Abstract

Multispectral photoacoustic laser diode systems have multiple wavelengths available simultaneously. In addition to multispectral imaging, this can be exploited to increase the signal to noise ratio (SNR) by combining these wavelengths to form a combined image, but at the loss of spectral information. Here, a novel signal processing concept is introduced, which optimizes the SNR in the reconstructions of single wavelength data from combined acquisitions while simultaneously permitting to obtain a higher SNR fused image from the same data. The concept is derived for an arbitrary number of wavelengths; it is also applicable at low pulse repetition frequencies. The concept is applied in an experiment using two wavelengths, verifying the theoretical results.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Multispectral photoacoustic coded excitation imaging using unipolar orthogonal Golay codes

Martin P. Mienkina, Claus-Stefan Friedrich, Nils C. Gerhardt, Martin F. Beckmann, Martin F. Schiffner, Martin R. Hofmann, and Georg Schmitz
Opt. Express 18(9) 9076-9087 (2010)

High power visible light emitting diodes as pulsed excitation sources for biomedical photoacoustics

Thomas J. Allen and Paul C. Beard
Biomed. Opt. Express 7(4) 1260-1270 (2016)

Handheld probe integrating laser diode and ultrasound transducer array for ultrasound/photoacoustic dual modality imaging

K. Daoudi, P.J. van den Berg, O. Rabot, A. Kohl, S. Tisserand, P. Brands, and W. Steenbergen
Opt. Express 22(21) 26365-26374 (2014)

References

  • View by:
  • |
  • |
  • |

  1. M. Eghtedari, A. Oraevsky, J. A. Copland, N. A. Kotov, A. Conjusteau, and M. Motamedi, “High sensitivity of in vivo detection of gold nanorods using a laser optoacoustic imaging system,” Nano Lett. 7, 1914–1918 (2007).
    [Crossref] [PubMed]
  2. S. Mallidi, T. Larson, J. Aaron, K. Sokolov, and S. Emelianov, “Molecular specific optoacoustic imaging with plasmonic nanoparticles,” Opt. Express 15, 6583–6588 (2007).
    [Crossref] [PubMed]
  3. S. Manohar, S. E. Vaartjes, J. C. G. van Hespen, J. M. Klaase, F. M. van den Engh, W. Steenbergen, and T. G. van Leeuwen, “Initial results of in vivo non-invasive cancer imaging in the human breast using near-infrared photoacoustics,” Opt. Express 15, 12277–12285 (2007).
    [Crossref] [PubMed]
  4. R. Kolkman, W. Steenbergen, and T. van Leeuwen, “In vivo photoacoustic imaging of blood vessels with a pulsed laser diode,” Laser. Med. Sci. 21, 134–139 (2006).
    [Crossref]
  5. D. Razansky, C. Vinegoni, and V. Ntziachristos, “Multispectral photoacoustic imaging of fluorochromes in small animals,” Opt. Lett. 32, 2891–2893 (2007).
  6. J. Xiao and J. He, “Multispectral quantitative photoacoustic imaging of osteoarthritis in finger joints,” Appl. Opt. 49, 5721–5727 (2010).
    [Crossref] [PubMed]
  7. A. Buehler, M. Kacprowicz, A. Taruttis, and V. Ntziachristos, “Real-time handheld multispectral optoacoustic imaging,” Opt. Lett. 38, 1404–1406 (2013).
  8. C.-S. Friedrich, M. P. Mienkina, C. Brenner, N. C. Gerhardt, M. Jörger, A. Strauß, M. F. Beckmann, G. Schmitz, and M. R. Hofmann, “Photoacoustic blood oxygenation imaging based on semiconductor lasers,” J. Photon. Optoelectron. 1, 48–54 (2012).
  9. Y. Wang, K. Maslov, and L. V. Wang, “DMD-encoded spectral photoacoustic microscopy,” Proc. SPIE 8223, 822312 (2012).
    [Crossref]
  10. P. Hajireza, A. Forbrich, and R. J. Zemp, “Multifocus optical-resolution photoacoustic microscopy using stimulated Raman scattering and chromatic aberration,” Opt. Lett. 38, 2711–2713 (2013).
  11. K. Daoudi, P. van den Berg, O. Rabot, A. Kohl, S. Tisserand, P. Brands, and W. Steenbergen, “Handheld probe for portable high frame photoacoustic/ultrasound imaging system,” Proc. SPIE 8581, 85812l (2013).
    [Crossref]
  12. K. Daoudi, P. van den Berg, O. Rabot, A. Kohl, S. Tisserand, P. Brands, and W. Steenbergen, “Handheld probe combining laser diode and ultrasound transducer array for ultrasound/photacoustic dual modality imaging,” SPIE Photonics West, San Francisco, CA, 1–6 February 2014.
  13. M. P. Mienkina, C.-S. Friedrich, N. C. Gerhardt, M. F. Beckmann, M. F. Schiffner, M. R. Hofmann, and G. Schmitz, “Multispectral photoacoustic coded excitation imaging using unipolar orthogonal Golay codes,” Opt. Express 18, 9076–9087 (2010).
    [Crossref] [PubMed]
  14. M. F. Beckmann, C.-S. Friedrich, M. P. Mienkina, N. C. Gerhardt, M. R. Hofmann, and G. Schmitz, “Multispectral photoacoustic coded excitation using pseudorandom codes,” Proc. SPIE 8223, 82231E (2012).
    [Crossref]
  15. IEC 60825-1:2007, “Safety of laser products part 1: Equipment classification and requirements,” (2007).
  16. IEC 601-2-22:1995, “Medizinische elektrische Geräte - diagnostische und therapeutische Lasergeräte,” (1995).
  17. K. Daoudi, P. J. van den Berg, O. Rabot, a. Kohl, S. Tisserand, P. Brands, and W. Steenbergen, “Handheld probe integrating laser diode and ultrasound transducer array for ultrasound/photoacoustic dual modality imaging,” Opt. Express 22, 26365–74 (2014).
    [Crossref] [PubMed]
  18. M. F. Beckmann, H.-M. Schwab, and G. Schmitz, “Multispectral photoacoustic coded excitation with low PRF high power laser diodes,” in Proceedings of IEEE International Ultrasonics Symposium, (IEEE, 2014), pp. 1288–1291.
  19. M. F. Beckmann, M. P. Mienkina, G. Schmitz, C.-S. Friedrich, N. C. Gerhardt, and M. R. Hofmann, “Monospectral photoacoustic imaging using Legendre sequences,” in Proceedings of IEEE International Ultrasonics Symposium, (IEEE, 2010), pp. 386–389.
  20. M. F. Beckmann, M. P. Mienkina, G. Schmitz, C.-S. Friedrich, N. C. Gerhardt, and M. R. Hofmann, “Photoacoustic coded excitation using periodically perfect sequences,” in Proceedings of IEEE International Ultrasonics Symposium, (IEEE, 2011), pp. 1179–1182.
  21. M. F. Beckmann and G. Schmitz, “Photoacoustic coded excitation using pulse position modulation,” in Proceedings of the joint UFFC, EFTF and PFM Symposium, (IEEE, 2013), pp. 1853–1856.
  22. M.-L. Li, J.-T. Oh, X. Xie, G. Ku, W. Wang, C. Li, G. Lungu, G. Stoica, and L. V. Wang, “Simultaneous molecular and hypoxia imaging of brain tumors in vivo using spectroscopic photoacoustic tomography,” Proc. IEEE 96, 481–489 (2008).
    [Crossref]

