Abstract

The fabrication of high aspect ratio metallic nanostructures is crucial for the production of efficient diffractive X-ray optics in the hard X-ray range. We present a novel method to increase their structure height via the double-sided patterning of the support membrane. In transmission, the two Fresnel zone plates on the two sides of the substrate will act as a single zone plate with added structure height. The presented double-sided zone plates with 30 nm smallest zone width offer up to 9.9% focusing efficiency at 9 keV, that results in a factor of two improvement over their previously demonstrated single-sided counterparts. The increase in efficiency paves the way to speed up X-ray microscopy measurements and allows the more efficient utilization of the flux in full-field X-ray microscopy.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Ultra-high resolution zone-doubled diffractive X-ray optics for the multi-keV regime

Joan Vila-Comamala, Sergey Gorelick, Elina Färm, Cameron M. Kewish, Ana Diaz, Ray Barrett, Vitaliy A. Guzenko, Mikko Ritala, and Christian David
Opt. Express 19(1) 175-184 (2011)

Fabrication and characterization of high-efficiency double-sided blazed x-ray optics

Istvan Mohacsi, Ismo Vartiainen, Manuel Guizar-Sicairos, Petri Karvinen, Vitaliy A. Guzenko, Elisabeth Müller, Cameron M. Kewish, Andrea Somogyi, and Christian David
Opt. Lett. 41(2) 281-284 (2016)

Fresnel zone plate stacking in the intermediate field for high efficiency focusing in the hard X-ray regime

Sophie-Charlotte Gleber, Michael Wojcik, Jie Liu, Chris Roehrig, Marvin Cummings, Joan Vila-Comamala, Kenan Li, Barry Lai, Deming Shu, and Stefan Vogt
Opt. Express 22(23) 28142-28153 (2014)

References

  • View by:
  • |
  • |
  • |

  1. G. Porod, “Die Rontgenkleinwinkelstreuung von dichtgepackten kolloiden Systemen I. Teil (X-ray low angle scattering of dense colloid systems. Part I.),” Kolloid-Zeitschrift 124, 83–114 (1951).
    [Crossref]
  2. H. D. Bale and P. W. Schmidt, “Small-Angle X-Ray-Scattering Investigation of Submicroscopic Porosity with Fractal Properties,” Physical Review Letters,  53, 596 (1984).
    [Crossref]
  3. M. R. Howells, T. Beetz, H. N. Chapman, C. Cui, J. M. Holton, C. J. Jacobsen, J. Kirz, E. Lima, S. Marchesini, H. Miao, D. Sayre, D. A. Shapiro, J. C. H. Spence, and D. Starodub, “An assessment of the resolution limitation due to radiation-damage in X-ray diffraction microscopy,” Journal of Electron Spectroscopy and Related Phenomena 170, 4–12 (2009).
    [Crossref] [PubMed]
  4. P. Kirkpatrick and A. V. Baez, “Formation of Optical Images by X-Rays,” J. Opt. Soc. Am. 38(9), 766–774 (1948).
    [Crossref] [PubMed]
  5. A. Snigirev, V. Kohn, I. Snigireva, and B. Lengeler, “A compound refractive lens for focusing high-energy X-rays,” Nature 384, 49–51 (1996).
    [Crossref]
  6. J. Maser, G. B. Stephenson, S. Vogt, W. Yun, A. Macrander, H. C. Kang, C. Liu, and R. Conley, “Multilayer Laue lenses as high-resolution x-ray optics,” Proc. SPIE 5539, 185–194 (2004).
    [Crossref]
  7. J. L. Soret, “Ueber die von Kreisgittern erzeugten Diffraktionsphaenomene”, Ann. Phys. Chem,  156, 99 (1875).
    [Crossref]
  8. J. Kirz, “Phase zone plates for x rays and the extreme UV,” J. Opt. Soc. Am. 20(3), 301–309 (1974).
    [Crossref]
  9. S.-R. Wu, Y. Hwu, and G. Margaritondo, “Hard-X-ray Zone Plates: Recent Progress,” Materials,  5, 1752–1773 (2012).
    [Crossref]
  10. B. L. Henke, E. M. Gullikson, and J. C. Davis, “X-ray interactions: photoabsorption, scattering, transmission, and reflection at E=50–30000 eV, Z=1–92,” Atomic Data and Nuclear Data Tables 54(2), 181–342 (1993).
    [Crossref]
  11. S. Gorelick, V. A. Guzenko, J. Vila-Comamala, and C. David, “Direct e-beam writing of dense and high aspect ratio nanostructures in thick layers of PMMA for electroplating,” Nanotechnology 21, 295303 (2010).
    [Crossref] [PubMed]
  12. W. Chao, B. D. Harteneck, J. Alexander Liddle, Erik H. Anderson, and David T. Attwood, “ Soft X-ray microscopy at a spatial resolution better than 15nm,” Nature 435, 1210–1213 (2005).
    [Crossref] [PubMed]
  13. F. Uhlen, D. Nilsson, J. Rahomaki, L. Belova, C. G. Schroer, F. Seiboth, A. Holmberg, H. M. Hertz, and U. Vogt, “Nanofabrication of tungsten zone plates with integrated platinum central stop for hard X-ray applications”, Microelectronic Engineering 116, 40–43 (2014).
    [Crossref]
  14. Y. Feng, M. Feser, A. Lyon, S. Rishton, X. Zeng, S. Chen, S. Sassolini, and W. Yun, “Nanofabrication of high aspect ratio 24 nm x-ray zone plates for x-ray imaging applications,” Journal of Vacuum Science and Technology B 25, 2004 (2007).
    [Crossref]
  15. C. David, B. Nöhammer, and E. Ziegler, “Wavelength tunable diffractive transmission lens for hard x rays,” Applied Physics Letters 79, 1088–1090 (2001).
    [Crossref]
  16. C. Chang and A. Sakdinawat, “Ultra-high aspect ratio high-resolution nanofabrication for hard X-ray diffractive optics,” Nature Communications 5, 4243 (2014).
    [Crossref] [PubMed]
  17. S. Werner, S. Rehbein, P. Guttmann, and G. Schneider, “Three-dimensional structured on-chip stacked zone plates for nanoscale X-ray imaging with high efficiency,” Nano Research 7(4), 1–8 (2014).
    [Crossref]
  18. F. Döring, A. L. Robisch, C. Eberl, M. Osterhoff, A. Ruhlandt, T. Liese, F. Schlenkrich, S. Hoffmann, M. Bartels, T. Salditt, and H.U. Krebs, “Sub-5 nm hard x-ray point focusing by a combined Kirkpatrick-Baez mirror and multilayer zone plate,” Opt. Express 21(16), 19311–19323 (2013).
    [Crossref] [PubMed]
  19. J. Maser, B. Lai, W. Yun, S. D. Shastri, Z. Cai, W. Rodrigues, S. Xua, and E. Trackhtenberg, “Near-field stacking of zone plates in the x-ray range,” Proc. SPIE,  4783, 74 (1999).
    [Crossref]
  20. I. Snigireva, A. Snigirev, V. Kohn, V. Yunkin, M. Grigoriev, S. Kuznetsov, G. Vaughan, and M. Di Michiel, “Focusing high energy X-rays with stacked Fresnel zone plates,” physica status solidi (a) 204(8), 2817–2823 (2007).
    [Crossref]
  21. A. G. Michette, Optical Systems for Soft X Rays (Plenum Press, 1986).
    [Crossref]
  22. K. Jefimovs, J. Vila-Comamala, T. Pilvi, J. Raabe, M. Ritala, and C. David, “Zone-Doubling Technique to Produce Ultrahigh-Resolution X-Ray Optics,” Physical Review Letters 99, 264801 (2007).
    [Crossref]
  23. J. Vila-Comamala, S. Gorelick, E. Färm, C. M. Kewish, A. Diaz, R. Barrett, V. A. Guzenko, M. Ritala, and C. David, “Ultra-high resolution zone-doubled diffractive X-ray optics for the multi-keV regime,” Opt. Express 19(1) 175–184 (2011).
    [Crossref] [PubMed]
  24. J. Vila-Comamala, S. Gorelick, V. A. Guzenko, E. Färm, M. Ritala, and C. David, “Dense high aspect ratio hydrogen silsesquioxane nanostructures by 100 keV electron beam lithography,” Nanotechnology 21, 285305 (2010).
    [Crossref] [PubMed]
  25. V. A. Guzenko, J. Romijn, J. Vila-Comamala, S. Gorelick, and C. David, “Efficient E-Beam Lithography Exposure Strategies for Diffractive X-ray Optics,” AIP Conf. Proc. 1365, 92 (2012).
  26. T. Aaltonen, M. Ritala, V. Sammelselg, and M. Leskela, “Atomic Layer Deposition of Iridium Thin Films,” Journal of The Electrochemical Society 151(8), 489–492 (2004).
    [Crossref]
  27. J. M. Rodenburg, A. C. Hurst, A. G. Cullis, B. R. Dobson, F. Pfeiffer, O. Bunk, C. David, K. Jefimovs, and I. Johnson, “Hard-x-ray lensless imaging of extended objects,” Physical Review Letters 98, 34801 (2007).
    [Crossref]
  28. B. Henrich, A. Bergamaschi, C. Broennimann, R. Dinapoli, E.F. Eikenberry, I. Johnson, M. Kobas, P. Kraft, A. Mozzanica, and B. Schmitt, “PILATUS: A single photon counting pixel detector for X-ray applications,” Nuclear Instruments and Methods in Physics Research Section A 607(1), 247–249 (2009).
    [Crossref]
  29. M. Guizar-Sicairos and J. R. Fienup, “Phase retrieval with transverse translation diversity: a nonlinear optimization approach,” Opt. Express 16(10), 7264–7278 (2008).
    [Crossref] [PubMed]
  30. P. Thibault, M. Dierolf, A. Menzel, O. Bunk, C. David, and F. Pfeiffer, “High-Resolution Scanning X-ray Diffraction Microscopy,” Science 321, 379–382 (2008).
    [Crossref] [PubMed]
  31. P. Thibault, M. Dierolf, O. Bunk, A. Menzel, and F. Pfeiffer, “Probe retrieval in ptychographic coherent diffractive imaging,” Ultramicroscopy 109(4), 338–343 (2009).
    [Crossref] [PubMed]
  32. J. Vila-Comamala, A. Diaz, M. Guizar-Sicairos, A. Mantion, C. M. Kewish, A. Menzel, O. Bunk, and C. David, “Characterization of high-resolution diffractive X-ray optics by ptychographic coherent diffractive imaging,” Opt. Express 19(22), 21333–21344 (2011).
    [Crossref] [PubMed]
  33. C. M. Kewish, M. Guizar-Sicairos, C. Liu, J. Qian, B. Shi, C. Benson, A. M. Khounsary, J. Vila-Comamala, O. Bunk, J. R. Fienup, A. T. Macrander, and L. Assoufid, “Reconstruction of an astigmatic hard X-ray beam and alignment of K-B mirrors from ptychographic coherent diffraction data,” Opt. Express 18(22), 23420–23427 (2010).
    [Crossref] [PubMed]
  34. E. Wolf and M. Born, Principles of Optics (1st edition) (Pergamon Press Ltd.1959), p. 415.
  35. K. Strehl, “Aplanatische und fehlerhafte Abbildung im Fernrohr,” Zeitschrift fur Instrumentenkunde 15, 362–370 (1895).
  36. James C. Wyant and Katherine Creath, “Basic Wavefront Aberration Theory for Optical Metrology,” Applied Optics and Optical Engineering11 (1992).
  37. M. J. Simpson and A. G. Michette, “Imaging Properties of Modified Fresnel Zone Plates,” Optica Acta 31(4), 403–413 (1984).
    [Crossref]
  38. M. Guizar-Sicairos, M. Holler, A. Diaz, J. Vila-Comamala, O. Bunk, and A. Menzel, “Role of the illumination spatial-frequency spectrum for ptychography,” Phys. Rev. B 86, 100103 (2012).
    [Crossref]

