Abstract

We experimentally demonstrate a Raman-Assisted Fibre Optical Parametric Amplifier (RA-FOPA) with 20dB net gain using wavelength division multiplexed signals. We report amplification of 10x58Gb/s 100GHz-spaced QPSK signals and show that by appropriate tuning of the parametric pump power and frequency, gain improvement of up to 5dB can be achieved for the RA-FOPA compared with combined individual contributions from the parametric and Raman pumps. We compare the RA-FOPA with an equivalent-gain conventional FOPA and find that four-wave mixing crosstalk is substantially reduced by up to 5.8 ± 0.4dB using the RA-FOPA. Worst-case performance penalty of the RA-FOPA is found to be only 1.0 ± 0.2dB over all measured OSNRs, frequencies and input powers, making it an attractive proposal for future communications systems.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Suppression of WDM four-wave mixing crosstalk in fibre optic parametric amplifier using Raman-assisted pumping

A. Redyuk, M.F.C. Stephens, and N.J. Doran
Opt. Express 23(21) 27240-27249 (2015)

20 dB net-gain polarization-insensitive fiber optical parametric amplifier with >2 THz bandwidth

M. F. C. Stephens, V. Gordienko, and N. J. Doran
Opt. Express 25(9) 10597-10609 (2017)

Ultra-flat wideband single-pump Raman-enhanced parametric amplification

V. Gordienko, M. F. C. Stephens, A. E. El-Taher, and N. J. Doran
Opt. Express 25(5) 4810-4818 (2017)

References

  • View by:
  • |
  • |
  • |

  1. R. Essiambre, G. Kramer, P. J. Winzer, G. J. Foschini, and B. Goebel, “Capacity limits of optical fiber networks,” J. Lightwave Technol. 28(4), 662–701 (2010).
    [Crossref]
  2. Z. Li, S. U. Alam, J. M. O. Daniel, P. C. Shardlow, D. Jain, N. Simakov, A. M. Heidt, Y. Jung, J. K. Sahu, W. A. Clarkson, and D. J. Richardson, “90 nm gain extension towards 1.7 μm for diode-pumped silica-based thulium-doped fiber amplifiers,“ in European Conference and Exhibition on Optical Communication (ECOC 2014), paper Tu.3.4.2.
  3. R. H. Stolen and E. P. Ippen, “Raman gain in glass optical waveguides,” Appl. Phys. Lett. 22(6), 276–278 (1973).
    [Crossref]
  4. V. E. Perlin and H. G. Winful, “Optimal design of flat-gain wide-band fiber Raman amplifiers,” J. Lightwave Technol. 20(2), 250–254 (2002).
    [Crossref]
  5. M. N. Islam, Raman amplifiers for telecommunications, 1: physical principles (Springer, 2004).
  6. P. B. Hansen, L. Eskildsen, A. J. Stentz, T. A. Strasser, J. Judkins, J. J. DeMarco, R. Pedrazzani, and D. J. DiGiovanni, “Rayleigh scattering limitations in distributed Raman pre-amplifiers,” IEEE Photon. Technol. Lett. 10(1), 159–161 (1998).
    [Crossref]
  7. M. E. Marhic, Fiber Optical Parametric Amplifiers, Oscillators and Related Devices (Cambridge, 2008).
  8. T. Torounidis, P. A. Andrekson, and B. E. Olsson, “Fibre-optical parametric amplifier with 70-dB gain,” IEEE Photon. Technol. Lett. 18(10), 1194–1196 (2006).
    [Crossref]
  9. M. E. Marhic, K. Y. K. Wong, and L. G. Kazovsky, “Wideband tuning of the gain spectra of one-pump fiber optical parametric amplifiers,” IEEE J. Sel. Top. Quantum Electron. 10(5), 1133–1141 (2004).
    [Crossref]
  10. I. Sackey, F. Da Ros, T. Richter, R. Elschner, M. Jazayerifar, C. Meuer, C. Peucheret, K. Petermann, and C. Schubert, “Design and performance evaluation of an OPC device using a dual-pump polarization-independent FOPA,” in European Conference and Exhibition on Optical Communication (ECOC 2014), paper Tu.1.4.4.
    [Crossref]
  11. J. M. Chavez Boggio, A. Guimarães, F. A. Callegari, J. D. Marconi, and H. L. Fragnito, “Q penalties due to pump phase modulation and pump RIN in fiber optic parametric amplifiers with non-uniform dispersion,” Opt. Commun. 249(4), 451–472 (2005).
    [Crossref]
  12. Á. Szabó, B. J. Puttnam, D. Mazroa, A. Albuquerque, S. Shinada, and N. Wada, “Numerical comparison of WDM interchannel crosstalk in FOPA and PPLN-based PSAs,” IEEE Photon. Technol. Lett. 26(15), 1503–1506 (2014).
    [Crossref]
  13. C. J. S. de Matos, D. A. Chestnut, P. C. Reeves-Hall, and J. R. Taylor, “Continuous-wave-pumped Raman-assisted fiber optical parametric amplifier and wavelength converter in conventional dispersion-shifted fiber,” Opt. Lett. 26(20), 1583–1585 (2001).
    [Crossref] [PubMed]
  14. S. H. Wang, L. Xu, P. K. A. Wai, and H. Y. Tam, “6.4-dB enhancement of the gain of a Raman-assisted fiber optical parametric amplifier over the sum of the gains of individual amplifiers,” in Optical Fiber Communication Conference (OFC 2008), paper JThA13.
    [Crossref]
  15. X. Guo, X. Fu, and C. Shu, “Gain saturation in a Raman-assisted fiber optical parametric amplifier,” Opt. Lett. 38(21), 4405–4408 (2013).
    [Crossref] [PubMed]
  16. M. Jamshidifar, A. Vedadi, and M. E. Marhic, “Reduction of Four-Wave-Mixing Crosstalk in a Short Fiber-Optical Parametric Amplifier,” IEEE Photon. Technol. Lett. 21(17), 1244–1246 (2009).
    [Crossref]
  17. S. K. Korotky, P. B. Hansen, L. Eskildsen, and J. J. Veselka, “Efficient phase modulation scheme for suppressing stimulated Brillouin scattering,”in Tech. Dig. Int. Conf. Integrated Optics and Optical Fiber Communications2, 110–111, Paper WD2–1 (1995).
  18. A. J. Viterbi and A. M. Viterbi, “Nonlinear estimation of PSK-modulated carrier phase with application to burst digital transmission,” IEEE Trans. Inf. Theory 29(4), 543–551 (1983).
    [Crossref]
  19. R. Schmogrow, B. Nebendahl, M. Winter, A. Josten, D. Hillerkuss, S. Koenig, J. Meyer, M. Dreschmann, M. Huebner, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Error vector magnitude as a performance measure for advanced modulation formats,” IEEE Photon. Technol. Lett. 24(1), 61–63 (2012).
    [Crossref]
  20. F. Yaman, Q. Lin, S. Radic, and G. P. Agrawal, “Impact of pump-phase modulation on dual-pump fiber-optic parametric amplifiers and wavelength converters,” IEEE Photon. Technol. Lett. 17(10), 2053–2055 (2005).
    [Crossref]
  21. A. Mussot, A. Durécu-Legrand, E. Lantz, C. Simonneau, D. Bayart, H. Maillotte, and T. Sylvestre, “Impact of pump phase modulation on the gain of fiber optical parametric amplifier,” IEEE Photon. Technol. Lett. 16(5), 1289–1291 (2004).
    [Crossref]
  22. D. Derickson, Fiber Optic Test and Measurement (Prentice Hall, 1998).