2014 (1)

2013 (3)

2012 (3)

C.-S. Friedrich, M. P. Mienkina, C. Brenner, N. C. Gerhardt, M. Jörger, A. Strauß, M. F. Beckmann, G. Schmitz, and M. R. Hofmann, “Photoacoustic blood oxygenation imaging based on semiconductor lasers,” J. Photon. Optoelectron. 1, 48–54 (2012).

Y. Wang, K. Maslov, and L. V. Wang, “DMD-encoded spectral photoacoustic microscopy,” Proc. SPIE 8223, 822312 (2012).
[Crossref]

M. F. Beckmann, C.-S. Friedrich, M. P. Mienkina, N. C. Gerhardt, M. R. Hofmann, and G. Schmitz, “Multispectral photoacoustic coded excitation using pseudorandom codes,” Proc. SPIE 8223, 82231E (2012).
[Crossref]

2010 (2)

2008 (1)

M.-L. Li, J.-T. Oh, X. Xie, G. Ku, W. Wang, C. Li, G. Lungu, G. Stoica, and L. V. Wang, “Simultaneous molecular and hypoxia imaging of brain tumors in vivo using spectroscopic photoacoustic tomography,” Proc. IEEE 96, 481–489 (2008).
[Crossref]

2007 (4)

2006 (1)

R. Kolkman, W. Steenbergen, and T. van Leeuwen, “In vivo photoacoustic imaging of blood vessels with a pulsed laser diode,” Laser. Med. Sci. 21, 134–139 (2006).
[Crossref]

Aaron, J.

Beckmann, M. F.

C.-S. Friedrich, M. P. Mienkina, C. Brenner, N. C. Gerhardt, M. Jörger, A. Strauß, M. F. Beckmann, G. Schmitz, and M. R. Hofmann, “Photoacoustic blood oxygenation imaging based on semiconductor lasers,” J. Photon. Optoelectron. 1, 48–54 (2012).

M. F. Beckmann, C.-S. Friedrich, M. P. Mienkina, N. C. Gerhardt, M. R. Hofmann, and G. Schmitz, “Multispectral photoacoustic coded excitation using pseudorandom codes,” Proc. SPIE 8223, 82231E (2012).
[Crossref]

M. P. Mienkina, C.-S. Friedrich, N. C. Gerhardt, M. F. Beckmann, M. F. Schiffner, M. R. Hofmann, and G. Schmitz, “Multispectral photoacoustic coded excitation imaging using unipolar orthogonal Golay codes,” Opt. Express 18, 9076–9087 (2010).
[Crossref] [PubMed]

M. F. Beckmann, H.-M. Schwab, and G. Schmitz, “Multispectral photoacoustic coded excitation with low PRF high power laser diodes,” in Proceedings of IEEE International Ultrasonics Symposium, (IEEE, 2014), pp. 1288–1291.

M. F. Beckmann, M. P. Mienkina, G. Schmitz, C.-S. Friedrich, N. C. Gerhardt, and M. R. Hofmann, “Monospectral photoacoustic imaging using Legendre sequences,” in Proceedings of IEEE International Ultrasonics Symposium, (IEEE, 2010), pp. 386–389.

M. F. Beckmann, M. P. Mienkina, G. Schmitz, C.-S. Friedrich, N. C. Gerhardt, and M. R. Hofmann, “Photoacoustic coded excitation using periodically perfect sequences,” in Proceedings of IEEE International Ultrasonics Symposium, (IEEE, 2011), pp. 1179–1182.