2014 (3)

C. Chang and A. Sakdinawat, “Ultra-high aspect ratio high-resolution nanofabrication for hard X-ray diffractive optics,” Nature Communications 5, 4243 (2014).
[Crossref] [PubMed]

S. Werner, S. Rehbein, P. Guttmann, and G. Schneider, “Three-dimensional structured on-chip stacked zone plates for nanoscale X-ray imaging with high efficiency,” Nano Research 7(4), 1–8 (2014).
[Crossref]

F. Uhlen, D. Nilsson, J. Rahomaki, L. Belova, C. G. Schroer, F. Seiboth, A. Holmberg, H. M. Hertz, and U. Vogt, “Nanofabrication of tungsten zone plates with integrated platinum central stop for hard X-ray applications”, Microelectronic Engineering 116, 40–43 (2014).
[Crossref]

2013 (1)

2012 (3)

S.-R. Wu, Y. Hwu, and G. Margaritondo, “Hard-X-ray Zone Plates: Recent Progress,” Materials,  5, 1752–1773 (2012).
[Crossref]

V. A. Guzenko, J. Romijn, J. Vila-Comamala, S. Gorelick, and C. David, “Efficient E-Beam Lithography Exposure Strategies for Diffractive X-ray Optics,” AIP Conf. Proc. 1365, 92 (2012).

M. Guizar-Sicairos, M. Holler, A. Diaz, J. Vila-Comamala, O. Bunk, and A. Menzel, “Role of the illumination spatial-frequency spectrum for ptychography,” Phys. Rev. B 86, 100103 (2012).
[Crossref]

2011 (2)

2010 (3)

J. Vila-Comamala, S. Gorelick, V. A. Guzenko, E. Färm, M. Ritala, and C. David, “Dense high aspect ratio hydrogen silsesquioxane nanostructures by 100 keV electron beam lithography,” Nanotechnology 21, 285305 (2010).
[Crossref] [PubMed]

C. M. Kewish, M. Guizar-Sicairos, C. Liu, J. Qian, B. Shi, C. Benson, A. M. Khounsary, J. Vila-Comamala, O. Bunk, J. R. Fienup, A. T. Macrander, and L. Assoufid, “Reconstruction of an astigmatic hard X-ray beam and alignment of K-B mirrors from ptychographic coherent diffraction data,” Opt. Express 18(22), 23420–23427 (2010).
[Crossref] [PubMed]

S. Gorelick, V. A. Guzenko, J. Vila-Comamala, and C. David, “Direct e-beam writing of dense and high aspect ratio nanostructures in thick layers of PMMA for electroplating,” Nanotechnology 21, 295303 (2010).
[Crossref] [PubMed]

2009 (3)

M. R. Howells, T. Beetz, H. N. Chapman, C. Cui, J. M. Holton, C. J. Jacobsen, J. Kirz, E. Lima, S. Marchesini, H. Miao, D. Sayre, D. A. Shapiro, J. C. H. Spence, and D. Starodub, “An assessment of the resolution limitation due to radiation-damage in X-ray diffraction microscopy,” Journal of Electron Spectroscopy and Related Phenomena 170, 4–12 (2009).
[Crossref] [PubMed]

B. Henrich, A. Bergamaschi, C. Broennimann, R. Dinapoli, E.F. Eikenberry, I. Johnson, M. Kobas, P. Kraft, A. Mozzanica, and B. Schmitt, “PILATUS: A single photon counting pixel detector for X-ray applications,” Nuclear Instruments and Methods in Physics Research Section A 607(1), 247–249 (2009).
[Crossref]

P. Thibault, M. Dierolf, O. Bunk, A. Menzel, and F. Pfeiffer, “Probe retrieval in ptychographic coherent diffractive imaging,” Ultramicroscopy 109(4), 338–343 (2009).
[Crossref] [PubMed]

2008 (2)

M. Guizar-Sicairos and J. R. Fienup, “Phase retrieval with transverse translation diversity: a nonlinear optimization approach,” Opt. Express 16(10), 7264–7278 (2008).
[Crossref] [PubMed]

P. Thibault, M. Dierolf, A. Menzel, O. Bunk, C. David, and F. Pfeiffer, “High-Resolution Scanning X-ray Diffraction Microscopy,” Science 321, 379–382 (2008).
[Crossref] [PubMed]

2007 (4)

J. M. Rodenburg, A. C. Hurst, A. G. Cullis, B. R. Dobson, F. Pfeiffer, O. Bunk, C. David, K. Jefimovs, and I. Johnson, “Hard-x-ray lensless imaging of extended objects,” Physical Review Letters 98, 34801 (2007).
[Crossref]

Y. Feng, M. Feser, A. Lyon, S. Rishton, X. Zeng, S. Chen, S. Sassolini, and W. Yun, “Nanofabrication of high aspect ratio 24 nm x-ray zone plates for x-ray imaging applications,” Journal of Vacuum Science and Technology B 25, 2004 (2007).
[Crossref]

I. Snigireva, A. Snigirev, V. Kohn, V. Yunkin, M. Grigoriev, S. Kuznetsov, G. Vaughan, and M. Di Michiel, “Focusing high energy X-rays with stacked Fresnel zone plates,” physica status solidi (a) 204(8), 2817–2823 (2007).
[Crossref]

K. Jefimovs, J. Vila-Comamala, T. Pilvi, J. Raabe, M. Ritala, and C. David, “Zone-Doubling Technique to Produce Ultrahigh-Resolution X-Ray Optics,” Physical Review Letters 99, 264801 (2007).
[Crossref]

2005 (1)

W. Chao, B. D. Harteneck, J. Alexander Liddle, Erik H. Anderson, and David T. Attwood, “ Soft X-ray microscopy at a spatial resolution better than 15nm,” Nature 435, 1210–1213 (2005).
[Crossref] [PubMed]

2004 (2)

J. Maser, G. B. Stephenson, S. Vogt, W. Yun, A. Macrander, H. C. Kang, C. Liu, and R. Conley, “Multilayer Laue lenses as high-resolution x-ray optics,” Proc. SPIE 5539, 185–194 (2004).
[Crossref]

T. Aaltonen, M. Ritala, V. Sammelselg, and M. Leskela, “Atomic Layer Deposition of Iridium Thin Films,” Journal of The Electrochemical Society 151(8), 489–492 (2004).
[Crossref]

2001 (1)

C. David, B. Nöhammer, and E. Ziegler, “Wavelength tunable diffractive transmission lens for hard x rays,” Applied Physics Letters 79, 1088–1090 (2001).
[Crossref]

1999 (1)

J. Maser, B. Lai, W. Yun, S. D. Shastri, Z. Cai, W. Rodrigues, S. Xua, and E. Trackhtenberg, “Near-field stacking of zone plates in the x-ray range,” Proc. SPIE,  4783, 74 (1999).
[Crossref]

1996 (1)

A. Snigirev, V. Kohn, I. Snigireva, and B. Lengeler, “A compound refractive lens for focusing high-energy X-rays,” Nature 384, 49–51 (1996).
[Crossref]

1993 (1)

B. L. Henke, E. M. Gullikson, and J. C. Davis, “X-ray interactions: photoabsorption, scattering, transmission, and reflection at E=50–30000 eV, Z=1–92,” Atomic Data and Nuclear Data Tables 54(2), 181–342 (1993).
[Crossref]

1984 (2)

H. D. Bale and P. W. Schmidt, “Small-Angle X-Ray-Scattering Investigation of Submicroscopic Porosity with Fractal Properties,” Physical Review Letters,  53, 596 (1984).
[Crossref]

M. J. Simpson and A. G. Michette, “Imaging Properties of Modified Fresnel Zone Plates,” Optica Acta 31(4), 403–413 (1984).
[Crossref]

1974 (1)

J. Kirz, “Phase zone plates for x rays and the extreme UV,” J. Opt. Soc. Am. 20(3), 301–309 (1974).
[Crossref]

1951 (1)

G. Porod, “Die Rontgenkleinwinkelstreuung von dichtgepackten kolloiden Systemen I. Teil (X-ray low angle scattering of dense colloid systems. Part I.),” Kolloid-Zeitschrift 124, 83–114 (1951).
[Crossref]

1948 (1)

1895 (1)

K. Strehl, “Aplanatische und fehlerhafte Abbildung im Fernrohr,” Zeitschrift fur Instrumentenkunde 15, 362–370 (1895).

1875 (1)

J. L. Soret, “Ueber die von Kreisgittern erzeugten Diffraktionsphaenomene”, Ann. Phys. Chem,  156, 99 (1875).
[Crossref]

Aaltonen, T.

T. Aaltonen, M. Ritala, V. Sammelselg, and M. Leskela, “Atomic Layer Deposition of Iridium Thin Films,” Journal of The Electrochemical Society 151(8), 489–492 (2004).
[Crossref]

Alexander Liddle, J.