2014 (1)

Á. Szabó, B. J. Puttnam, D. Mazroa, A. Albuquerque, S. Shinada, and N. Wada, “Numerical comparison of WDM interchannel crosstalk in FOPA and PPLN-based PSAs,” IEEE Photon. Technol. Lett. 26(15), 1503–1506 (2014).
[Crossref]

2013 (1)

2012 (1)

R. Schmogrow, B. Nebendahl, M. Winter, A. Josten, D. Hillerkuss, S. Koenig, J. Meyer, M. Dreschmann, M. Huebner, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Error vector magnitude as a performance measure for advanced modulation formats,” IEEE Photon. Technol. Lett. 24(1), 61–63 (2012).
[Crossref]

2010 (1)

2009 (1)

M. Jamshidifar, A. Vedadi, and M. E. Marhic, “Reduction of Four-Wave-Mixing Crosstalk in a Short Fiber-Optical Parametric Amplifier,” IEEE Photon. Technol. Lett. 21(17), 1244–1246 (2009).
[Crossref]

2006 (1)

T. Torounidis, P. A. Andrekson, and B. E. Olsson, “Fibre-optical parametric amplifier with 70-dB gain,” IEEE Photon. Technol. Lett. 18(10), 1194–1196 (2006).
[Crossref]

2005 (2)

F. Yaman, Q. Lin, S. Radic, and G. P. Agrawal, “Impact of pump-phase modulation on dual-pump fiber-optic parametric amplifiers and wavelength converters,” IEEE Photon. Technol. Lett. 17(10), 2053–2055 (2005).
[Crossref]

J. M. Chavez Boggio, A. Guimarães, F. A. Callegari, J. D. Marconi, and H. L. Fragnito, “Q penalties due to pump phase modulation and pump RIN in fiber optic parametric amplifiers with non-uniform dispersion,” Opt. Commun. 249(4), 451–472 (2005).
[Crossref]

2004 (2)