M. F. Beckmann and G. Schmitz, “Photoacoustic coded excitation using pulse position modulation,” in Proceedings of the joint UFFC, EFTF and PFM Symposium, (IEEE, 2013), pp. 1853–1856.

Brands, P.

K. Daoudi, P. J. van den Berg, O. Rabot, a. Kohl, S. Tisserand, P. Brands, and W. Steenbergen, “Handheld probe integrating laser diode and ultrasound transducer array for ultrasound/photoacoustic dual modality imaging,” Opt. Express 22, 26365–74 (2014).
[Crossref] [PubMed]

K. Daoudi, P. van den Berg, O. Rabot, A. Kohl, S. Tisserand, P. Brands, and W. Steenbergen, “Handheld probe for portable high frame photoacoustic/ultrasound imaging system,” Proc. SPIE 8581, 85812l (2013).
[Crossref]

K. Daoudi, P. van den Berg, O. Rabot, A. Kohl, S. Tisserand, P. Brands, and W. Steenbergen, “Handheld probe combining laser diode and ultrasound transducer array for ultrasound/photacoustic dual modality imaging,” SPIE Photonics West, San Francisco, CA, 1–6 February 2014.

Brenner, C.

C.-S. Friedrich, M. P. Mienkina, C. Brenner, N. C. Gerhardt, M. Jörger, A. Strauß, M. F. Beckmann, G. Schmitz, and M. R. Hofmann, “Photoacoustic blood oxygenation imaging based on semiconductor lasers,” J. Photon. Optoelectron. 1, 48–54 (2012).

Buehler, A.

Conjusteau, A.

M. Eghtedari, A. Oraevsky, J. A. Copland, N. A. Kotov, A. Conjusteau, and M. Motamedi, “High sensitivity of in vivo detection of gold nanorods using a laser optoacoustic imaging system,” Nano Lett. 7, 1914–1918 (2007).
[Crossref] [PubMed]

Copland, J. A.

M. Eghtedari, A. Oraevsky, J. A. Copland, N. A. Kotov, A. Conjusteau, and M. Motamedi, “High sensitivity of in vivo detection of gold nanorods using a laser optoacoustic imaging system,” Nano Lett. 7, 1914–1918 (2007).
[Crossref] [PubMed]

Daoudi, K.

K. Daoudi, P. J. van den Berg, O. Rabot, a. Kohl, S. Tisserand, P. Brands, and W. Steenbergen, “Handheld probe integrating laser diode and ultrasound transducer array for ultrasound/photoacoustic dual modality imaging,” Opt. Express 22, 26365–74 (2014).
[Crossref] [PubMed]

K. Daoudi, P. van den Berg, O. Rabot, A. Kohl, S. Tisserand, P. Brands, and W. Steenbergen, “Handheld probe for portable high frame photoacoustic/ultrasound imaging system,” Proc. SPIE 8581, 85812l (2013).
[Crossref]

K. Daoudi, P. van den Berg, O. Rabot, A. Kohl, S. Tisserand, P. Brands, and W. Steenbergen, “Handheld probe combining laser diode and ultrasound transducer array for ultrasound/photacoustic dual modality imaging,” SPIE Photonics West, San Francisco, CA, 1–6 February 2014.

Eghtedari, M.

M. Eghtedari, A. Oraevsky, J. A. Copland, N. A. Kotov, A. Conjusteau, and M. Motamedi, “High sensitivity of in vivo detection of gold nanorods using a laser optoacoustic imaging system,” Nano Lett. 7, 1914–1918 (2007).
[Crossref] [PubMed]

Emelianov, S.

Forbrich, A.

Friedrich, C.-S.

M. F. Beckmann, C.-S. Friedrich, M. P. Mienkina, N. C. Gerhardt, M. R. Hofmann, and G. Schmitz, “Multispectral photoacoustic coded excitation using pseudorandom codes,” Proc. SPIE 8223, 82231E (2012).
[Crossref]

C.-S. Friedrich, M. P. Mienkina, C. Brenner, N. C. Gerhardt, M. Jörger, A. Strauß, M. F. Beckmann, G. Schmitz, and M. R. Hofmann, “Photoacoustic blood oxygenation imaging based on semiconductor lasers,” J. Photon. Optoelectron. 1, 48–54 (2012).

M. P. Mienkina, C.-S. Friedrich, N. C. Gerhardt, M. F. Beckmann, M. F. Schiffner, M. R. Hofmann, and G. Schmitz, “Multispectral photoacoustic coded excitation imaging using unipolar orthogonal Golay codes,” Opt. Express 18, 9076–9087 (2010).
[Crossref] [PubMed]

M. F. Beckmann, M. P. Mienkina, G. Schmitz, C.-S. Friedrich, N. C. Gerhardt, and M. R. Hofmann, “Monospectral photoacoustic imaging using Legendre sequences,” in Proceedings of IEEE International Ultrasonics Symposium, (IEEE, 2010), pp. 386–389.

M. F. Beckmann, M. P. Mienkina, G. Schmitz, C.-S. Friedrich, N. C. Gerhardt, and M. R. Hofmann, “Photoacoustic coded excitation using periodically perfect sequences,” in Proceedings of IEEE International Ultrasonics Symposium, (IEEE, 2011), pp. 1179–1182.

Gerhardt, N. C.

M. F. Beckmann, C.-S. Friedrich, M. P. Mienkina, N. C. Gerhardt, M. R. Hofmann, and G. Schmitz, “Multispectral photoacoustic coded excitation using pseudorandom codes,” Proc. SPIE 8223, 82231E (2012).
[Crossref]

C.-S. Friedrich, M. P. Mienkina, C. Brenner, N. C. Gerhardt, M. Jörger, A. Strauß, M. F. Beckmann, G. Schmitz, and M. R. Hofmann, “Photoacoustic blood oxygenation imaging based on semiconductor lasers,” J. Photon. Optoelectron. 1, 48–54 (2012).