W. Chao, B. D. Harteneck, J. Alexander Liddle, Erik H. Anderson, and David T. Attwood, “ Soft X-ray microscopy at a spatial resolution better than 15nm,” Nature 435, 1210–1213 (2005).
[Crossref] [PubMed]

Anderson, Erik H.

W. Chao, B. D. Harteneck, J. Alexander Liddle, Erik H. Anderson, and David T. Attwood, “ Soft X-ray microscopy at a spatial resolution better than 15nm,” Nature 435, 1210–1213 (2005).
[Crossref] [PubMed]

Assoufid, L.

Attwood, David T.

W. Chao, B. D. Harteneck, J. Alexander Liddle, Erik H. Anderson, and David T. Attwood, “ Soft X-ray microscopy at a spatial resolution better than 15nm,” Nature 435, 1210–1213 (2005).
[Crossref] [PubMed]

Baez, A. V.

Bale, H. D.

H. D. Bale and P. W. Schmidt, “Small-Angle X-Ray-Scattering Investigation of Submicroscopic Porosity with Fractal Properties,” Physical Review Letters,  53, 596 (1984).
[Crossref]

Barrett, R.

Bartels, M.

Beetz, T.

M. R. Howells, T. Beetz, H. N. Chapman, C. Cui, J. M. Holton, C. J. Jacobsen, J. Kirz, E. Lima, S. Marchesini, H. Miao, D. Sayre, D. A. Shapiro, J. C. H. Spence, and D. Starodub, “An assessment of the resolution limitation due to radiation-damage in X-ray diffraction microscopy,” Journal of Electron Spectroscopy and Related Phenomena 170, 4–12 (2009).
[Crossref] [PubMed]

Belova, L.

F. Uhlen, D. Nilsson, J. Rahomaki, L. Belova, C. G. Schroer, F. Seiboth, A. Holmberg, H. M. Hertz, and U. Vogt, “Nanofabrication of tungsten zone plates with integrated platinum central stop for hard X-ray applications”, Microelectronic Engineering 116, 40–43 (2014).
[Crossref]

Benson, C.

Bergamaschi, A.

B. Henrich, A. Bergamaschi, C. Broennimann, R. Dinapoli, E.F. Eikenberry, I. Johnson, M. Kobas, P. Kraft, A. Mozzanica, and B. Schmitt, “PILATUS: A single photon counting pixel detector for X-ray applications,” Nuclear Instruments and Methods in Physics Research Section A 607(1), 247–249 (2009).
[Crossref]

Born, M.

E. Wolf and M. Born, Principles of Optics (1st edition) (Pergamon Press Ltd.1959), p. 415.

Broennimann, C.

B. Henrich, A. Bergamaschi, C. Broennimann, R. Dinapoli, E.F. Eikenberry, I. Johnson, M. Kobas, P. Kraft, A. Mozzanica, and B. Schmitt, “PILATUS: A single photon counting pixel detector for X-ray applications,” Nuclear Instruments and Methods in Physics Research Section A 607(1), 247–249 (2009).
[Crossref]

Bunk, O.

M. Guizar-Sicairos, M. Holler, A. Diaz, J. Vila-Comamala, O. Bunk, and A. Menzel, “Role of the illumination spatial-frequency spectrum for ptychography,” Phys. Rev. B 86, 100103 (2012).
[Crossref]

J. Vila-Comamala, A. Diaz, M. Guizar-Sicairos, A. Mantion, C. M. Kewish, A. Menzel, O. Bunk, and C. David, “Characterization of high-resolution diffractive X-ray optics by ptychographic coherent diffractive imaging,” Opt. Express 19(22), 21333–21344 (2011).
[Crossref] [PubMed]

C. M. Kewish, M. Guizar-Sicairos, C. Liu, J. Qian, B. Shi, C. Benson, A. M. Khounsary, J. Vila-Comamala, O. Bunk, J. R. Fienup, A. T. Macrander, and L. Assoufid, “Reconstruction of an astigmatic hard X-ray beam and alignment of K-B mirrors from ptychographic coherent diffraction data,” Opt. Express 18(22), 23420–23427 (2010).
[Crossref] [PubMed]

P. Thibault, M. Dierolf, O. Bunk, A. Menzel, and F. Pfeiffer, “Probe retrieval in ptychographic coherent diffractive imaging,” Ultramicroscopy 109(4), 338–343 (2009).
[Crossref] [PubMed]

P. Thibault, M. Dierolf, A. Menzel, O. Bunk, C. David, and F. Pfeiffer, “High-Resolution Scanning X-ray Diffraction Microscopy,” Science 321, 379–382 (2008).
[Crossref] [PubMed]

J. M. Rodenburg, A. C. Hurst, A. G. Cullis, B. R. Dobson, F. Pfeiffer, O. Bunk, C. David, K. Jefimovs, and I. Johnson, “Hard-x-ray lensless imaging of extended objects,” Physical Review Letters 98, 34801 (2007).
[Crossref]

Cai, Z.

J. Maser, B. Lai, W. Yun, S. D. Shastri, Z. Cai, W. Rodrigues, S. Xua, and E. Trackhtenberg, “Near-field stacking of zone plates in the x-ray range,” Proc. SPIE,  4783, 74 (1999).
[Crossref]

Chang, C.

C. Chang and A. Sakdinawat, “Ultra-high aspect ratio high-resolution nanofabrication for hard X-ray diffractive optics,” Nature Communications 5, 4243 (2014).
[Crossref] [PubMed]

Chao, W.

W. Chao, B. D. Harteneck, J. Alexander Liddle, Erik H. Anderson, and David T. Attwood, “ Soft X-ray microscopy at a spatial resolution better than 15nm,” Nature 435, 1210–1213 (2005).
[Crossref] [PubMed]

Chapman, H. N.

M. R. Howells, T. Beetz, H. N. Chapman, C. Cui, J. M. Holton, C. J. Jacobsen, J. Kirz, E. Lima, S. Marchesini, H. Miao, D. Sayre, D. A. Shapiro, J. C. H. Spence, and D. Starodub, “An assessment of the resolution limitation due to radiation-damage in X-ray diffraction microscopy,” Journal of Electron Spectroscopy and Related Phenomena 170, 4–12 (2009).
[Crossref] [PubMed]

Chen, S.

Y. Feng, M. Feser, A. Lyon, S. Rishton, X. Zeng, S. Chen, S. Sassolini, and W. Yun, “Nanofabrication of high aspect ratio 24 nm x-ray zone plates for x-ray imaging applications,” Journal of Vacuum Science and Technology B 25, 2004 (2007).
[Crossref]

Conley, R.

J. Maser, G. B. Stephenson, S. Vogt, W. Yun, A. Macrander, H. C. Kang, C. Liu, and R. Conley, “Multilayer Laue lenses as high-resolution x-ray optics,” Proc. SPIE 5539, 185–194 (2004).
[Crossref]

Creath, Katherine

James C. Wyant and Katherine Creath, “Basic Wavefront Aberration Theory for Optical Metrology,” Applied Optics and Optical Engineering11 (1992).

Cui, C.

M. R. Howells, T. Beetz, H. N. Chapman, C. Cui, J. M. Holton, C. J. Jacobsen, J. Kirz, E. Lima, S. Marchesini, H. Miao, D. Sayre, D. A. Shapiro, J. C. H. Spence, and D. Starodub, “An assessment of the resolution limitation due to radiation-damage in X-ray diffraction microscopy,” Journal of Electron Spectroscopy and Related Phenomena 170, 4–12 (2009).
[Crossref] [PubMed]

Cullis, A. G.

J. M. Rodenburg, A. C. Hurst, A. G. Cullis, B. R. Dobson, F. Pfeiffer, O. Bunk, C. David, K. Jefimovs, and I. Johnson, “Hard-x-ray lensless imaging of extended objects,” Physical Review Letters 98, 34801 (2007).
[Crossref]

David, C.

V. A. Guzenko, J. Romijn, J. Vila-Comamala, S. Gorelick, and C. David, “Efficient E-Beam Lithography Exposure Strategies for Diffractive X-ray Optics,” AIP Conf. Proc. 1365, 92 (2012).

J. Vila-Comamala, S. Gorelick, E. Färm, C. M. Kewish, A. Diaz, R. Barrett, V. A. Guzenko, M. Ritala, and C. David, “Ultra-high resolution zone-doubled diffractive X-ray optics for the multi-keV regime,” Opt. Express 19(1) 175–184 (2011).
[Crossref] [PubMed]

J. Vila-Comamala, A. Diaz, M. Guizar-Sicairos, A. Mantion, C. M. Kewish, A. Menzel, O. Bunk, and C. David, “Characterization of high-resolution diffractive X-ray optics by ptychographic coherent diffractive imaging,” Opt. Express 19(22), 21333–21344 (2011).
[Crossref] [PubMed]

J. Vila-Comamala, S. Gorelick, V. A. Guzenko, E. Färm, M. Ritala, and C. David, “Dense high aspect ratio hydrogen silsesquioxane nanostructures by 100 keV electron beam lithography,” Nanotechnology 21, 285305 (2010).
[Crossref] [PubMed]

S. Gorelick, V. A. Guzenko, J. Vila-Comamala, and C. David, “Direct e-beam writing of dense and high aspect ratio nanostructures in thick layers of PMMA for electroplating,” Nanotechnology 21, 295303 (2010).
[Crossref] [PubMed]

P. Thibault, M. Dierolf, A. Menzel, O. Bunk, C. David, and F. Pfeiffer, “High-Resolution Scanning X-ray Diffraction Microscopy,” Science 321, 379–382 (2008).
[Crossref] [PubMed]

K. Jefimovs, J. Vila-Comamala, T. Pilvi, J. Raabe, M. Ritala, and C. David, “Zone-Doubling Technique to Produce Ultrahigh-Resolution X-Ray Optics,” Physical Review Letters 99, 264801 (2007).
[Crossref]

J. M. Rodenburg, A. C. Hurst, A. G. Cullis, B. R. Dobson, F. Pfeiffer, O. Bunk, C. David, K. Jefimovs, and I. Johnson, “Hard-x-ray lensless imaging of extended objects,” Physical Review Letters 98, 34801 (2007).
[Crossref]

C. David, B. Nöhammer, and E. Ziegler, “Wavelength tunable diffractive transmission lens for hard x rays,” Applied Physics Letters 79, 1088–1090 (2001).
[Crossref]

Davis, J. C.

B. L. Henke, E. M. Gullikson, and J. C. Davis, “X-ray interactions: photoabsorption, scattering, transmission, and reflection at E=50–30000 eV, Z=1–92,” Atomic Data and Nuclear Data Tables 54(2), 181–342 (1993).
[Crossref]

Di Michiel, M.