A. Mussot, A. Durécu-Legrand, E. Lantz, C. Simonneau, D. Bayart, H. Maillotte, and T. Sylvestre, “Impact of pump phase modulation on the gain of fiber optical parametric amplifier,” IEEE Photon. Technol. Lett. 16(5), 1289–1291 (2004).
[Crossref]

M. E. Marhic, K. Y. K. Wong, and L. G. Kazovsky, “Wideband tuning of the gain spectra of one-pump fiber optical parametric amplifiers,” IEEE J. Sel. Top. Quantum Electron. 10(5), 1133–1141 (2004).
[Crossref]

2002 (1)

2001 (1)

1998 (1)

P. B. Hansen, L. Eskildsen, A. J. Stentz, T. A. Strasser, J. Judkins, J. J. DeMarco, R. Pedrazzani, and D. J. DiGiovanni, “Rayleigh scattering limitations in distributed Raman pre-amplifiers,” IEEE Photon. Technol. Lett. 10(1), 159–161 (1998).
[Crossref]

1983 (1)

A. J. Viterbi and A. M. Viterbi, “Nonlinear estimation of PSK-modulated carrier phase with application to burst digital transmission,” IEEE Trans. Inf. Theory 29(4), 543–551 (1983).
[Crossref]

1973 (1)

R. H. Stolen and E. P. Ippen, “Raman gain in glass optical waveguides,” Appl. Phys. Lett. 22(6), 276–278 (1973).
[Crossref]

Agrawal, G. P.

F. Yaman, Q. Lin, S. Radic, and G. P. Agrawal, “Impact of pump-phase modulation on dual-pump fiber-optic parametric amplifiers and wavelength converters,” IEEE Photon. Technol. Lett. 17(10), 2053–2055 (2005).
[Crossref]

Albuquerque, A.

Á. Szabó, B. J. Puttnam, D. Mazroa, A. Albuquerque, S. Shinada, and N. Wada, “Numerical comparison of WDM interchannel crosstalk in FOPA and PPLN-based PSAs,” IEEE Photon. Technol. Lett. 26(15), 1503–1506 (2014).
[Crossref]

Andrekson, P. A.

T. Torounidis, P. A. Andrekson, and B. E. Olsson, “Fibre-optical parametric amplifier with 70-dB gain,” IEEE Photon. Technol. Lett. 18(10), 1194–1196 (2006).
[Crossref]

Bayart, D.

A. Mussot, A. Durécu-Legrand, E. Lantz, C. Simonneau, D. Bayart, H. Maillotte, and T. Sylvestre, “Impact of pump phase modulation on the gain of fiber optical parametric amplifier,” IEEE Photon. Technol. Lett. 16(5), 1289–1291 (2004).
[Crossref]

Becker, J.

R. Schmogrow, B. Nebendahl, M. Winter, A. Josten, D. Hillerkuss, S. Koenig, J. Meyer, M. Dreschmann, M. Huebner, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Error vector magnitude as a performance measure for advanced modulation formats,” IEEE Photon. Technol. Lett. 24(1), 61–63 (2012).
[Crossref]

Callegari, F. A.

J. M. Chavez Boggio, A. Guimarães, F. A. Callegari, J. D. Marconi, and H. L. Fragnito, “Q penalties due to pump phase modulation and pump RIN in fiber optic parametric amplifiers with non-uniform dispersion,” Opt. Commun. 249(4), 451–472 (2005).
[Crossref]

Chavez Boggio, J. M.

J. M. Chavez Boggio, A. Guimarães, F. A. Callegari, J. D. Marconi, and H. L. Fragnito, “Q penalties due to pump phase modulation and pump RIN in fiber optic parametric amplifiers with non-uniform dispersion,” Opt. Commun. 249(4), 451–472 (2005).
[Crossref]

Chestnut, D. A.

de Matos, C. J. S.

DeMarco, J. J.

P. B. Hansen, L. Eskildsen, A. J. Stentz, T. A. Strasser, J. Judkins, J. J. DeMarco, R. Pedrazzani, and D. J. DiGiovanni, “Rayleigh scattering limitations in distributed Raman pre-amplifiers,” IEEE Photon. Technol. Lett. 10(1), 159–161 (1998).
[Crossref]

DiGiovanni, D. J.

P. B. Hansen, L. Eskildsen, A. J. Stentz, T. A. Strasser, J. Judkins, J. J. DeMarco, R. Pedrazzani, and D. J. DiGiovanni, “Rayleigh scattering limitations in distributed Raman pre-amplifiers,” IEEE Photon. Technol. Lett. 10(1), 159–161 (1998).
[Crossref]

Dreschmann, M.

R. Schmogrow, B. Nebendahl, M. Winter, A. Josten, D. Hillerkuss, S. Koenig, J. Meyer, M. Dreschmann, M. Huebner, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Error vector magnitude as a performance measure for advanced modulation formats,” IEEE Photon. Technol. Lett. 24(1), 61–63 (2012).
[Crossref]

Durécu-Legrand, A.

