrabe, “Single chamber adaptive membrane lens with integrated actuation,” in 2010 International Conference on Optical MEMS and Nanophotonics, (2010), pp. 15–16.
[Crossref]

F. Trager, Springer Handbook of Lasers and Optics (Springer, 2007).

H. von Helmholtz, Popular Scientific Lectures (Dover, 1962).

Arctic 39N0 Family,” http://www.varioptic.com/products/variable-focus/arctic-39n0/ .

Optical image capturing lens system,” Patent Application US 2013/0021680 A1.

J. Draheim, T. Burger, F. Schneider, and U. Wallrabe, “Fluidic zoom lens system using two single chamber adaptive lenses with integrated actuation,” in Proceedings of IEEE Conference on MEMS2011 (IEEE 2011), pp. 692–695.
[Crossref]

L. Alfred, Yarbus; Eye Movements and Vision; (Plenum, 1967).

M. F. Land and D.-E. Nilsson, Animal Eyes (Oxford University, 2002).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Schematics of a variable fluidic lens: The plano-convex lens consists of a transparent liquid-filled cavity with a plane inorganic glass substrate at the rear, and a flexible optical transparent silicon membrane at the front. The radius of curvature of the silicon membrane is adjusted by a variation of the liquid pressure inside the cavity, effected by piezo-actuators.
Fig. 2
Fig. 2 Lens design of a system combining a fixed, aspheric, hybrid diffractive-refractive lens with a flexible fluidic membrane lens (DOE = diffractive optical element). The compact approach offers a light sensitive and wide-aperture optical system with variable focus. Each of the three ray colours represents a different field angle of the observed scene.
Fig. 3
Fig. 3 Secondary spectrum of the system combining an aspherical hybrid diffractive-refractive lens with a flexible fluidic membrane lens. The wavelength dependency of the focal position shows the concave behavior of an achromatic system.
Fig. 4
Fig. 4 Matrix representation of calculated spot diagrams in the sensor plane for different tilting angles and for different height positions. Upper row: Axis of the lens combination is pointing to the center of the image plane (0° tilting angle). The following rows (2-4) are associated with increasing field positions. The image position offering the maximum resolution follows the field position. Last row: Spot diagrams for a maximum tilting angle of 2° in a refocused state.
Fig. 5
Fig. 5 Schematic view of the compound optical group integrated the gimbal-mounting system. The optical group consists of the fixed hybrid-asphere and the tunable membrane lens. During the capturing of the images for the different target positions, the detector remains fixed.
Fig. 6
Fig. 6 A sequence of 5 images taken from a laterally extended scene. For each image, the pivot axes of the optical group is pointing in a different direction, so that for each individual image a different part of the scene is highly resolved (highlighted by a white circle). The object distance to the camera was approximately 1.5 m and the diagonal of the scene was measured to be 0.35 m (visual angle ~6.65°).
Fig. 7
Fig. 7 Resulting composite image in which the highly resolved regions from each sub-image (Fig. 6) are combined to a final overall image.
Fig. 8
Fig. 8 Series of 4 images taken from a depth-extended scene. The optical setup targets objects that are separated at three distances from the optical system: far, intermediate, and near. For each of the images, both the focus and the pivot axis are readjusted.
Fig. 9
Fig. 9 Resulting composite image processed by recombining the highly resolved areas from each of the individual images of Fig. 8.

Tables (1)

Tables Icon

Table 1 Exemplary geometrical and optical parameters common for fluidic membrane lenses

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

z= c r 2 1+ 1(1+κ) c 2 r 2 + A 4 r 4 + A 6 r 6 + A 8 r 8 + A 10 r 10
φ=29.345 ρ 2 0.2434 ρ 4 .

Metrics