M. P. Mienkina, C.-S. Friedrich, N. C. Gerhardt, M. F. Beckmann, M. F. Schiffner, M. R. Hofmann, and G. Schmitz, “Multispectral photoacoustic coded excitation imaging using unipolar orthogonal Golay codes,” Opt. Express 18, 9076–9087 (2010).
[Crossref] [PubMed]

M. F. Beckmann, M. P. Mienkina, G. Schmitz, C.-S. Friedrich, N. C. Gerhardt, and M. R. Hofmann, “Photoacoustic coded excitation using periodically perfect sequences,” in Proceedings of IEEE International Ultrasonics Symposium, (IEEE, 2011), pp. 1179–1182.

M. F. Beckmann, M. P. Mienkina, G. Schmitz, C.-S. Friedrich, N. C. Gerhardt, and M. R. Hofmann, “Monospectral photoacoustic imaging using Legendre sequences,” in Proceedings of IEEE International Ultrasonics Symposium, (IEEE, 2010), pp. 386–389.

Hajireza, P.

He, J.

Hofmann, M. R.

M. F. Beckmann, C.-S. Friedrich, M. P. Mienkina, N. C. Gerhardt, M. R. Hofmann, and G. Schmitz, “Multispectral photoacoustic coded excitation using pseudorandom codes,” Proc. SPIE 8223, 82231E (2012).
[Crossref]

C.-S. Friedrich, M. P. Mienkina, C. Brenner, N. C. Gerhardt, M. Jörger, A. Strauß, M. F. Beckmann, G. Schmitz, and M. R. Hofmann, “Photoacoustic blood oxygenation imaging based on semiconductor lasers,” J. Photon. Optoelectron. 1, 48–54 (2012).

M. P. Mienkina, C.-S. Friedrich, N. C. Gerhardt, M. F. Beckmann, M. F. Schiffner, M. R. Hofmann, and G. Schmitz, “Multispectral photoacoustic coded excitation imaging using unipolar orthogonal Golay codes,” Opt. Express 18, 9076–9087 (2010).
[Crossref] [PubMed]

M. F. Beckmann, M. P. Mienkina, G. Schmitz, C.-S. Friedrich, N. C. Gerhardt, and M. R. Hofmann, “Monospectral photoacoustic imaging using Legendre sequences,” in Proceedings of IEEE International Ultrasonics Symposium, (IEEE, 2010), pp. 386–389.

M. F. Beckmann, M. P. Mienkina, G. Schmitz, C.-S. Friedrich, N. C. Gerhardt, and M. R. Hofmann, “Photoacoustic coded excitation using periodically perfect sequences,” in Proceedings of IEEE International Ultrasonics Symposium, (IEEE, 2011), pp. 1179–1182.

Jörger, M.

C.-S. Friedrich, M. P. Mienkina, C. Brenner, N. C. Gerhardt, M. Jörger, A. Strauß, M. F. Beckmann, G. Schmitz, and M. R. Hofmann, “Photoacoustic blood oxygenation imaging based on semiconductor lasers,” J. Photon. Optoelectron. 1, 48–54 (2012).

Kacprowicz, M.

Klaase, J. M.

Kohl, a.

K. Daoudi, P. J. van den Berg, O. Rabot, a. Kohl, S. Tisserand, P. Brands, and W. Steenbergen, “Handheld probe integrating laser diode and ultrasound transducer array for ultrasound/photoacoustic dual modality imaging,” Opt. Express 22, 26365–74 (2014).
[Crossref] [PubMed]

K. Daoudi, P. van den Berg, O. Rabot, A. Kohl, S. Tisserand, P. Brands, and W. Steenbergen, “Handheld probe for portable high frame photoacoustic/ultrasound imaging system,” Proc. SPIE 8581, 85812l (2013).
[Crossref]

K. Daoudi, P. van den Berg, O. Rabot, A. Kohl, S. Tisserand, P. Brands, and W. Steenbergen, “Handheld probe combining laser diode and ultrasound transducer array for ultrasound/photacoustic dual modality imaging,” SPIE Photonics West, San Francisco, CA, 1–6 February 2014.

Kolkman, R.

R. Kolkman, W. Steenbergen, and T. van Leeuwen, “In vivo photoacoustic imaging of blood vessels with a pulsed laser diode,” Laser. Med. Sci. 21, 134–139 (2006).
[Crossref]

Kotov, N. A.

M. Eghtedari, A. Oraevsky, J. A. Copland, N. A. Kotov, A. Conjusteau, and M. Motamedi, “High sensitivity of in vivo detection of gold nanorods using a laser optoacoustic imaging system,” Nano Lett. 7, 1914–1918 (2007).
[Crossref] [PubMed]

Ku, G.

M.-L. Li, J.-T. Oh, X. Xie, G. Ku, W. Wang, C. Li, G. Lungu, G. Stoica, and L. V. Wang, “Simultaneous molecular and hypoxia imaging of brain tumors in vivo using spectroscopic photoacoustic tomography,” Proc. IEEE 96, 481–489 (2008).
[Crossref]

Larson, T.

Li, C.