A. Mussot, A. Durécu-Legrand, E. Lantz, C. Simonneau, D. Bayart, H. Maillotte, and T. Sylvestre, “Impact of pump phase modulation on the gain of fiber optical parametric amplifier,” IEEE Photon. Technol. Lett. 16(5), 1289–1291 (2004).
[Crossref]

Eskildsen, L.

P. B. Hansen, L. Eskildsen, A. J. Stentz, T. A. Strasser, J. Judkins, J. J. DeMarco, R. Pedrazzani, and D. J. DiGiovanni, “Rayleigh scattering limitations in distributed Raman pre-amplifiers,” IEEE Photon. Technol. Lett. 10(1), 159–161 (1998).
[Crossref]

Essiambre, R.

Foschini, G. J.

Fragnito, H. L.

J. M. Chavez Boggio, A. Guimarães, F. A. Callegari, J. D. Marconi, and H. L. Fragnito, “Q penalties due to pump phase modulation and pump RIN in fiber optic parametric amplifiers with non-uniform dispersion,” Opt. Commun. 249(4), 451–472 (2005).
[Crossref]

Freude, W.

R. Schmogrow, B. Nebendahl, M. Winter, A. Josten, D. Hillerkuss, S. Koenig, J. Meyer, M. Dreschmann, M. Huebner, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Error vector magnitude as a performance measure for advanced modulation formats,” IEEE Photon. Technol. Lett. 24(1), 61–63 (2012).
[Crossref]

Fu, X.

Goebel, B.

Guimarães, A.

J. M. Chavez Boggio, A. Guimarães, F. A. Callegari, J. D. Marconi, and H. L. Fragnito, “Q penalties due to pump phase modulation and pump RIN in fiber optic parametric amplifiers with non-uniform dispersion,” Opt. Commun. 249(4), 451–472 (2005).
[Crossref]

Guo, X.

Hansen, P. B.

P. B. Hansen, L. Eskildsen, A. J. Stentz, T. A. Strasser, J. Judkins, J. J. DeMarco, R. Pedrazzani, and D. J. DiGiovanni, “Rayleigh scattering limitations in distributed Raman pre-amplifiers,” IEEE Photon. Technol. Lett. 10(1), 159–161 (1998).
[Crossref]

Hillerkuss, D.

R. Schmogrow, B. Nebendahl, M. Winter, A. Josten, D. Hillerkuss, S. Koenig, J. Meyer, M. Dreschmann, M. Huebner, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Error vector magnitude as a performance measure for advanced modulation formats,” IEEE Photon. Technol. Lett. 24(1), 61–63 (2012).
[Crossref]

Huebner, M.

R. Schmogrow, B. Nebendahl, M. Winter, A. Josten, D. Hillerkuss, S. Koenig, J. Meyer, M. Dreschmann, M. Huebner, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Error vector magnitude as a performance measure for advanced modulation formats,” IEEE Photon. Technol. Lett. 24(1), 61–63 (2012).
[Crossref]

Ippen, E. P.

R. H. Stolen and E. P. Ippen, “Raman gain in glass optical waveguides,” Appl. Phys. Lett. 22(6), 276–278 (1973).
[Crossref]

Jamshidifar, M.

M. Jamshidifar, A. Vedadi, and M. E. Marhic, “Reduction of Four-Wave-Mixing Crosstalk in a Short Fiber-Optical Parametric Amplifier,” IEEE Photon. Technol. Lett. 21(17), 1244–1246 (2009).
[Crossref]

Josten, A.

R. Schmogrow, B. Nebendahl, M. Winter, A. Josten, D. Hillerkuss, S. Koenig, J. Meyer, M. Dreschmann, M. Huebner, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Error vector magnitude as a performance measure for advanced modulation formats,” IEEE Photon. Technol. Lett. 24(1), 61–63 (2012).
[Crossref]

Judkins, J.

P. B. Hansen, L. Eskildsen, A. J. Stentz, T. A. Strasser, J. Judkins, J. J. DeMarco, R. Pedrazzani, and D. J. DiGiovanni, “Rayleigh scattering limitations in distributed Raman pre-amplifiers,” IEEE Photon. Technol. Lett. 10(1), 159–161 (1998).
[Crossref]

Kazovsky, L. G.

M. E. Marhic, K. Y. K. Wong, and L. G. Kazovsky, “Wideband tuning of the gain spectra of one-pump fiber optical parametric amplifiers,” IEEE J. Sel. Top. Quantum Electron. 10(5), 1133–1141 (2004).
[Crossref]

Koenig, S.

R. Schmogrow, B. Nebendahl, M. Winter, A. Josten, D. Hillerkuss, S. Koenig, J. Meyer, M. Dreschmann, M. Huebner, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Error vector magnitude as a performance measure for advanced modulation formats,” IEEE Photon. Technol. Lett. 24(1), 61–63 (2012).
[Crossref]

Koos, C.