I. Snigireva, A. Snigirev, V. Kohn, V. Yunkin, M. Grigoriev, S. Kuznetsov, G. Vaughan, and M. Di Michiel, “Focusing high energy X-rays with stacked Fresnel zone plates,” physica status solidi (a) 204(8), 2817–2823 (2007).
[Crossref]

Diaz, A.

Dierolf, M.

P. Thibault, M. Dierolf, O. Bunk, A. Menzel, and F. Pfeiffer, “Probe retrieval in ptychographic coherent diffractive imaging,” Ultramicroscopy 109(4), 338–343 (2009).
[Crossref] [PubMed]

P. Thibault, M. Dierolf, A. Menzel, O. Bunk, C. David, and F. Pfeiffer, “High-Resolution Scanning X-ray Diffraction Microscopy,” Science 321, 379–382 (2008).
[Crossref] [PubMed]

Dinapoli, R.

B. Henrich, A. Bergamaschi, C. Broennimann, R. Dinapoli, E.F. Eikenberry, I. Johnson, M. Kobas, P. Kraft, A. Mozzanica, and B. Schmitt, “PILATUS: A single photon counting pixel detector for X-ray applications,” Nuclear Instruments and Methods in Physics Research Section A 607(1), 247–249 (2009).
[Crossref]

Dobson, B. R.

J. M. Rodenburg, A. C. Hurst, A. G. Cullis, B. R. Dobson, F. Pfeiffer, O. Bunk, C. David, K. Jefimovs, and I. Johnson, “Hard-x-ray lensless imaging of extended objects,” Physical Review Letters 98, 34801 (2007).
[Crossref]

Döring, F.

Eberl, C.

Eikenberry, E.F.

B. Henrich, A. Bergamaschi, C. Broennimann, R. Dinapoli, E.F. Eikenberry, I. Johnson, M. Kobas, P. Kraft, A. Mozzanica, and B. Schmitt, “PILATUS: A single photon counting pixel detector for X-ray applications,” Nuclear Instruments and Methods in Physics Research Section A 607(1), 247–249 (2009).
[Crossref]

Färm, E.

J. Vila-Comamala, S. Gorelick, E. Färm, C. M. Kewish, A. Diaz, R. Barrett, V. A. Guzenko, M. Ritala, and C. David, “Ultra-high resolution zone-doubled diffractive X-ray optics for the multi-keV regime,” Opt. Express 19(1) 175–184 (2011).
[Crossref] [PubMed]

J. Vila-Comamala, S. Gorelick, V. A. Guzenko, E. Färm, M. Ritala, and C. David, “Dense high aspect ratio hydrogen silsesquioxane nanostructures by 100 keV electron beam lithography,” Nanotechnology 21, 285305 (2010).
[Crossref] [PubMed]

Feng, Y.

Y. Feng, M. Feser, A. Lyon, S. Rishton, X. Zeng, S. Chen, S. Sassolini, and W. Yun, “Nanofabrication of high aspect ratio 24 nm x-ray zone plates for x-ray imaging applications,” Journal of Vacuum Science and Technology B 25, 2004 (2007).
[Crossref]

Feser, M.

Y. Feng, M. Feser, A. Lyon, S. Rishton, X. Zeng, S. Chen, S. Sassolini, and W. Yun, “Nanofabrication of high aspect ratio 24 nm x-ray zone plates for x-ray imaging applications,” Journal of Vacuum Science and Technology B 25, 2004 (2007).
[Crossref]

Fienup, J. R.

Gorelick, S.

V. A. Guzenko, J. Romijn, J. Vila-Comamala, S. Gorelick, and C. David, “Efficient E-Beam Lithography Exposure Strategies for Diffractive X-ray Optics,” AIP Conf. Proc. 1365, 92 (2012).

J. Vila-Comamala, S. Gorelick, E. Färm, C. M. Kewish, A. Diaz, R. Barrett, V. A. Guzenko, M. Ritala, and C. David, “Ultra-high resolution zone-doubled diffractive X-ray optics for the multi-keV regime,” Opt. Express 19(1) 175–184 (2011).
[Crossref] [PubMed]

J. Vila-Comamala, S. Gorelick, V. A. Guzenko, E. Färm, M. Ritala, and C. David, “Dense high aspect ratio hydrogen silsesquioxane nanostructures by 100 keV electron beam lithography,” Nanotechnology 21, 285305 (2010).
[Crossref] [PubMed]

S. Gorelick, V. A. Guzenko, J. Vila-Comamala, and C. David, “Direct e-beam writing of dense and high aspect ratio nanostructures in thick layers of PMMA for electroplating,” Nanotechnology 21, 295303 (2010).
[Crossref] [PubMed]

Grigoriev, M.

I. Snigireva, A. Snigirev, V. Kohn, V. Yunkin, M. Grigoriev, S. Kuznetsov, G. Vaughan, and M. Di Michiel, “Focusing high energy X-rays with stacked Fresnel zone plates,” physica status solidi (a) 204(8), 2817–2823 (2007).
[Crossref]

Guizar-Sicairos, M.

Gullikson, E. M.

B. L. Henke, E. M. Gullikson, and J. C. Davis, “X-ray interactions: photoabsorption, scattering, transmission, and reflection at E=50–30000 eV, Z=1–92,” Atomic Data and Nuclear Data Tables 54(2), 181–342 (1993).
[Crossref]

Guttmann, P.

S. Werner, S. Rehbein, P. Guttmann, and G. Schneider, “Three-dimensional structured on-chip stacked zone plates for nanoscale X-ray imaging with high efficiency,” Nano Research 7(4), 1–8 (2014).
[Crossref]

Guzenko, V. A.

V. A. Guzenko, J. Romijn, J. Vila-Comamala, S. Gorelick, and C. David, “Efficient E-Beam Lithography Exposure Strategies for Diffractive X-ray Optics,” AIP Conf. Proc. 1365, 92 (2012).

J. Vila-Comamala, S. Gorelick, E. Färm, C. M. Kewish, A. Diaz, R. Barrett, V. A. Guzenko, M. Ritala, and C. David, “Ultra-high resolution zone-doubled diffractive X-ray optics for the multi-keV regime,” Opt. Express 19(1) 175–184 (2011).
[Crossref] [PubMed]

J. Vila-Comamala, S. Gorelick, V. A. Guzenko, E. Färm, M. Ritala, and C. David, “Dense high aspect ratio hydrogen silsesquioxane nanostructures by 100 keV electron beam lithography,” Nanotechnology 21, 285305 (2010).
[Crossref] [PubMed]

S. Gorelick, V. A. Guzenko, J. Vila-Comamala, and C. David, “Direct e-beam writing of dense and high aspect ratio nanostructures in thick layers of PMMA for electroplating,” Nanotechnology 21, 295303 (2010).
[Crossref] [PubMed]

Harteneck, B. D.

W. Chao, B. D. Harteneck, J. Alexander Liddle, Erik H. Anderson, and David T. Attwood, “ Soft X-ray microscopy at a spatial resolution better than 15nm,” Nature 435, 1210–1213 (2005).
[Crossref] [PubMed]

Henke, B. L.

B. L. Henke, E. M. Gullikson, and J. C. Davis, “X-ray interactions: photoabsorption, scattering, transmission, and reflection at E=50–30000 eV, Z=1–92,” Atomic Data and Nuclear Data Tables 54(2), 181–342 (1993).
[Crossref]

Henrich, B.

B. Henrich, A. Bergamaschi, C. Broennimann, R. Dinapoli, E.F. Eikenberry, I. Johnson, M. Kobas, P. Kraft, A. Mozzanica, and B. Schmitt, “PILATUS: A single photon counting pixel detector for X-ray applications,” Nuclear Instruments and Methods in Physics Research Section A 607(1), 247–249 (2009).
[Crossref]

Hertz, H. M.

F. Uhlen, D. Nilsson, J. Rahomaki, L. Belova, C. G. Schroer, F. Seiboth, A. Holmberg, H. M. Hertz, and U. Vogt, “Nanofabrication of tungsten zone plates with integrated platinum central stop for hard X-ray applications”, Microelectronic Engineering 116, 40–43 (2014).
[Crossref]

Hoffmann, S.

Holler, M.

M. Guizar-Sicairos, M. Holler, A. Diaz, J. Vila-Comamala, O. Bunk, and A. Menzel, “Role of the illumination spatial-frequency spectrum for ptychography,” Phys. Rev. B 86, 100103 (2012).
[Crossref]

Holmberg, A.

F. Uhlen, D. Nilsson, J. Rahomaki, L. Belova, C. G. Schroer, F. Seiboth, A. Holmberg, H. M. Hertz, and U. Vogt, “Nanofabrication of tungsten zone plates with integrated platinum central stop for hard X-ray applications”, Microelectronic Engineering 116, 40–43 (2014).
[Crossref]

Holton, J. M.

M. R. Howells, T. Beetz, H. N. Chapman, C. Cui, J. M. Holton, C. J. Jacobsen, J. Kirz, E. Lima, S. Marchesini, H. Miao, D. Sayre, D. A. Shapiro, J. C. H. Spence, and D. Starodub, “An assessment of the resolution limitation due to radiation-damage in X-ray diffraction microscopy,” Journal of Electron Spectroscopy and Related Phenomena 170, 4–12 (2009).
[Crossref] [PubMed]

Howells, M. R.

M. R. Howells, T. Beetz, H. N. Chapman, C. Cui, J. M. Holton, C. J. Jacobsen, J. Kirz, E. Lima, S. Marchesini, H. Miao, D. Sayre, D. A. Shapiro, J. C. H. Spence, and D. Starodub, “An assessment of the resolution limitation due to radiation-damage in X-ray diffraction microscopy,” Journal of Electron Spectroscopy and Related Phenomena 170, 4–12 (2009).
[Crossref] [PubMed]

Hurst, A. C.

J. M. Rodenburg, A. C. Hurst, A. G. Cullis, B. R. Dobson, F. Pfeiffer, O. Bunk, C. David, K. Jefimovs, and I. Johnson, “Hard-x-ray lensless imaging of extended objects,” Physical Review Letters 98, 34801 (2007).
[Crossref]

Hwu, Y.

S.-R. Wu, Y. Hwu, and G. Margaritondo, “Hard-X-ray Zone Plates: Recent Progress,” Materials,  5, 1752–1773 (2012).
[Crossref]

Jacobsen, C. J.