M.-L. Li, J.-T. Oh, X. Xie, G. Ku, W. Wang, C. Li, G. Lungu, G. Stoica, and L. V. Wang, “Simultaneous molecular and hypoxia imaging of brain tumors in vivo using spectroscopic photoacoustic tomography,” Proc. IEEE 96, 481–489 (2008).
[Crossref]

Li, M.-L.

M.-L. Li, J.-T. Oh, X. Xie, G. Ku, W. Wang, C. Li, G. Lungu, G. Stoica, and L. V. Wang, “Simultaneous molecular and hypoxia imaging of brain tumors in vivo using spectroscopic photoacoustic tomography,” Proc. IEEE 96, 481–489 (2008).
[Crossref]

Lungu, G.

M.-L. Li, J.-T. Oh, X. Xie, G. Ku, W. Wang, C. Li, G. Lungu, G. Stoica, and L. V. Wang, “Simultaneous molecular and hypoxia imaging of brain tumors in vivo using spectroscopic photoacoustic tomography,” Proc. IEEE 96, 481–489 (2008).
[Crossref]

Mallidi, S.

Manohar, S.

Maslov, K.

Y. Wang, K. Maslov, and L. V. Wang, “DMD-encoded spectral photoacoustic microscopy,” Proc. SPIE 8223, 822312 (2012).
[Crossref]

Mienkina, M. P.

C.-S. Friedrich, M. P. Mienkina, C. Brenner, N. C. Gerhardt, M. Jörger, A. Strauß, M. F. Beckmann, G. Schmitz, and M. R. Hofmann, “Photoacoustic blood oxygenation imaging based on semiconductor lasers,” J. Photon. Optoelectron. 1, 48–54 (2012).

M. F. Beckmann, C.-S. Friedrich, M. P. Mienkina, N. C. Gerhardt, M. R. Hofmann, and G. Schmitz, “Multispectral photoacoustic coded excitation using pseudorandom codes,” Proc. SPIE 8223, 82231E (2012).
[Crossref]

M. P. Mienkina, C.-S. Friedrich, N. C. Gerhardt, M. F. Beckmann, M. F. Schiffner, M. R. Hofmann, and G. Schmitz, “Multispectral photoacoustic coded excitation imaging using unipolar orthogonal Golay codes,” Opt. Express 18, 9076–9087 (2010).
[Crossref] [PubMed]

M. F. Beckmann, M. P. Mienkina, G. Schmitz, C.-S. Friedrich, N. C. Gerhardt, and M. R. Hofmann, “Photoacoustic coded excitation using periodically perfect sequences,” in Proceedings of IEEE International Ultrasonics Symposium, (IEEE, 2011), pp. 1179–1182.

M. F. Beckmann, M. P. Mienkina, G. Schmitz, C.-S. Friedrich, N. C. Gerhardt, and M. R. Hofmann, “Monospectral photoacoustic imaging using Legendre sequences,” in Proceedings of IEEE International Ultrasonics Symposium, (IEEE, 2010), pp. 386–389.

Motamedi, M.

M. Eghtedari, A. Oraevsky, J. A. Copland, N. A. Kotov, A. Conjusteau, and M. Motamedi, “High sensitivity of in vivo detection of gold nanorods using a laser optoacoustic imaging system,” Nano Lett. 7, 1914–1918 (2007).
[Crossref] [PubMed]

Ntziachristos, V.

Oh, J.-T.

M.-L. Li, J.-T. Oh, X. Xie, G. Ku, W. Wang, C. Li, G. Lungu, G. Stoica, and L. V. Wang, “Simultaneous molecular and hypoxia imaging of brain tumors in vivo using spectroscopic photoacoustic tomography,” Proc. IEEE 96, 481–489 (2008).
[Crossref]

Oraevsky, A.

M. Eghtedari, A. Oraevsky, J. A. Copland, N. A. Kotov, A. Conjusteau, and M. Motamedi, “High sensitivity of in vivo detection of gold nanorods using a laser optoacoustic imaging system,” Nano Lett. 7, 1914–1918 (2007).
[Crossref] [PubMed]

Rabot, O.

K. Daoudi, P. J. van den Berg, O. Rabot, a. Kohl, S. Tisserand, P. Brands, and W. Steenbergen, “Handheld probe integrating laser diode and ultrasound transducer array for ultrasound/photoacoustic dual modality imaging,” Opt. Express 22, 26365–74 (2014).
[Crossref] [PubMed]

K. Daoudi, P. van den Berg, O. Rabot, A. Kohl, S. Tisserand, P. Brands, and W. Steenbergen, “Handheld probe for portable high frame photoacoustic/ultrasound imaging system,” Proc. SPIE 8581, 85812l (2013).
[Crossref]

K. Daoudi, P. van den Berg, O. Rabot, A. Kohl, S. Tisserand, P. Brands, and W. Steenbergen, “Handheld probe combining laser diode and ultrasound transducer array for ultrasound/photacoustic dual modality imaging,” SPIE Photonics West, San Francisco, CA, 1–6 February 2014.

Razansky, D.

Schiffner, M. F.

Schmitz, G.

C.-S. Friedrich, M. P. Mienkina, C. Brenner, N. C. Gerhardt, M. Jörger, A. Strauß, M. F. Beckmann, G. Schmitz, and M. R. Hofmann, “Photoacoustic blood oxygenation imaging based on semiconductor lasers,” J. Photon. Optoelectron. 1, 48–54 (2012).