R. Schmogrow, B. Nebendahl, M. Winter, A. Josten, D. Hillerkuss, S. Koenig, J. Meyer, M. Dreschmann, M. Huebner, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Error vector magnitude as a performance measure for advanced modulation formats,” IEEE Photon. Technol. Lett. 24(1), 61–63 (2012).
[Crossref]

Kramer, G.

Lantz, E.

A. Mussot, A. Durécu-Legrand, E. Lantz, C. Simonneau, D. Bayart, H. Maillotte, and T. Sylvestre, “Impact of pump phase modulation on the gain of fiber optical parametric amplifier,” IEEE Photon. Technol. Lett. 16(5), 1289–1291 (2004).
[Crossref]

Leuthold, J.

R. Schmogrow, B. Nebendahl, M. Winter, A. Josten, D. Hillerkuss, S. Koenig, J. Meyer, M. Dreschmann, M. Huebner, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Error vector magnitude as a performance measure for advanced modulation formats,” IEEE Photon. Technol. Lett. 24(1), 61–63 (2012).
[Crossref]

Lin, Q.

F. Yaman, Q. Lin, S. Radic, and G. P. Agrawal, “Impact of pump-phase modulation on dual-pump fiber-optic parametric amplifiers and wavelength converters,” IEEE Photon. Technol. Lett. 17(10), 2053–2055 (2005).
[Crossref]

Maillotte, H.

A. Mussot, A. Durécu-Legrand, E. Lantz, C. Simonneau, D. Bayart, H. Maillotte, and T. Sylvestre, “Impact of pump phase modulation on the gain of fiber optical parametric amplifier,” IEEE Photon. Technol. Lett. 16(5), 1289–1291 (2004).
[Crossref]

Marconi, J. D.

J. M. Chavez Boggio, A. Guimarães, F. A. Callegari, J. D. Marconi, and H. L. Fragnito, “Q penalties due to pump phase modulation and pump RIN in fiber optic parametric amplifiers with non-uniform dispersion,” Opt. Commun. 249(4), 451–472 (2005).
[Crossref]

Marhic, M. E.

M. Jamshidifar, A. Vedadi, and M. E. Marhic, “Reduction of Four-Wave-Mixing Crosstalk in a Short Fiber-Optical Parametric Amplifier,” IEEE Photon. Technol. Lett. 21(17), 1244–1246 (2009).
[Crossref]

M. E. Marhic, K. Y. K. Wong, and L. G. Kazovsky, “Wideband tuning of the gain spectra of one-pump fiber optical parametric amplifiers,” IEEE J. Sel. Top. Quantum Electron. 10(5), 1133–1141 (2004).
[Crossref]

Mazroa, D.

Á. Szabó, B. J. Puttnam, D. Mazroa, A. Albuquerque, S. Shinada, and N. Wada, “Numerical comparison of WDM interchannel crosstalk in FOPA and PPLN-based PSAs,” IEEE Photon. Technol. Lett. 26(15), 1503–1506 (2014).
[Crossref]

Meyer, J.

R. Schmogrow, B. Nebendahl, M. Winter, A. Josten, D. Hillerkuss, S. Koenig, J. Meyer, M. Dreschmann, M. Huebner, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Error vector magnitude as a performance measure for advanced modulation formats,” IEEE Photon. Technol. Lett. 24(1), 61–63 (2012).
[Crossref]

Mussot, A.

A. Mussot, A. Durécu-Legrand, E. Lantz, C. Simonneau, D. Bayart, H. Maillotte, and T. Sylvestre, “Impact of pump phase modulation on the gain of fiber optical parametric amplifier,” IEEE Photon. Technol. Lett. 16(5), 1289–1291 (2004).
[Crossref]

Nebendahl, B.

R. Schmogrow, B. Nebendahl, M. Winter, A. Josten, D. Hillerkuss, S. Koenig, J. Meyer, M. Dreschmann, M. Huebner, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Error vector magnitude as a performance measure for advanced modulation formats,” IEEE Photon. Technol. Lett. 24(1), 61–63 (2012).
[Crossref]

Olsson, B. E.

T. Torounidis, P. A. Andrekson, and B. E. Olsson, “Fibre-optical parametric amplifier with 70-dB gain,” IEEE Photon. Technol. Lett. 18(10), 1194–1196 (2006).
[Crossref]

Pedrazzani, R.

P. B. Hansen, L. Eskildsen, A. J. Stentz, T. A. Strasser, J. Judkins, J. J. DeMarco, R. Pedrazzani, and D. J. DiGiovanni, “Rayleigh scattering limitations in distributed Raman pre-amplifiers,” IEEE Photon. Technol. Lett. 10(1), 159–161 (1998).
[Crossref]

Perlin, V. E.