M. R. Howells, T. Beetz, H. N. Chapman, C. Cui, J. M. Holton, C. J. Jacobsen, J. Kirz, E. Lima, S. Marchesini, H. Miao, D. Sayre, D. A. Shapiro, J. C. H. Spence, and D. Starodub, “An assessment of the resolution limitation due to radiation-damage in X-ray diffraction microscopy,” Journal of Electron Spectroscopy and Related Phenomena 170, 4–12 (2009).
[Crossref] [PubMed]

Jefimovs, K.

K. Jefimovs, J. Vila-Comamala, T. Pilvi, J. Raabe, M. Ritala, and C. David, “Zone-Doubling Technique to Produce Ultrahigh-Resolution X-Ray Optics,” Physical Review Letters 99, 264801 (2007).
[Crossref]

J. M. Rodenburg, A. C. Hurst, A. G. Cullis, B. R. Dobson, F. Pfeiffer, O. Bunk, C. David, K. Jefimovs, and I. Johnson, “Hard-x-ray lensless imaging of extended objects,” Physical Review Letters 98, 34801 (2007).
[Crossref]

Johnson, I.

B. Henrich, A. Bergamaschi, C. Broennimann, R. Dinapoli, E.F. Eikenberry, I. Johnson, M. Kobas, P. Kraft, A. Mozzanica, and B. Schmitt, “PILATUS: A single photon counting pixel detector for X-ray applications,” Nuclear Instruments and Methods in Physics Research Section A 607(1), 247–249 (2009).
[Crossref]

J. M. Rodenburg, A. C. Hurst, A. G. Cullis, B. R. Dobson, F. Pfeiffer, O. Bunk, C. David, K. Jefimovs, and I. Johnson, “Hard-x-ray lensless imaging of extended objects,” Physical Review Letters 98, 34801 (2007).
[Crossref]

Kang, H. C.

J. Maser, G. B. Stephenson, S. Vogt, W. Yun, A. Macrander, H. C. Kang, C. Liu, and R. Conley, “Multilayer Laue lenses as high-resolution x-ray optics,” Proc. SPIE 5539, 185–194 (2004).
[Crossref]

Kewish, C. M.

Khounsary, A. M.

Kirkpatrick, P.

Kirz, J.

M. R. Howells, T. Beetz, H. N. Chapman, C. Cui, J. M. Holton, C. J. Jacobsen, J. Kirz, E. Lima, S. Marchesini, H. Miao, D. Sayre, D. A. Shapiro, J. C. H. Spence, and D. Starodub, “An assessment of the resolution limitation due to radiation-damage in X-ray diffraction microscopy,” Journal of Electron Spectroscopy and Related Phenomena 170, 4–12 (2009).
[Crossref] [PubMed]

J. Kirz, “Phase zone plates for x rays and the extreme UV,” J. Opt. Soc. Am. 20(3), 301–309 (1974).
[Crossref]

Kobas, M.

B. Henrich, A. Bergamaschi, C. Broennimann, R. Dinapoli, E.F. Eikenberry, I. Johnson, M. Kobas, P. Kraft, A. Mozzanica, and B. Schmitt, “PILATUS: A single photon counting pixel detector for X-ray applications,” Nuclear Instruments and Methods in Physics Research Section A 607(1), 247–249 (2009).
[Crossref]

Kohn, V.

I. Snigireva, A. Snigirev, V. Kohn, V. Yunkin, M. Grigoriev, S. Kuznetsov, G. Vaughan, and M. Di Michiel, “Focusing high energy X-rays with stacked Fresnel zone plates,” physica status solidi (a) 204(8), 2817–2823 (2007).
[Crossref]

A. Snigirev, V. Kohn, I. Snigireva, and B. Lengeler, “A compound refractive lens for focusing high-energy X-rays,” Nature 384, 49–51 (1996).
[Crossref]

Kraft, P.

B. Henrich, A. Bergamaschi, C. Broennimann, R. Dinapoli, E.F. Eikenberry, I. Johnson, M. Kobas, P. Kraft, A. Mozzanica, and B. Schmitt, “PILATUS: A single photon counting pixel detector for X-ray applications,” Nuclear Instruments and Methods in Physics Research Section A 607(1), 247–249 (2009).
[Crossref]

Krebs, H.U.

Kuznetsov, S.

I. Snigireva, A. Snigirev, V. Kohn, V. Yunkin, M. Grigoriev, S. Kuznetsov, G. Vaughan, and M. Di Michiel, “Focusing high energy X-rays with stacked Fresnel zone plates,” physica status solidi (a) 204(8), 2817–2823 (2007).
[Crossref]

Lai, B.

J. Maser, B. Lai, W. Yun, S. D. Shastri, Z. Cai, W. Rodrigues, S. Xua, and E. Trackhtenberg, “Near-field stacking of zone plates in the x-ray range,” Proc. SPIE,  4783, 74 (1999).
[Crossref]

Lengeler, B.

A. Snigirev, V. Kohn, I. Snigireva, and B. Lengeler, “A compound refractive lens for focusing high-energy X-rays,” Nature 384, 49–51 (1996).
[Crossref]

Leskela, M.

T. Aaltonen, M. Ritala, V. Sammelselg, and M. Leskela, “Atomic Layer Deposition of Iridium Thin Films,” Journal of The Electrochemical Society 151(8), 489–492 (2004).
[Crossref]

Liese, T.

Lima, E.

M. R. Howells, T. Beetz, H. N. Chapman, C. Cui, J. M. Holton, C. J. Jacobsen, J. Kirz, E. Lima, S. Marchesini, H. Miao, D. Sayre, D. A. Shapiro, J. C. H. Spence, and D. Starodub, “An assessment of the resolution limitation due to radiation-damage in X-ray diffraction microscopy,” Journal of Electron Spectroscopy and Related Phenomena 170, 4–12 (2009).
[Crossref] [PubMed]

Liu, C.

Lyon, A.

Y. Feng, M. Feser, A. Lyon, S. Rishton, X. Zeng, S. Chen, S. Sassolini, and W. Yun, “Nanofabrication of high aspect ratio 24 nm x-ray zone plates for x-ray imaging applications,” Journal of Vacuum Science and Technology B 25, 2004 (2007).
[Crossref]

Macrander, A.

J. Maser, G. B. Stephenson, S. Vogt, W. Yun, A. Macrander, H. C. Kang, C. Liu, and R. Conley, “Multilayer Laue lenses as high-resolution x-ray optics,” Proc. SPIE 5539, 185–194 (2004).
[Crossref]

Macrander, A. T.

Mantion, A.

Marchesini, S.

M. R. Howells, T. Beetz, H. N. Chapman, C. Cui, J. M. Holton, C. J. Jacobsen, J. Kirz, E. Lima, S. Marchesini, H. Miao, D. Sayre, D. A. Shapiro, J. C. H. Spence, and D. Starodub, “An assessment of the resolution limitation due to radiation-damage in X-ray diffraction microscopy,” Journal of Electron Spectroscopy and Related Phenomena 170, 4–12 (2009).
[Crossref] [PubMed]

Margaritondo, G.

S.-R. Wu, Y. Hwu, and G. Margaritondo, “Hard-X-ray Zone Plates: Recent Progress,” Materials,  5, 1752–1773 (2012).
[Crossref]

Maser, J.

J. Maser, G. B. Stephenson, S. Vogt, W. Yun, A. Macrander, H. C. Kang, C. Liu, and R. Conley, “Multilayer Laue lenses as high-resolution x-ray optics,” Proc. SPIE 5539, 185–194 (2004).
[Crossref]

J. Maser, B. Lai, W. Yun, S. D. Shastri, Z. Cai, W. Rodrigues, S. Xua, and E. Trackhtenberg, “Near-field stacking of zone plates in the x-ray range,” Proc. SPIE,  4783, 74 (1999).
[Crossref]

Menzel, A.

M. Guizar-Sicairos, M. Holler, A. Diaz, J. Vila-Comamala, O. Bunk, and A. Menzel, “Role of the illumination spatial-frequency spectrum for ptychography,” Phys. Rev. B 86, 100103 (2012).
[Crossref]

J. Vila-Comamala, A. Diaz, M. Guizar-Sicairos, A. Mantion, C. M. Kewish, A. Menzel, O. Bunk, and C. David, “Characterization of high-resolution diffractive X-ray optics by ptychographic coherent diffractive imaging,” Opt. Express 19(22), 21333–21344 (2011).
[Crossref] [PubMed]

P. Thibault, M. Dierolf, O. Bunk, A. Menzel, and F. Pfeiffer, “Probe retrieval in ptychographic coherent diffractive imaging,” Ultramicroscopy 109(4), 338–343 (2009).
[Crossref] [PubMed]

P. Thibault, M. Dierolf, A. Menzel, O. Bunk, C. David, and F. Pfeiffer, “High-Resolution Scanning X-ray Diffraction Microscopy,” Science 321, 379–382 (2008).
[Crossref] [PubMed]

Miao, H.

M. R. Howells, T. Beetz, H. N. Chapman, C. Cui, J. M. Holton, C. J. Jacobsen, J. Kirz, E. Lima, S. Marchesini, H. Miao, D. Sayre, D. A. Shapiro, J. C. H. Spence, and D. Starodub, “An assessment of the resolution limitation due to radiation-damage in X-ray diffraction microscopy,” Journal of Electron Spectroscopy and Related Phenomena 170, 4–12 (2009).
[Crossref] [PubMed]

Michette, A. G.

M. J. Simpson and A. G. Michette, “Imaging Properties of Modified Fresnel Zone Plates,” Optica Acta 31(4), 403–413 (1984).
[Crossref]

A. G. Michette, Optical Systems for Soft X Rays (Plenum Press, 1986).
[Crossref]

Mozzanica, A.

B. Henrich, A. Bergamaschi, C. Broennimann, R. Dinapoli, E.F. Eikenberry, I. Johnson, M. Kobas, P. Kraft, A. Mozzanica, and B. Schmitt, “PILATUS: A single photon counting pixel detector for X-ray applications,” Nuclear Instruments and Methods in Physics Research Section A 607(1), 247–249 (2009).
[Crossref]

Nilsson, D.

F. Uhlen, D. Nilsson, J. Rahomaki, L. Belova, C. G. Schroer, F. Seiboth, A. Holmberg, H. M. Hertz, and U. Vogt, “Nanofabrication of tungsten zone plates with integrated platinum central stop for hard X-ray applications”, Microelectronic Engineering 116, 40–43 (2014).
[Crossref]

Nöhammer, B.