M. F. Beckmann, C.-S. Friedrich, M. P. Mienkina, N. C. Gerhardt, M. R. Hofmann, and G. Schmitz, “Multispectral photoacoustic coded excitation using pseudorandom codes,” Proc. SPIE 8223, 82231E (2012).
[Crossref]

M. P. Mienkina, C.-S. Friedrich, N. C. Gerhardt, M. F. Beckmann, M. F. Schiffner, M. R. Hofmann, and G. Schmitz, “Multispectral photoacoustic coded excitation imaging using unipolar orthogonal Golay codes,” Opt. Express 18, 9076–9087 (2010).
[Crossref] [PubMed]

M. F. Beckmann, H.-M. Schwab, and G. Schmitz, “Multispectral photoacoustic coded excitation with low PRF high power laser diodes,” in Proceedings of IEEE International Ultrasonics Symposium, (IEEE, 2014), pp. 1288–1291.

M. F. Beckmann and G. Schmitz, “Photoacoustic coded excitation using pulse position modulation,” in Proceedings of the joint UFFC, EFTF and PFM Symposium, (IEEE, 2013), pp. 1853–1856.

M. F. Beckmann, M. P. Mienkina, G. Schmitz, C.-S. Friedrich, N. C. Gerhardt, and M. R. Hofmann, “Photoacoustic coded excitation using periodically perfect sequences,” in Proceedings of IEEE International Ultrasonics Symposium, (IEEE, 2011), pp. 1179–1182.

M. F. Beckmann, M. P. Mienkina, G. Schmitz, C.-S. Friedrich, N. C. Gerhardt, and M. R. Hofmann, “Monospectral photoacoustic imaging using Legendre sequences,” in Proceedings of IEEE International Ultrasonics Symposium, (IEEE, 2010), pp. 386–389.

Schwab, H.-M.

M. F. Beckmann, H.-M. Schwab, and G. Schmitz, “Multispectral photoacoustic coded excitation with low PRF high power laser diodes,” in Proceedings of IEEE International Ultrasonics Symposium, (IEEE, 2014), pp. 1288–1291.

Sokolov, K.

Steenbergen, W.

K. Daoudi, P. J. van den Berg, O. Rabot, a. Kohl, S. Tisserand, P. Brands, and W. Steenbergen, “Handheld probe integrating laser diode and ultrasound transducer array for ultrasound/photoacoustic dual modality imaging,” Opt. Express 22, 26365–74 (2014).
[Crossref] [PubMed]

K. Daoudi, P. van den Berg, O. Rabot, A. Kohl, S. Tisserand, P. Brands, and W. Steenbergen, “Handheld probe for portable high frame photoacoustic/ultrasound imaging system,” Proc. SPIE 8581, 85812l (2013).
[Crossref]

S. Manohar, S. E. Vaartjes, J. C. G. van Hespen, J. M. Klaase, F. M. van den Engh, W. Steenbergen, and T. G. van Leeuwen, “Initial results of in vivo non-invasive cancer imaging in the human breast using near-infrared photoacoustics,” Opt. Express 15, 12277–12285 (2007).
[Crossref] [PubMed]

R. Kolkman, W. Steenbergen, and T. van Leeuwen, “In vivo photoacoustic imaging of blood vessels with a pulsed laser diode,” Laser. Med. Sci. 21, 134–139 (2006).
[Crossref]

K. Daoudi, P. van den Berg, O. Rabot, A. Kohl, S. Tisserand, P. Brands, and W. Steenbergen, “Handheld probe combining laser diode and ultrasound transducer array for ultrasound/photacoustic dual modality imaging,” SPIE Photonics West, San Francisco, CA, 1–6 February 2014.

Stoica, G.

M.-L. Li, J.-T. Oh, X. Xie, G. Ku, W. Wang, C. Li, G. Lungu, G. Stoica, and L. V. Wang, “Simultaneous molecular and hypoxia imaging of brain tumors in vivo using spectroscopic photoacoustic tomography,” Proc. IEEE 96, 481–489 (2008).
[Crossref]

Strauß, A.

C.-S. Friedrich, M. P. Mienkina, C. Brenner, N. C. Gerhardt, M. Jörger, A. Strauß, M. F. Beckmann, G. Schmitz, and M. R. Hofmann, “Photoacoustic blood oxygenation imaging based on semiconductor lasers,” J. Photon. Optoelectron. 1, 48–54 (2012).

Taruttis, A.

Tisserand, S.

K. Daoudi, P. J. van den Berg, O. Rabot, a. Kohl, S. Tisserand, P. Brands, and W. Steenbergen, “Handheld probe integrating laser diode and ultrasound transducer array for ultrasound/photoacoustic dual modality imaging,” Opt. Express 22, 26365–74 (2014).
[Crossref] [PubMed]

K. Daoudi, P. van den Berg, O. Rabot, A. Kohl, S. Tisserand, P. Brands, and W. Steenbergen, “Handheld probe for portable high frame photoacoustic/ultrasound imaging system,” Proc. SPIE 8581, 85812l (2013).
[Crossref]

K. Daoudi, P. van den Berg, O. Rabot, A. Kohl, S. Tisserand, P. Brands, and W. Steenbergen, “Handheld probe combining laser diode and ultrasound transducer array for ultrasound/photacoustic dual modality imaging,” SPIE Photonics West, San Francisco, CA, 1–6 February 2014.

Vaartjes, S. E.

van den Berg, P.

K. Daoudi, P. van den Berg, O. Rabot, A. Kohl, S. Tisserand, P. Brands, and W. Steenbergen, “Handheld probe for portable high frame photoacoustic/ultrasound imaging system,” Proc. SPIE 8581, 85812l (2013).
[Crossref]

K. Daoudi, P. van den Berg, O. Rabot, A. Kohl, S. Tisserand, P. Brands, and W. Steenbergen, “Handheld probe combining laser diode and ultrasound transducer array for ultrasound/photacoustic dual modality imaging,” SPIE Photonics West, San Francisco, CA, 1–6 February 2014.

van den Berg, P. J.

van den Engh, F. M.

van Hespen, J. C. G.

van Leeuwen, T.