Puttnam, B. J.

Á. Szabó, B. J. Puttnam, D. Mazroa, A. Albuquerque, S. Shinada, and N. Wada, “Numerical comparison of WDM interchannel crosstalk in FOPA and PPLN-based PSAs,” IEEE Photon. Technol. Lett. 26(15), 1503–1506 (2014).
[Crossref]

Radic, S.

F. Yaman, Q. Lin, S. Radic, and G. P. Agrawal, “Impact of pump-phase modulation on dual-pump fiber-optic parametric amplifiers and wavelength converters,” IEEE Photon. Technol. Lett. 17(10), 2053–2055 (2005).
[Crossref]

Reeves-Hall, P. C.

Schmogrow, R.

R. Schmogrow, B. Nebendahl, M. Winter, A. Josten, D. Hillerkuss, S. Koenig, J. Meyer, M. Dreschmann, M. Huebner, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Error vector magnitude as a performance measure for advanced modulation formats,” IEEE Photon. Technol. Lett. 24(1), 61–63 (2012).
[Crossref]

Shinada, S.

Á. Szabó, B. J. Puttnam, D. Mazroa, A. Albuquerque, S. Shinada, and N. Wada, “Numerical comparison of WDM interchannel crosstalk in FOPA and PPLN-based PSAs,” IEEE Photon. Technol. Lett. 26(15), 1503–1506 (2014).
[Crossref]

Shu, C.

Simonneau, C.

A. Mussot, A. Durécu-Legrand, E. Lantz, C. Simonneau, D. Bayart, H. Maillotte, and T. Sylvestre, “Impact of pump phase modulation on the gain of fiber optical parametric amplifier,” IEEE Photon. Technol. Lett. 16(5), 1289–1291 (2004).
[Crossref]

Stentz, A. J.

P. B. Hansen, L. Eskildsen, A. J. Stentz, T. A. Strasser, J. Judkins, J. J. DeMarco, R. Pedrazzani, and D. J. DiGiovanni, “Rayleigh scattering limitations in distributed Raman pre-amplifiers,” IEEE Photon. Technol. Lett. 10(1), 159–161 (1998).
[Crossref]

Stolen, R. H.

R. H. Stolen and E. P. Ippen, “Raman gain in glass optical waveguides,” Appl. Phys. Lett. 22(6), 276–278 (1973).
[Crossref]

Strasser, T. A.

P. B. Hansen, L. Eskildsen, A. J. Stentz, T. A. Strasser, J. Judkins, J. J. DeMarco, R. Pedrazzani, and D. J. DiGiovanni, “Rayleigh scattering limitations in distributed Raman pre-amplifiers,” IEEE Photon. Technol. Lett. 10(1), 159–161 (1998).
[Crossref]

Sylvestre, T.

A. Mussot, A. Durécu-Legrand, E. Lantz, C. Simonneau, D. Bayart, H. Maillotte, and T. Sylvestre, “Impact of pump phase modulation on the gain of fiber optical parametric amplifier,” IEEE Photon. Technol. Lett. 16(5), 1289–1291 (2004).
[Crossref]

Szabó, Á.

Á. Szabó, B. J. Puttnam, D. Mazroa, A. Albuquerque, S. Shinada, and N. Wada, “Numerical comparison of WDM interchannel crosstalk in FOPA and PPLN-based PSAs,” IEEE Photon. Technol. Lett. 26(15), 1503–1506 (2014).
[Crossref]

Taylor, J. R.

Torounidis, T.

T. Torounidis, P. A. Andrekson, and B. E. Olsson, “Fibre-optical parametric amplifier with 70-dB gain,” IEEE Photon. Technol. Lett. 18(10), 1194–1196 (2006).
[Crossref]

Vedadi, A.

M. Jamshidifar, A. Vedadi, and M. E. Marhic, “Reduction of Four-Wave-Mixing Crosstalk in a Short Fiber-Optical Parametric Amplifier,” IEEE Photon. Technol. Lett. 21(17), 1244–1246 (2009).
[Crossref]

Viterbi, A. J.

A. J. Viterbi and A. M. Viterbi, “Nonlinear estimation of PSK-modulated carrier phase with application to burst digital transmission,” IEEE Trans. Inf. Theory 29(4), 543–551 (1983).
[Crossref]

Viterbi, A. M.

A. J. Viterbi and A. M. Viterbi, “Nonlinear estimation of PSK-modulated carrier phase with application to burst digital transmission,” IEEE Trans. Inf. Theory 29(4), 543–551 (1983).
[Crossref]

Wada, N.

Á. Szabó, B. J. Puttnam, D. Mazroa, A. Albuquerque, S. Shinada, and N. Wada, “Numerical comparison of WDM interchannel crosstalk in FOPA and PPLN-based PSAs,” IEEE Photon. Technol. Lett. 26(15), 1503–1506 (2014).
[Crossref]

Winful, H. G.