C. David, B. Nöhammer, and E. Ziegler, “Wavelength tunable diffractive transmission lens for hard x rays,” Applied Physics Letters 79, 1088–1090 (2001).
[Crossref]

Osterhoff, M.

Pfeiffer, F.

P. Thibault, M. Dierolf, O. Bunk, A. Menzel, and F. Pfeiffer, “Probe retrieval in ptychographic coherent diffractive imaging,” Ultramicroscopy 109(4), 338–343 (2009).
[Crossref] [PubMed]

P. Thibault, M. Dierolf, A. Menzel, O. Bunk, C. David, and F. Pfeiffer, “High-Resolution Scanning X-ray Diffraction Microscopy,” Science 321, 379–382 (2008).
[Crossref] [PubMed]

J. M. Rodenburg, A. C. Hurst, A. G. Cullis, B. R. Dobson, F. Pfeiffer, O. Bunk, C. David, K. Jefimovs, and I. Johnson, “Hard-x-ray lensless imaging of extended objects,” Physical Review Letters 98, 34801 (2007).
[Crossref]

Pilvi, T.

K. Jefimovs, J. Vila-Comamala, T. Pilvi, J. Raabe, M. Ritala, and C. David, “Zone-Doubling Technique to Produce Ultrahigh-Resolution X-Ray Optics,” Physical Review Letters 99, 264801 (2007).
[Crossref]

Porod, G.

G. Porod, “Die Rontgenkleinwinkelstreuung von dichtgepackten kolloiden Systemen I. Teil (X-ray low angle scattering of dense colloid systems. Part I.),” Kolloid-Zeitschrift 124, 83–114 (1951).
[Crossref]

Qian, J.

Raabe, J.

K. Jefimovs, J. Vila-Comamala, T. Pilvi, J. Raabe, M. Ritala, and C. David, “Zone-Doubling Technique to Produce Ultrahigh-Resolution X-Ray Optics,” Physical Review Letters 99, 264801 (2007).
[Crossref]

Rahomaki, J.

F. Uhlen, D. Nilsson, J. Rahomaki, L. Belova, C. G. Schroer, F. Seiboth, A. Holmberg, H. M. Hertz, and U. Vogt, “Nanofabrication of tungsten zone plates with integrated platinum central stop for hard X-ray applications”, Microelectronic Engineering 116, 40–43 (2014).
[Crossref]

Rehbein, S.

S. Werner, S. Rehbein, P. Guttmann, and G. Schneider, “Three-dimensional structured on-chip stacked zone plates for nanoscale X-ray imaging with high efficiency,” Nano Research 7(4), 1–8 (2014).
[Crossref]

Rishton, S.

Y. Feng, M. Feser, A. Lyon, S. Rishton, X. Zeng, S. Chen, S. Sassolini, and W. Yun, “Nanofabrication of high aspect ratio 24 nm x-ray zone plates for x-ray imaging applications,” Journal of Vacuum Science and Technology B 25, 2004 (2007).
[Crossref]

Ritala, M.

J. Vila-Comamala, S. Gorelick, E. Färm, C. M. Kewish, A. Diaz, R. Barrett, V. A. Guzenko, M. Ritala, and C. David, “Ultra-high resolution zone-doubled diffractive X-ray optics for the multi-keV regime,” Opt. Express 19(1) 175–184 (2011).
[Crossref] [PubMed]

J. Vila-Comamala, S. Gorelick, V. A. Guzenko, E. Färm, M. Ritala, and C. David, “Dense high aspect ratio hydrogen silsesquioxane nanostructures by 100 keV electron beam lithography,” Nanotechnology 21, 285305 (2010).
[Crossref] [PubMed]

K. Jefimovs, J. Vila-Comamala, T. Pilvi, J. Raabe, M. Ritala, and C. David, “Zone-Doubling Technique to Produce Ultrahigh-Resolution X-Ray Optics,” Physical Review Letters 99, 264801 (2007).
[Crossref]

T. Aaltonen, M. Ritala, V. Sammelselg, and M. Leskela, “Atomic Layer Deposition of Iridium Thin Films,” Journal of The Electrochemical Society 151(8), 489–492 (2004).
[Crossref]

Robisch, A. L.

Rodenburg, J. M.

J. M. Rodenburg, A. C. Hurst, A. G. Cullis, B. R. Dobson, F. Pfeiffer, O. Bunk, C. David, K. Jefimovs, and I. Johnson, “Hard-x-ray lensless imaging of extended objects,” Physical Review Letters 98, 34801 (2007).
[Crossref]

Rodrigues, W.

J. Maser, B. Lai, W. Yun, S. D. Shastri, Z. Cai, W. Rodrigues, S. Xua, and E. Trackhtenberg, “Near-field stacking of zone plates in the x-ray range,” Proc. SPIE,  4783, 74 (1999).
[Crossref]

Romijn, J.

V. A. Guzenko, J. Romijn, J. Vila-Comamala, S. Gorelick, and C. David, “Efficient E-Beam Lithography Exposure Strategies for Diffractive X-ray Optics,” AIP Conf. Proc. 1365, 92 (2012).

Ruhlandt, A.

Sakdinawat, A.

C. Chang and A. Sakdinawat, “Ultra-high aspect ratio high-resolution nanofabrication for hard X-ray diffractive optics,” Nature Communications 5, 4243 (2014).
[Crossref] [PubMed]

Salditt, T.

Sammelselg, V.

T. Aaltonen, M. Ritala, V. Sammelselg, and M. Leskela, “Atomic Layer Deposition of Iridium Thin Films,” Journal of The Electrochemical Society 151(8), 489–492 (2004).
[Crossref]

Sassolini, S.

Y. Feng, M. Feser, A. Lyon, S. Rishton, X. Zeng, S. Chen, S. Sassolini, and W. Yun, “Nanofabrication of high aspect ratio 24 nm x-ray zone plates for x-ray imaging applications,” Journal of Vacuum Science and Technology B 25, 2004 (2007).
[Crossref]

Sayre, D.

M. R. Howells, T. Beetz, H. N. Chapman, C. Cui, J. M. Holton, C. J. Jacobsen, J. Kirz, E. Lima, S. Marchesini, H. Miao, D. Sayre, D. A. Shapiro, J. C. H. Spence, and D. Starodub, “An assessment of the resolution limitation due to radiation-damage in X-ray diffraction microscopy,” Journal of Electron Spectroscopy and Related Phenomena 170, 4–12 (2009).
[Crossref] [PubMed]

Schlenkrich, F.

Schmidt, P. W.

H. D. Bale and P. W. Schmidt, “Small-Angle X-Ray-Scattering Investigation of Submicroscopic Porosity with Fractal Properties,” Physical Review Letters,  53, 596 (1984).
[Crossref]

Schmitt, B.

B. Henrich, A. Bergamaschi, C. Broennimann, R. Dinapoli, E.F. Eikenberry, I. Johnson, M. Kobas, P. Kraft, A. Mozzanica, and B. Schmitt, “PILATUS: A single photon counting pixel detector for X-ray applications,” Nuclear Instruments and Methods in Physics Research Section A 607(1), 247–249 (2009).
[Crossref]

Schneider, G.

S. Werner, S. Rehbein, P. Guttmann, and G. Schneider, “Three-dimensional structured on-chip stacked zone plates for nanoscale X-ray imaging with high efficiency,” Nano Research 7(4), 1–8 (2014).
[Crossref]

Schroer, C. G.

F. Uhlen, D. Nilsson, J. Rahomaki, L. Belova, C. G. Schroer, F. Seiboth, A. Holmberg, H. M. Hertz, and U. Vogt, “Nanofabrication of tungsten zone plates with integrated platinum central stop for hard X-ray applications”, Microelectronic Engineering 116, 40–43 (2014).
[Crossref]

Seiboth, F.

F. Uhlen, D. Nilsson, J. Rahomaki, L. Belova, C. G. Schroer, F. Seiboth, A. Holmberg, H. M. Hertz, and U. Vogt, “Nanofabrication of tungsten zone plates with integrated platinum central stop for hard X-ray applications”, Microelectronic Engineering 116, 40–43 (2014).
[Crossref]

Shapiro, D. A.

M. R. Howells, T. Beetz, H. N. Chapman, C. Cui, J. M. Holton, C. J. Jacobsen, J. Kirz, E. Lima, S. Marchesini, H. Miao, D. Sayre, D. A. Shapiro, J. C. H. Spence, and D. Starodub, “An assessment of the resolution limitation due to radiation-damage in X-ray diffraction microscopy,” Journal of Electron Spectroscopy and Related Phenomena 170, 4–12 (2009).
[Crossref] [PubMed]

Shastri, S. D.

J. Maser, B. Lai, W. Yun, S. D. Shastri, Z. Cai, W. Rodrigues, S. Xua, and E. Trackhtenberg, “Near-field stacking of zone plates in the x-ray range,” Proc. SPIE,  4783, 74 (1999).
[Crossref]

Shi, B.

Simpson, M. J.

M. J. Simpson and A. G. Michette, “Imaging Properties of Modified Fresnel Zone Plates,” Optica Acta 31(4), 403–413 (1984).
[Crossref]

Snigirev, A.

I. Snigireva, A. Snigirev, V. Kohn, V. Yunkin, M. Grigoriev, S. Kuznetsov, G. Vaughan, and M. Di Michiel, “Focusing high energy X-rays with stacked Fresnel zone plates,” physica status solidi (a) 204(8), 2817–2823 (2007).
[Crossref]

A. Snigirev, V. Kohn, I. Snigireva, and B. Lengeler, “A compound refractive lens for focusing high-energy X-rays,” Nature 384, 49–51 (1996).
[Crossref]

Snigireva, I.

I. Snigireva, A. Snigirev, V. Kohn, V. Yunkin, M. Grigoriev, S. Kuznetsov, G. Vaughan, and M. Di Michiel, “Focusing high energy X-rays with stacked Fresnel zone plates,” physica status solidi (a) 204(8), 2817–2823 (2007).
[Crossref]

A. Snigirev, V. Kohn, I. Snigireva, and B. Lengeler, “A compound refractive lens for focusing high-energy X-rays,” Nature 384, 49–51 (1996).
[Crossref]

Soret, J. L.

J. L. Soret, “Ueber die von Kreisgittern erzeugten Diffraktionsphaenomene”, Ann. Phys. Chem,  156, 99 (1875).
[Crossref]

Spence, J. C. H.