R. Kolkman, W. Steenbergen, and T. van Leeuwen, “In vivo photoacoustic imaging of blood vessels with a pulsed laser diode,” Laser. Med. Sci. 21, 134–139 (2006).
[Crossref]

van Leeuwen, T. G.

Vinegoni, C.

Wang, L. V.

Y. Wang, K. Maslov, and L. V. Wang, “DMD-encoded spectral photoacoustic microscopy,” Proc. SPIE 8223, 822312 (2012).
[Crossref]

M.-L. Li, J.-T. Oh, X. Xie, G. Ku, W. Wang, C. Li, G. Lungu, G. Stoica, and L. V. Wang, “Simultaneous molecular and hypoxia imaging of brain tumors in vivo using spectroscopic photoacoustic tomography,” Proc. IEEE 96, 481–489 (2008).
[Crossref]

Wang, W.

M.-L. Li, J.-T. Oh, X. Xie, G. Ku, W. Wang, C. Li, G. Lungu, G. Stoica, and L. V. Wang, “Simultaneous molecular and hypoxia imaging of brain tumors in vivo using spectroscopic photoacoustic tomography,” Proc. IEEE 96, 481–489 (2008).
[Crossref]

Wang, Y.

Y. Wang, K. Maslov, and L. V. Wang, “DMD-encoded spectral photoacoustic microscopy,” Proc. SPIE 8223, 822312 (2012).
[Crossref]

Xiao, J.

Xie, X.

M.-L. Li, J.-T. Oh, X. Xie, G. Ku, W. Wang, C. Li, G. Lungu, G. Stoica, and L. V. Wang, “Simultaneous molecular and hypoxia imaging of brain tumors in vivo using spectroscopic photoacoustic tomography,” Proc. IEEE 96, 481–489 (2008).
[Crossref]

Zemp, R. J.

Appl. Opt. (1)

J. Photon. Optoelectron. (1)

C.-S. Friedrich, M. P. Mienkina, C. Brenner, N. C. Gerhardt, M. Jörger, A. Strauß, M. F. Beckmann, G. Schmitz, and M. R. Hofmann, “Photoacoustic blood oxygenation imaging based on semiconductor lasers,” J. Photon. Optoelectron. 1, 48–54 (2012).

Laser. Med. Sci. (1)

R. Kolkman, W. Steenbergen, and T. van Leeuwen, “In vivo photoacoustic imaging of blood vessels with a pulsed laser diode,” Laser. Med. Sci. 21, 134–139 (2006).
[Crossref]

Nano Lett. (1)

M. Eghtedari, A. Oraevsky, J. A. Copland, N. A. Kotov, A. Conjusteau, and M. Motamedi, “High sensitivity of in vivo detection of gold nanorods using a laser optoacoustic imaging system,” Nano Lett. 7, 1914–1918 (2007).
[Crossref] [PubMed]

Opt. Express (4)

Opt. Lett. (3)

Proc. IEEE (1)

M.-L. Li, J.-T. Oh, X. Xie, G. Ku, W. Wang, C. Li, G. Lungu, G. Stoica, and L. V. Wang, “Simultaneous molecular and hypoxia imaging of brain tumors in vivo using spectroscopic photoacoustic tomography,” Proc. IEEE 96, 481–489 (2008).
[Crossref]

Proc. SPIE (3)

K. Daoudi, P. van den Berg, O. Rabot, A. Kohl, S. Tisserand, P. Brands, and W. Steenbergen, “Handheld probe for portable high frame photoacoustic/ultrasound imaging system,” Proc. SPIE 8581, 85812l (2013).
[Crossref]

Y. Wang, K. Maslov, and L. V. Wang, “DMD-encoded spectral photoacoustic microscopy,” Proc. SPIE 8223, 822312 (2012).
[Crossref]

M. F. Beckmann, C.-S. Friedrich, M. P. Mienkina, N. C. Gerhardt, M. R. Hofmann, and G. Schmitz, “Multispectral photoacoustic coded excitation using pseudorandom codes,” Proc. SPIE 8223, 82231E (2012).
[Crossref]

Other (7)

IEC 60825-1:2007, “Safety of laser products part 1: Equipment classification and requirements,” (2007).

IEC 601-2-22:1995, “Medizinische elektrische Geräte - diagnostische und therapeutische Lasergeräte,” (1995).

M. F. Beckmann, H.-M. Schwab, and G. Schmitz, “Multispectral photoacoustic coded excitation with low PRF high power laser diodes,” in Proceedings of IEEE International Ultrasonics Symposium, (IEEE, 2014), pp. 1288–1291.

M. F. Beckmann, M. P. Mienkina, G. Schmitz, C.-S. Friedrich, N. C. Gerhardt, and M. R. Hofmann, “Monospectral photoacoustic imaging using Legendre sequences,” in Proceedings of IEEE International Ultrasonics Symposium, (IEEE, 2010), pp. 386–389.

M. F. Beckmann, M. P. Mienkina, G. Schmitz, C.-S. Friedrich, N. C. Gerhardt, and M. R. Hofmann, “Photoacoustic coded excitation using periodically perfect sequences,” in Proceedings of IEEE International Ultrasonics Symposium, (IEEE, 2011), pp. 1179–1182.