Winter, M.

R. Schmogrow, B. Nebendahl, M. Winter, A. Josten, D. Hillerkuss, S. Koenig, J. Meyer, M. Dreschmann, M. Huebner, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Error vector magnitude as a performance measure for advanced modulation formats,” IEEE Photon. Technol. Lett. 24(1), 61–63 (2012).
[Crossref]

Winzer, P. J.

Wong, K. Y. K.

M. E. Marhic, K. Y. K. Wong, and L. G. Kazovsky, “Wideband tuning of the gain spectra of one-pump fiber optical parametric amplifiers,” IEEE J. Sel. Top. Quantum Electron. 10(5), 1133–1141 (2004).
[Crossref]

Yaman, F.

F. Yaman, Q. Lin, S. Radic, and G. P. Agrawal, “Impact of pump-phase modulation on dual-pump fiber-optic parametric amplifiers and wavelength converters,” IEEE Photon. Technol. Lett. 17(10), 2053–2055 (2005).
[Crossref]

Appl. Phys. Lett. (1)

R. H. Stolen and E. P. Ippen, “Raman gain in glass optical waveguides,” Appl. Phys. Lett. 22(6), 276–278 (1973).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

M. E. Marhic, K. Y. K. Wong, and L. G. Kazovsky, “Wideband tuning of the gain spectra of one-pump fiber optical parametric amplifiers,” IEEE J. Sel. Top. Quantum Electron. 10(5), 1133–1141 (2004).
[Crossref]

IEEE Photon. Technol. Lett. (7)

P. B. Hansen, L. Eskildsen, A. J. Stentz, T. A. Strasser, J. Judkins, J. J. DeMarco, R. Pedrazzani, and D. J. DiGiovanni, “Rayleigh scattering limitations in distributed Raman pre-amplifiers,” IEEE Photon. Technol. Lett. 10(1), 159–161 (1998).
[Crossref]

T. Torounidis, P. A. Andrekson, and B. E. Olsson, “Fibre-optical parametric amplifier with 70-dB gain,” IEEE Photon. Technol. Lett. 18(10), 1194–1196 (2006).
[Crossref]

Á. Szabó, B. J. Puttnam, D. Mazroa, A. Albuquerque, S. Shinada, and N. Wada, “Numerical comparison of WDM interchannel crosstalk in FOPA and PPLN-based PSAs,” IEEE Photon. Technol. Lett. 26(15), 1503–1506 (2014).
[Crossref]

M. Jamshidifar, A. Vedadi, and M. E. Marhic, “Reduction of Four-Wave-Mixing Crosstalk in a Short Fiber-Optical Parametric Amplifier,” IEEE Photon. Technol. Lett. 21(17), 1244–1246 (2009).
[Crossref]

R. Schmogrow, B. Nebendahl, M. Winter, A. Josten, D. Hillerkuss, S. Koenig, J. Meyer, M. Dreschmann, M. Huebner, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Error vector magnitude as a performance measure for advanced modulation formats,” IEEE Photon. Technol. Lett. 24(1), 61–63 (2012).
[Crossref]

F. Yaman, Q. Lin, S. Radic, and G. P. Agrawal, “Impact of pump-phase modulation on dual-pump fiber-optic parametric amplifiers and wavelength converters,” IEEE Photon. Technol. Lett. 17(10), 2053–2055 (2005).
[Crossref]

A. Mussot, A. Durécu-Legrand, E. Lantz, C. Simonneau, D. Bayart, H. Maillotte, and T. Sylvestre, “Impact of pump phase modulation on the gain of fiber optical parametric amplifier,” IEEE Photon. Technol. Lett. 16(5), 1289–1291 (2004).
[Crossref]

IEEE Trans. Inf. Theory (1)

A. J. Viterbi and A. M. Viterbi, “Nonlinear estimation of PSK-modulated carrier phase with application to burst digital transmission,” IEEE Trans. Inf. Theory 29(4), 543–551 (1983).
[Crossref]

J. Lightwave Technol. (2)

Opt. Commun. (1)

J. M. Chavez Boggio, A. Guimarães, F. A. Callegari, J. D. Marconi, and H. L. Fragnito, “Q penalties due to pump phase modulation and pump RIN in fiber optic parametric amplifiers with non-uniform dispersion,” Opt. Commun. 249(4), 451–472 (2005).
[Crossref]

Opt. Lett. (2)

Other (7)

S. K. Korotky, P. B. Hansen, L. Eskildsen, and J. J. Veselka, “Efficient phase modulation scheme for suppressing stimulated Brillouin scattering,”in Tech. Dig. Int. Conf. Integrated Optics and Optical Fiber Communications2, 110–111, Paper WD2–1 (1995).