M. R. Howells, T. Beetz, H. N. Chapman, C. Cui, J. M. Holton, C. J. Jacobsen, J. Kirz, E. Lima, S. Marchesini, H. Miao, D. Sayre, D. A. Shapiro, J. C. H. Spence, and D. Starodub, “An assessment of the resolution limitation due to radiation-damage in X-ray diffraction microscopy,” Journal of Electron Spectroscopy and Related Phenomena 170, 4–12 (2009).
[Crossref] [PubMed]

Starodub, D.

M. R. Howells, T. Beetz, H. N. Chapman, C. Cui, J. M. Holton, C. J. Jacobsen, J. Kirz, E. Lima, S. Marchesini, H. Miao, D. Sayre, D. A. Shapiro, J. C. H. Spence, and D. Starodub, “An assessment of the resolution limitation due to radiation-damage in X-ray diffraction microscopy,” Journal of Electron Spectroscopy and Related Phenomena 170, 4–12 (2009).
[Crossref] [PubMed]

Stephenson, G. B.

J. Maser, G. B. Stephenson, S. Vogt, W. Yun, A. Macrander, H. C. Kang, C. Liu, and R. Conley, “Multilayer Laue lenses as high-resolution x-ray optics,” Proc. SPIE 5539, 185–194 (2004).
[Crossref]

Strehl, K.

K. Strehl, “Aplanatische und fehlerhafte Abbildung im Fernrohr,” Zeitschrift fur Instrumentenkunde 15, 362–370 (1895).

Thibault, P.

P. Thibault, M. Dierolf, O. Bunk, A. Menzel, and F. Pfeiffer, “Probe retrieval in ptychographic coherent diffractive imaging,” Ultramicroscopy 109(4), 338–343 (2009).
[Crossref] [PubMed]

P. Thibault, M. Dierolf, A. Menzel, O. Bunk, C. David, and F. Pfeiffer, “High-Resolution Scanning X-ray Diffraction Microscopy,” Science 321, 379–382 (2008).
[Crossref] [PubMed]

Trackhtenberg, E.

J. Maser, B. Lai, W. Yun, S. D. Shastri, Z. Cai, W. Rodrigues, S. Xua, and E. Trackhtenberg, “Near-field stacking of zone plates in the x-ray range,” Proc. SPIE,  4783, 74 (1999).
[Crossref]

Uhlen, F.

F. Uhlen, D. Nilsson, J. Rahomaki, L. Belova, C. G. Schroer, F. Seiboth, A. Holmberg, H. M. Hertz, and U. Vogt, “Nanofabrication of tungsten zone plates with integrated platinum central stop for hard X-ray applications”, Microelectronic Engineering 116, 40–43 (2014).
[Crossref]

Vaughan, G.

I. Snigireva, A. Snigirev, V. Kohn, V. Yunkin, M. Grigoriev, S. Kuznetsov, G. Vaughan, and M. Di Michiel, “Focusing high energy X-rays with stacked Fresnel zone plates,” physica status solidi (a) 204(8), 2817–2823 (2007).
[Crossref]

Vila-Comamala, J.

V. A. Guzenko, J. Romijn, J. Vila-Comamala, S. Gorelick, and C. David, “Efficient E-Beam Lithography Exposure Strategies for Diffractive X-ray Optics,” AIP Conf. Proc. 1365, 92 (2012).

M. Guizar-Sicairos, M. Holler, A. Diaz, J. Vila-Comamala, O. Bunk, and A. Menzel, “Role of the illumination spatial-frequency spectrum for ptychography,” Phys. Rev. B 86, 100103 (2012).
[Crossref]

J. Vila-Comamala, A. Diaz, M. Guizar-Sicairos, A. Mantion, C. M. Kewish, A. Menzel, O. Bunk, and C. David, “Characterization of high-resolution diffractive X-ray optics by ptychographic coherent diffractive imaging,” Opt. Express 19(22), 21333–21344 (2011).
[Crossref] [PubMed]

J. Vila-Comamala, S. Gorelick, E. Färm, C. M. Kewish, A. Diaz, R. Barrett, V. A. Guzenko, M. Ritala, and C. David, “Ultra-high resolution zone-doubled diffractive X-ray optics for the multi-keV regime,” Opt. Express 19(1) 175–184 (2011).
[Crossref] [PubMed]

C. M. Kewish, M. Guizar-Sicairos, C. Liu, J. Qian, B. Shi, C. Benson, A. M. Khounsary, J. Vila-Comamala, O. Bunk, J. R. Fienup, A. T. Macrander, and L. Assoufid, “Reconstruction of an astigmatic hard X-ray beam and alignment of K-B mirrors from ptychographic coherent diffraction data,” Opt. Express 18(22), 23420–23427 (2010).
[Crossref] [PubMed]

J. Vila-Comamala, S. Gorelick, V. A. Guzenko, E. Färm, M. Ritala, and C. David, “Dense high aspect ratio hydrogen silsesquioxane nanostructures by 100 keV electron beam lithography,” Nanotechnology 21, 285305 (2010).
[Crossref] [PubMed]

S. Gorelick, V. A. Guzenko, J. Vila-Comamala, and C. David, “Direct e-beam writing of dense and high aspect ratio nanostructures in thick layers of PMMA for electroplating,” Nanotechnology 21, 295303 (2010).
[Crossref] [PubMed]

K. Jefimovs, J. Vila-Comamala, T. Pilvi, J. Raabe, M. Ritala, and C. David, “Zone-Doubling Technique to Produce Ultrahigh-Resolution X-Ray Optics,” Physical Review Letters 99, 264801 (2007).
[Crossref]

Vogt, S.

J. Maser, G. B. Stephenson, S. Vogt, W. Yun, A. Macrander, H. C. Kang, C. Liu, and R. Conley, “Multilayer Laue lenses as high-resolution x-ray optics,” Proc. SPIE 5539, 185–194 (2004).
[Crossref]

Vogt, U.

F. Uhlen, D. Nilsson, J. Rahomaki, L. Belova, C. G. Schroer, F. Seiboth, A. Holmberg, H. M. Hertz, and U. Vogt, “Nanofabrication of tungsten zone plates with integrated platinum central stop for hard X-ray applications”, Microelectronic Engineering 116, 40–43 (2014).
[Crossref]

Werner, S.

S. Werner, S. Rehbein, P. Guttmann, and G. Schneider, “Three-dimensional structured on-chip stacked zone plates for nanoscale X-ray imaging with high efficiency,” Nano Research 7(4), 1–8 (2014).
[Crossref]

Wolf, E.

E. Wolf and M. Born, Principles of Optics (1st edition) (Pergamon Press Ltd.1959), p. 415.

Wu, S.-R.

S.-R. Wu, Y. Hwu, and G. Margaritondo, “Hard-X-ray Zone Plates: Recent Progress,” Materials,  5, 1752–1773 (2012).
[Crossref]

Wyant, James C.

James C. Wyant and Katherine Creath, “Basic Wavefront Aberration Theory for Optical Metrology,” Applied Optics and Optical Engineering11 (1992).

Xua, S.

J. Maser, B. Lai, W. Yun, S. D. Shastri, Z. Cai, W. Rodrigues, S. Xua, and E. Trackhtenberg, “Near-field stacking of zone plates in the x-ray range,” Proc. SPIE,  4783, 74 (1999).
[Crossref]

Yun, W.

Y. Feng, M. Feser, A. Lyon, S. Rishton, X. Zeng, S. Chen, S. Sassolini, and W. Yun, “Nanofabrication of high aspect ratio 24 nm x-ray zone plates for x-ray imaging applications,” Journal of Vacuum Science and Technology B 25, 2004 (2007).
[Crossref]

J. Maser, G. B. Stephenson, S. Vogt, W. Yun, A. Macrander, H. C. Kang, C. Liu, and R. Conley, “Multilayer Laue lenses as high-resolution x-ray optics,” Proc. SPIE 5539, 185–194 (2004).
[Crossref]

J. Maser, B. Lai, W. Yun, S. D. Shastri, Z. Cai, W. Rodrigues, S. Xua, and E. Trackhtenberg, “Near-field stacking of zone plates in the x-ray range,” Proc. SPIE,  4783, 74 (1999).
[Crossref]

Yunkin, V.

I. Snigireva, A. Snigirev, V. Kohn, V. Yunkin, M. Grigoriev, S. Kuznetsov, G. Vaughan, and M. Di Michiel, “Focusing high energy X-rays with stacked Fresnel zone plates,” physica status solidi (a) 204(8), 2817–2823 (2007).
[Crossref]

Zeng, X.

Y. Feng, M. Feser, A. Lyon, S. Rishton, X. Zeng, S. Chen, S. Sassolini, and W. Yun, “Nanofabrication of high aspect ratio 24 nm x-ray zone plates for x-ray imaging applications,” Journal of Vacuum Science and Technology B 25, 2004 (2007).
[Crossref]

Ziegler, E.

C. David, B. Nöhammer, and E. Ziegler, “Wavelength tunable diffractive transmission lens for hard x rays,” Applied Physics Letters 79, 1088–1090 (2001).
[Crossref]

AIP Conf. Proc. (1)

V. A. Guzenko, J. Romijn, J. Vila-Comamala, S. Gorelick, and C. David, “Efficient E-Beam Lithography Exposure Strategies for Diffractive X-ray Optics,” AIP Conf. Proc. 1365, 92 (2012).