M. F. Beckmann and G. Schmitz, “Photoacoustic coded excitation using pulse position modulation,” in Proceedings of the joint UFFC, EFTF and PFM Symposium, (IEEE, 2013), pp. 1853–1856.

K. Daoudi, P. van den Berg, O. Rabot, A. Kohl, S. Tisserand, P. Brands, and W. Steenbergen, “Handheld probe combining laser diode and ultrasound transducer array for ultrasound/photacoustic dual modality imaging,” SPIE Photonics West, San Francisco, CA, 1–6 February 2014.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1:
Fig. 1: Graphical representation of the three basic cases 1–3 in (a)–(c), respectively, and Nλ = 4, NP = 4. When pulses are shown at multiple wavelengths beneath each other, this represents simultaneous emission of the wavelengths and receiving a combined acquisition from these. If only one wavelength is shown in a column, only that single wavelength is active in the corresponding acquisition.
Fig. 2:
Fig. 2: Fused and single wavelength SNR over NC/NP of the coded acquisitions (Eqs. (21) and (20), solid lines) and the consecutive acquisition of single wavelengths and fused data (Eqs. (22) and (23), dashed lines). The plots for Nλ = 2 were normalized by Eqs. (17) and (19). For all plots the total average irradiance was kept constant assuming all wavelengths provide equal irradiance. Asterisks (*) mark steps of 0.2 for NC/NP, starting at 0 on the right of each curve up to 1 on the left. SNR was calculated as SNRi = 1/MSEi.
Fig. 3:
Fig. 3: Experimental Setup: The two diodes were coupled into an optical fiber, which was directed on the sample, consisting of a blackened polystyrene foil. A transducer was placed behind the absorber and coupled to an amplifier and an oscilloscope for data acquisition.
Fig. 4:
Fig. 4: SNR for different code lengths of the fused data reconstructions (a) and of the single wavelength reconstructions (b). The names are chosen equivalent to the MSE in section 3: F1: fused reconstruction from single wavelength data. F2: fused reconstruction from combined pulses. FC3: fused reconstruction resulting from acquisition scheme and NC/NP = 0.5, F3: Fused reconstruction from combined pulses, but using only half the number of pulses as in F2. S 1 λ 1 / λ 2: Averaged single wavelength data. S3: Averaged single wavelength data using the other half of the average optical power left from the reconstruction of F3. SC 3 λ 1 / λ 2: Reconstructed single wavelength data resulting from choosing NC/NP = 0.5 distribution for wavelength λ12. Error bars indicate the standard deviation of the displayed means including error propagation, lines are drawn to guide the eye.
Fig. 5:
Fig. 5: Fused and single wavelength SNR over NC/NP for (a) wavelength λ1 and (b) wavelength λ2, comparing single wavelength SNR and fused SNR for applying the acquisition scheme (solid line) or using the same ratio for consecutive acquisitions of single wavelength and fused data (F3 and S3, dashed line). The curve was obtained by varying NC/NP from 0 to 1 for NP = 8 using the experimental data. Error bars indicate the standard deviation of the displayed means including error propagation, lines are drawn to guide the eye.

Equations (28)

Equations on this page are rendered with MathJax. Learn more.

m ( λ l , t ) = i = 1 M w i l a i = i = 1 M w i l ( j = 1 N λ c i j s λ j ( t ) + n i ( t ) ) .
m ( t ) = W T a
i = 1 M w i l c i j = { 1 for j = l 0 for j l
Var ( m ( λ l , t ) ) = i = 1 M w i l 2 σ i 2 ,
W = C ( C T C ) 1 .
V = ( C T C ) 1 σ 2 .
M S E SC , l = δ l T ( C T C ) 1 δ l σ 2 .
χ = R m ,
W ˜ = C ( C T C ) 1 R T .
V χ = R ( C T C ) 1 R T σ 2 .
s ^ ( t ) = i = 1 M w i ( j = 1 N λ c i j s λ j ( t ) + n i ( t ) ) .
Var [ s ^ ( t ) ] = i = 1 M w i 2 σ i 2 .
( i = 1 M w i 2 σ 2 + ξ ( 1 i = 1 M w i j = 1 N λ c i j g j ) ) w l = ! 0 ,
( i = 1 M w i 2 σ 2 + ξ ( 1 i = 1 M w i j = 1 N λ c i j g j ) ) ξ = ! 0 ,
w = C g g T C T C g .
M S E F = σ 2 g T C T C g .
M S E F , wc = g T C T C g ( δ t T C T C g ) 2 σ 2 .
M S E S 1 = σ 2 N p .
M S E F 1 = σ 2 N λ N P .
M S E F 2 = σ 2 N λ 2 N P .
M S E SC 3 = ( 1 1 N λ N P N C + 1 ( N P + N C ( N λ 1 ) ) N λ ) σ 2 ,
M S E FC 3 = σ 2 N λ ( N P N C ) + N λ 2 N C .
M S E S 3 = σ 2 N P N C , = M S E SC 3 + N C σ 2 ( N P N C ) ( N P + N C ( N λ 1 ) ) 0 .
M S E F 3 = σ 2 N λ 2 N C , = M S E FC 3 + ( N P N C ) σ 2 N λ 2 N C ( N P + N C ( N λ 1 ) ) 0 .
M S E FC 3 , wc = N λ σ 2 ( N λ 1 ) N C + N P .
M S E F 1 , wc = N λ σ 2 N P ,
M S E F 2 , wc = σ 2 N P ,
M S E F 3 , wc = σ 2 N C .

Metrics