S. H. Wang, L. Xu, P. K. A. Wai, and H. Y. Tam, “6.4-dB enhancement of the gain of a Raman-assisted fiber optical parametric amplifier over the sum of the gains of individual amplifiers,” in Optical Fiber Communication Conference (OFC 2008), paper JThA13.
[Crossref]

Z. Li, S. U. Alam, J. M. O. Daniel, P. C. Shardlow, D. Jain, N. Simakov, A. M. Heidt, Y. Jung, J. K. Sahu, W. A. Clarkson, and D. J. Richardson, “90 nm gain extension towards 1.7 μm for diode-pumped silica-based thulium-doped fiber amplifiers,“ in European Conference and Exhibition on Optical Communication (ECOC 2014), paper Tu.3.4.2.

M. N. Islam, Raman amplifiers for telecommunications, 1: physical principles (Springer, 2004).

M. E. Marhic, Fiber Optical Parametric Amplifiers, Oscillators and Related Devices (Cambridge, 2008).

I. Sackey, F. Da Ros, T. Richter, R. Elschner, M. Jazayerifar, C. Meuer, C. Peucheret, K. Petermann, and C. Schubert, “Design and performance evaluation of an OPC device using a dual-pump polarization-independent FOPA,” in European Conference and Exhibition on Optical Communication (ECOC 2014), paper Tu.1.4.4.
[Crossref]

D. Derickson, Fiber Optic Test and Measurement (Prentice Hall, 1998).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Schematic of experimental set-up for Raman-Assisted FOPA.
Fig. 2
Fig. 2 (a) Graph showing the 10x58Gb/s signal-peak on-off gain variation against frequency measured at the RA-FOPA output (OP) for different indicated RP powers (PP off). The per-signal input (IP) power was −20dBm. (b) OP spectra of the RA-FOPA at 12.5GHz resolution bandwidth for a per-signal IP power of −20dBm. In order of OP power, the spectra are: both pumps off (green trace); RP only at 36dBm IP power to HNLF (blue dashed trace); PP only at 33dBm IP power to HNLF (red trace); both pumps on simultaneously at 36dBm and 33dBm respectively (black trace). (c) Graph showing signal-peak on-off gain variation against frequency for per-signal input power of −20dBm and same pump powers for: RP only (blue squares); PP only (red triangles); the sum of the individual RP only and PP only gains (purple crosses); both pumps on (black diamonds). (d) As for (c) but with per-signal input power increased to −12dBm.
Fig. 3
Fig. 3 (a) Graph showing the variation in signal-peak on-off gain against frequency for the RA-FOPA (RP = 36dBm, PP = 33dBm, black squares) and the FOPA-only (PP = 34.2dBm, red triangles) amplifiers. Per-signal input power was −12dBm and the average net gain 20dB for both, with ten signals amplified. (b) Output spectra of the RA-FOPA (black traces) and the FOPA-only (red dashed traces) at 12.5GHz resolution bandwidth with −12dBm per-signal input power and 20dB average net gain. Three traces are plotted for each amplifier with one of the signals at 193.5THz, 194.0THz or 194.4THz removed to show the crosstalk level. The crosstalk displayed is therefore that resulting from only nine signals.
Fig. 4
Fig. 4 (a) Graph showing EVM (dB) against OSNR (dB) for the RA-FOPA (black symbols, solid trendline) and FOPA-only (red symbols, dashed trendline) operating with 20dB net-gain and −20dBm per signal input power. Curves are shown for three representative signals across the amplified band at 193.5THz (squares), 194.0THz (triangles) and 194.4THz (circles). Back to back performance is shown for comparison (green diamonds). Inset constellations are for 17dB OSNR and 194.4THz for RA-FOPA and FOPA-only. Equivalent estimated BER is shown on the secondary axis. (b) As for (a) but with an input power of −12dBm per signal. Inset constellations are for 27dB OSNR and 194.4THz for RA-FOPA and FOPA-only.
Fig. 5
Fig. 5 (a) Graph showing EVM penalty (dB) against frequency (THz) for the RA-FOPA (solid green symbols, dashed trendline) and FOPA-only (blue/white symbols, solid blue trendline) operating with 20dB net-gain and −20dBm per signal input power. Penalty curves are shown at 27dB OSNR (squares), 19dB OSNR (diamonds) and 13dB OSNR (triangles). (b) As for (a) but with an input power of −12dBm per signal.

Tables (1)

Tables Icon

Table 1 Reduction of unwanted FWM crosstalk for RA-FOPA vs FOPA-only at −12dBm per signal input power and 20dB net-gain. Peak to crosstalk delta measured with ten signals for signal peak and nine signals for crosstalk peak.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Crosstalk dB 2 ( P sigout - P pump ) dBm +10lo g 10 ( N FWM )-6.
log 10 (BER)=lo g 10 (0.5erfc(sqrt(1/(2EV M lin 2 )))).

Metrics