Ann. Phys. Chem (1)

J. L. Soret, “Ueber die von Kreisgittern erzeugten Diffraktionsphaenomene”, Ann. Phys. Chem,  156, 99 (1875).
[Crossref]

Applied Physics Letters (1)

C. David, B. Nöhammer, and E. Ziegler, “Wavelength tunable diffractive transmission lens for hard x rays,” Applied Physics Letters 79, 1088–1090 (2001).
[Crossref]

Atomic Data and Nuclear Data Tables (1)

B. L. Henke, E. M. Gullikson, and J. C. Davis, “X-ray interactions: photoabsorption, scattering, transmission, and reflection at E=50–30000 eV, Z=1–92,” Atomic Data and Nuclear Data Tables 54(2), 181–342 (1993).
[Crossref]

J. Opt. Soc. Am. (2)

J. Kirz, “Phase zone plates for x rays and the extreme UV,” J. Opt. Soc. Am. 20(3), 301–309 (1974).
[Crossref]

P. Kirkpatrick and A. V. Baez, “Formation of Optical Images by X-Rays,” J. Opt. Soc. Am. 38(9), 766–774 (1948).
[Crossref] [PubMed]

Journal of Electron Spectroscopy and Related Phenomena (1)

M. R. Howells, T. Beetz, H. N. Chapman, C. Cui, J. M. Holton, C. J. Jacobsen, J. Kirz, E. Lima, S. Marchesini, H. Miao, D. Sayre, D. A. Shapiro, J. C. H. Spence, and D. Starodub, “An assessment of the resolution limitation due to radiation-damage in X-ray diffraction microscopy,” Journal of Electron Spectroscopy and Related Phenomena 170, 4–12 (2009).
[Crossref] [PubMed]

Journal of The Electrochemical Society (1)

T. Aaltonen, M. Ritala, V. Sammelselg, and M. Leskela, “Atomic Layer Deposition of Iridium Thin Films,” Journal of The Electrochemical Society 151(8), 489–492 (2004).
[Crossref]

Journal of Vacuum Science and Technology B (1)

Y. Feng, M. Feser, A. Lyon, S. Rishton, X. Zeng, S. Chen, S. Sassolini, and W. Yun, “Nanofabrication of high aspect ratio 24 nm x-ray zone plates for x-ray imaging applications,” Journal of Vacuum Science and Technology B 25, 2004 (2007).
[Crossref]

Kolloid-Zeitschrift (1)

G. Porod, “Die Rontgenkleinwinkelstreuung von dichtgepackten kolloiden Systemen I. Teil (X-ray low angle scattering of dense colloid systems. Part I.),” Kolloid-Zeitschrift 124, 83–114 (1951).
[Crossref]

Materials (1)

S.-R. Wu, Y. Hwu, and G. Margaritondo, “Hard-X-ray Zone Plates: Recent Progress,” Materials,  5, 1752–1773 (2012).
[Crossref]

Microelectronic Engineering (1)

F. Uhlen, D. Nilsson, J. Rahomaki, L. Belova, C. G. Schroer, F. Seiboth, A. Holmberg, H. M. Hertz, and U. Vogt, “Nanofabrication of tungsten zone plates with integrated platinum central stop for hard X-ray applications”, Microelectronic Engineering 116, 40–43 (2014).
[Crossref]

Nano Research (1)

S. Werner, S. Rehbein, P. Guttmann, and G. Schneider, “Three-dimensional structured on-chip stacked zone plates for nanoscale X-ray imaging with high efficiency,” Nano Research 7(4), 1–8 (2014).
[Crossref]

Nanotechnology (2)

S. Gorelick, V. A. Guzenko, J. Vila-Comamala, and C. David, “Direct e-beam writing of dense and high aspect ratio nanostructures in thick layers of PMMA for electroplating,” Nanotechnology 21, 295303 (2010).
[Crossref] [PubMed]

J. Vila-Comamala, S. Gorelick, V. A. Guzenko, E. Färm, M. Ritala, and C. David, “Dense high aspect ratio hydrogen silsesquioxane nanostructures by 100 keV electron beam lithography,” Nanotechnology 21, 285305 (2010).
[Crossref] [PubMed]

Nature (2)

W. Chao, B. D. Harteneck, J. Alexander Liddle, Erik H. Anderson, and David T. Attwood, “ Soft X-ray microscopy at a spatial resolution better than 15nm,” Nature 435, 1210–1213 (2005).
[Crossref] [PubMed]

A. Snigirev, V. Kohn, I. Snigireva, and B. Lengeler, “A compound refractive lens for focusing high-energy X-rays,” Nature 384, 49–51 (1996).
[Crossref]

Nature Communications (1)

C. Chang and A. Sakdinawat, “Ultra-high aspect ratio high-resolution nanofabrication for hard X-ray diffractive optics,” Nature Communications 5, 4243 (2014).
[Crossref] [PubMed]

Nuclear Instruments and Methods in Physics Research Section A (1)

B. Henrich, A. Bergamaschi, C. Broennimann, R. Dinapoli, E.F. Eikenberry, I. Johnson, M. Kobas, P. Kraft, A. Mozzanica, and B. Schmitt, “PILATUS: A single photon counting pixel detector for X-ray applications,” Nuclear Instruments and Methods in Physics Research Section A 607(1), 247–249 (2009).
[Crossref]

Opt. Express (5)

Optica Acta (1)

M. J. Simpson and A. G. Michette, “Imaging Properties of Modified Fresnel Zone Plates,” Optica Acta 31(4), 403–413 (1984).
[Crossref]

Phys. Rev. B (1)

M. Guizar-Sicairos, M. Holler, A. Diaz, J. Vila-Comamala, O. Bunk, and A. Menzel, “Role of the illumination spatial-frequency spectrum for ptychography,” Phys. Rev. B 86, 100103 (2012).
[Crossref]

physica status solidi (a) (1)

I. Snigireva, A. Snigirev, V. Kohn, V. Yunkin, M. Grigoriev, S. Kuznetsov, G. Vaughan, and M. Di Michiel, “Focusing high energy X-rays with stacked Fresnel zone plates,” physica status solidi (a) 204(8), 2817–2823 (2007).
[Crossref]

Physical Review Letters (3)

H. D. Bale and P. W. Schmidt, “Small-Angle X-Ray-Scattering Investigation of Submicroscopic Porosity with Fractal Properties,” Physical Review Letters,  53, 596 (1984).
[Crossref]

K. Jefimovs, J. Vila-Comamala, T. Pilvi, J. Raabe, M. Ritala, and C. David, “Zone-Doubling Technique to Produce Ultrahigh-Resolution X-Ray Optics,” Physical Review Letters 99, 264801 (2007).
[Crossref]

J. M. Rodenburg, A. C. Hurst, A. G. Cullis, B. R. Dobson, F. Pfeiffer, O. Bunk, C. David, K. Jefimovs, and I. Johnson, “Hard-x-ray lensless imaging of extended objects,” Physical Review Letters 98, 34801 (2007).
[Crossref]

Proc. SPIE (2)

J. Maser, B. Lai, W. Yun, S. D. Shastri, Z. Cai, W. Rodrigues, S. Xua, and E. Trackhtenberg, “Near-field stacking of zone plates in the x-ray range,” Proc. SPIE,  4783, 74 (1999).
[Crossref]

J. Maser, G. B. Stephenson, S. Vogt, W. Yun, A. Macrander, H. C. Kang, C. Liu, and R. Conley, “Multilayer Laue lenses as high-resolution x-ray optics,” Proc. SPIE 5539, 185–194 (2004).
[Crossref]

Science (1)

P. Thibault, M. Dierolf, A. Menzel, O. Bunk, C. David, and F. Pfeiffer, “High-Resolution Scanning X-ray Diffraction Microscopy,” Science 321, 379–382 (2008).
[Crossref] [PubMed]

Ultramicroscopy (1)

P. Thibault, M. Dierolf, O. Bunk, A. Menzel, and F. Pfeiffer, “Probe retrieval in ptychographic coherent diffractive imaging,” Ultramicroscopy 109(4), 338–343 (2009).
[Crossref] [PubMed]

Zeitschrift fur Instrumentenkunde (1)

K. Strehl, “Aplanatische und fehlerhafte Abbildung im Fernrohr,” Zeitschrift fur Instrumentenkunde 15, 362–370 (1895).

Other (3)

James C. Wyant and Katherine Creath, “Basic Wavefront Aberration Theory for Optical Metrology,” Applied Optics and Optical Engineering11 (1992).

E. Wolf and M. Born, Principles of Optics (1st edition) (Pergamon Press Ltd.1959), p. 415.

A. G. Michette, Optical Systems for Soft X Rays (Plenum Press, 1986).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 The calculated theoretical focusing efficiency of a traditional and a line-doubled iridium zone plate versus the structure height at 9 keV photon energy. The focusing efficiency increases steeply with increasing structure height. Doubling the height of 600 nm tall structures results in a factor of 2.5 increase in efficiency. The gain would be even larger at higher photon energies. The overall efficiency of line doubled zone plates is lower, as the deposition thickness provides optimal fill factor only in the outer zones (see Fig. 2). This makes the contribution of the central zones negligible when summing up the efficiency.
Fig. 2
Fig. 2 Schematic fabrication process of the presented double-sided line-doubled Fresnel zone plates. (a) The membranes are patterned with gold alignment markers. (b) The patterning of the resist template on the front side is aligned on the markers. (c) Since the markers can be located through the membrane, the resist template on the back side is also patterned using the same alignment markers as for the front side. (d) The double-sided resist template is then conformally coated by iridium using atomic layer deposition.
Fig. 3
Fig. 3 Scanning electron microscope images from the FIB sliced double-sided line-doubled zone plates. (a) Overview of a double-sided line-doubled Fresnel zone plate, showing the large central structures and cuts, made by focused ion beam (FIB) on the zone plate edge. (b) FIB cross section of a double-sided zone doubled Fresnel zone plate. The highly scattering Ir coating (bright) conformally covers the template on both sides of the membrane with a uniform thickness on both sides. The two zone plates are in an excellent alignment to each other, no misalignment can be measured from the cross section. By combining the two zone plates on the opposite sides of the membrane, the total height of the iridium side-walls is ∼ 1200 nm, resulting in an effective aspect ratio of ∼ 40 for 30 nm smallest zone width.
Fig. 4
Fig. 4 (a) Efficiency histogram of the measured zone plates at 9 keV. The average focusing efficiency of the 95 double-sided zone plates (blue) was 7.6%. The single-sided reference zone plate had 2.8% (red), while the best double-sided zone plate had 9.9% focusing efficiency. The majority of the double-sided zone plates performed in the 7–8% range. (b) The radial efficiency distribution of the tested zone plates. The efficiency decreases towards the large central zones but even the smallest outer zones exhibit high diffraction efficiency, providing high contrast for imaging high spatial frequencies. The error induced by the radial support structures [32] is also clearly visible as quasi-periodic oscillations in efficiency.
Fig. 5
Fig. 5 Scanning transmission X-ray microscope image of a line-doubled Siemens star using the best performing zone plate. With a step size of 10 nm, the smallest spokes of 30 nm lines and spaces were resolved (marked by the arrow), demonstrating that our zone plates indeed match their expected resolution.
Fig. 6
Fig. 6 Reconstructed and back-propagated probe wavefield of the best zone plate. (a) The intensity of the wavefield around the zone plate focus does not show obvious signs of aberrations. (b) and (c) The measured intensity profile of the focal spot is close to the theoretical profile of a lens with central obscuration. The measured 30 nm peak FWHM in in good agreement with the predicted value of 28 nm. The strong sidelobes are a consequence of using a central obscuration.

Metrics